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Abstract: In this paper we review our recent findings on the different interaction mechanisms of the
C-terminal domain of the nucleoprotein (N) of measles virus (MeV) NTAIL, a model viral intrinsically
disordered protein (IDP), with two of its known binding partners, i.e., the C-terminal X domain of the
phosphoprotein of MeV XD (a globular viral protein) and the heat-shock protein 70 hsp70 (a globular
cellular protein). The NTAIL binds both XD and hsp70 via a molecular recognition element (MoRE)
that is flanked by two fuzzy regions. The long (85 residues) N-terminal fuzzy region is a natural
dampener of the interaction with both XD and hsp70. In the case of binding to XD, the N-terminal
fuzzy appendage of NTAIL reduces the rate of α-helical folding of the MoRE. The dampening effect of
the fuzzy appendage on XD and hsp70 binding depends on the length and fuzziness of the N-terminal
region. Despite this similarity, NTAIL binding to XD and hsp70 appears to rely on completely different
requirements. Almost any mutation within the MoRE decreases XD binding, whereas many of them
increase the binding to hsp70. In addition, XD binding is very sensitive to the α-helical state of the
MoRE, whereas hsp70 is not. Thus, contrary to hsp70, XD binding appears to be strictly dependent
on the wild-type primary and secondary structure of the MoRE.
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1. Structural Properties and Molecular Partnership of NTAIL

The nucleoprotein (N) of measles virus (MeV) consists in a large structured moiety (NCORE, aa
1 to 400) and in a C-terminal domain (NTAIL, aa 401 to 525 of N) that is intrinsically disordered [1]
(Figure 1A). The NTAIL protrudes from the globular core of N and is exposed at the surface of the
viral nucleocapsid [2–6]. The latter is made of a regular array of N monomers wrapping the RNA
genome into a helicoidal arrangement. The exposure of NTAIL at the surface of the nucleocapsid
allows recruitment of the phosphoprotein (P) via interaction with the C-terminal X domain (XD) of the
latter [7–10]. The phosphoprotein (P) is required for both transcription and replication, as it tethers the
viral Large protein (L), which possesses all the enzymatic activities required for RNA synthesis, onto
the nucleocapsid template (for a review see [11]).

Biomolecules 2019, 9, 8; doi:10.3390/biom9010008 www.mdpi.com/journal/biomolecules

http://www.mdpi.com/journal/biomolecules
http://www.mdpi.com
https://orcid.org/0000-0002-6829-6771
http://dx.doi.org/10.3390/biom9010008
http://www.mdpi.com/journal/biomolecules
http://www.mdpi.com/2218-273X/9/1/8?type=check_update&version=3


Biomolecules 2019, 9, 8 2 of 14

Structural disorder is known to be a determinant of protein interactivity: the enhanced plasticity
of intrinsically disordered proteins (IDPs) and regions (IDRs) allows for the enlargement of their
molecular partnership [12–14]. In line with this, MeV NTAIL binds to numerous partners. Beyond the
X domain of the P protein, NTAIL also interacts with the viral matrix protein [15]. In addition, it also
interacts with host proteins, such as the major inducible heat shock protein 70 (hsp70) [16–18], a nuclear
export protein [19], the interferon regulatory factor 3 [20,21], a cell receptor involved in MeV-induced
immunosuppression [22,23], peroxiredoxin 1 [24], and proteins of the cell cytoskeleton [25,26].

The NTAIL and XD proteins interact with each other forming a 1:1 stoichiometric complex
with an equilibrium dissociation constant (KD) in the µM range [27,28]. The crystal structure of
MeV XD has revealed that this domain consists of a bundle of three antiparallel α-helices [9,10,29]
(Figure 1B). In solution however, two distinct structural forms differing in their degree of compactness
coexist [30,31].

The structural arrangement of XD in a triple α-helical bundle, as well as the disordered nature of
NTAIL [32], are also conserved in the related Nipah and Hendra viruses, whose NTAIL-XD complexes
are similar to that of MeV [27,33]. Binding to XD triggers α-helical folding of a short NTAIL region
(Box2, aa 486 to 504 of MeV N, and Box3, aa 473 to 493 of Henipavirus N), referred to as a Molecular
Recognition Element or MoRE [7,9,10,27] (Figure 1A). The MoREs are short, transiently populated
secondary structures within IDRs that are often structurally biased towards their bound state [34].
The crystal structure of a MeV chimeric construct in which XD is covalently attached to the MoRE of
NTAIL (aa 486 to 504) was solved at 1.8 Å [10]. The structure consists of a pseudo-four helix complex in
which the MoRE of NTAIL adopts a parallel orientation with respect to XD and is embedded in a large
hydrophobic cleft delimited by XD helices α2 and α3 [10] (Figure 1C).

The MoRE is partly preconfigured as an α-helix in the absence of XD in both MeV and
henipaviruses [5,29,33,35–38]. This partial pre-configuration facilitates the folding-upon-binding
process by rendering the structural transition to the (partially) folded conformation energetically
less demanding [34]. In spite of this pre-configuration, NTAIL was shown to fold according to a
folding-after-binding mechanism [28,33,39,40].

Mutational studies coupled to Φ-value analysis led to a detailed structural description of the
folding and binding events occurring in the recognition between MeV NTAIL and XD [41]. Analysis
of the impact of single-amino acid substitutions in NTAIL on the reaction mechanism allowed the
identification of key residues involved in the initial recognition between NTAIL and XD, and enabled
unraveling of the general features of the folding pathway of NTAIL. In addition, analysis of the changes
in stability of all the variants revealed that a few substitutions favor the folding step, which highlighted
the inherent poor folding efficiency of NTAIL, a property that we proposed that could arise from the
weakly funneled nature of the energy landscape of IDPs in their unbound state that might dictate a
considerable structural heterogeneity (or structural frustration) of the bound state [41].

In both MeV and henipaviruses, following binding to XD, most of NTAIL remains disordered and
does not establish stable contacts with XD [8,27,29,33,35–38,42–44]. These NTAIL-XD complexes are
therefore illustrative examples of fuzziness [45]. Fuzziness may confer various functional advantages,
such as the ability to interact with alternative partners and/or to establish simultaneous interactions
with different partners. Fuzziness also provides a way to reduce the entropic penalty that accompanies
the disorder-to-order transition, thereby leading to enhanced affinity. Tuning fuzziness therefore
constitutes an additional manner by which IDPs can modulate the interaction strength with their
partners. Furthermore, disordered appendages can harbor regulatory post-translational modification
sites, can serve for partner fishing via non-specific, transient contacts, and can accommodate binding
sites for additional partners [46–48].
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Figure 1. (A) Schematic representation of the C-terminal domain of the nucleoprotein (N) of measles 
virus (MeV) NTAIL (upper panel) and cartoon representation of an NTAIL conformer generated using 
Flexible-Mecano [49]. (B) Ribbon representation of the crystal structure of the C-terminal X domain 
of the phosphoprotein of MeV XD (PDB code 1OKS). (C) The structure of the chimeric construct 
made of MeV XD (blue) and of the molecular recognition element MoRE of NTAIL (red) (PDB code 
1T6O). (D) Cartoon representation of the crystal structure of hsp70 based on PDB codes 1HJO and 
4JNF. The relative orientation of the two hsp70 domains (i.e., amino acids 3 to 382 and amino acids 
389 to 610) is based on the structure of a form encompassing residues 1 to 554 (PDB code 1YUW). The 
three constituent domains of hsp70, i.e., nucleotide binding domain (NBD, aa 1 to 384), peptide 
binding domain (PBD, aa 384 to 543) and “lid” (aa 543 to 641) (see [18] and references therein cited) 
are highlighted. 

In line with these abilities, the C-terminal fuzzy region of MeV NTAIL encompassing residues 517 
to 525 was shown to serve as a low-affinity binding site for hsp70 [17,18], a large cellular protein with 
a markedly different structural organization (Figure 1D) with respect to XD. The heat shock protein 
70 (hsp 70) was shown to stimulate both viral transcription and replication, with this ability relying 
on interaction with NTAIL [16,17,50–55]. Binding experiments showed that the major hsp70-binding 
site is however located within Box2 [56]. Since hsp70 was found to competitively inhibit the binding 
of XD to NTAIL [17], it has been proposed that hsp70 could enhance viral transcription and replication 
by destabilizing the P–NTAIL interaction, thereby promoting successive cycles of binding and release 
that are essential for the polymerase to progress along the nucleocapsid template [8,17]. The 
hsp70-dependent reduction of the stability of P–NTAIL complexes would thus rely on competition 
between hsp70 and XD for binding to the α-MoRE of NTAIL, with recruitment of hsp70 being ensured 
by both Box2 and Box3 [17]. Although the hsp70-binding site(s) within NTAIL have been mapped, no 
structural information on the complex is available. 

In the following sections we summarize available data pertaining to the impact of the long, 
N-terminal fuzzy appendage of NTAIL on binding to both XD and hsp70. We also summarize the 
available molecular information on the sequence and secondary structure requirements for NTAIL-XD 
and NTAIL-hsp70 binding. Altogether, these studies contribute to enlarge our knowledge of the 
molecular determinants underlying the ability of hsp70 to interact with NTAIL and, more generally, 
add “another brick to the wall” towards the ambitious goal of building up a comprehensive 
understanding of the mechanisms by which IDPs recognize their partners. 

Figure 1. (A) Schematic representation of the C-terminal domain of the nucleoprotein (N) of measles
virus (MeV) NTAIL (upper panel) and cartoon representation of an NTAIL conformer generated using
Flexible-Mecano [49]. (B) Ribbon representation of the crystal structure of the C-terminal X domain
of the phosphoprotein of MeV XD (PDB code 1OKS). (C) The structure of the chimeric construct
made of MeV XD (blue) and of the molecular recognition element MoRE of NTAIL (red) (PDB code
1T6O). (D) Cartoon representation of the crystal structure of hsp70 based on PDB codes 1HJO and
4JNF. The relative orientation of the two hsp70 domains (i.e., amino acids 3 to 382 and amino acids
389 to 610) is based on the structure of a form encompassing residues 1 to 554 (PDB code 1YUW).
The three constituent domains of hsp70, i.e., nucleotide binding domain (NBD, aa 1 to 384), peptide
binding domain (PBD, aa 384 to 543) and “lid” (aa 543 to 641) (see [18] and references therein cited)
are highlighted.

In line with these abilities, the C-terminal fuzzy region of MeV NTAIL encompassing residues
517 to 525 was shown to serve as a low-affinity binding site for hsp70 [17,18], a large cellular
protein with a markedly different structural organization (Figure 1D) with respect to XD. The heat
shock protein 70 (hsp 70) was shown to stimulate both viral transcription and replication, with this
ability relying on interaction with NTAIL [16,17,50–55]. Binding experiments showed that the major
hsp70-binding site is however located within Box2 [56]. Since hsp70 was found to competitively inhibit
the binding of XD to NTAIL [17], it has been proposed that hsp70 could enhance viral transcription and
replication by destabilizing the P–NTAIL interaction, thereby promoting successive cycles of binding
and release that are essential for the polymerase to progress along the nucleocapsid template [8,17].
The hsp70-dependent reduction of the stability of P–NTAIL complexes would thus rely on competition
between hsp70 and XD for binding to the α-MoRE of NTAIL, with recruitment of hsp70 being ensured
by both Box2 and Box3 [17]. Although the hsp70-binding site(s) within NTAIL have been mapped, no
structural information on the complex is available.

In the following sections we summarize available data pertaining to the impact of the long,
N-terminal fuzzy appendage of NTAIL on binding to both XD and hsp70. We also summarize the
available molecular information on the sequence and secondary structure requirements for NTAIL-XD
and NTAIL-hsp70 binding. Altogether, these studies contribute to enlarge our knowledge of the
molecular determinants underlying the ability of hsp70 to interact with NTAIL and, more generally, add
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“another brick to the wall” towards the ambitious goal of building up a comprehensive understanding
of the mechanisms by which IDPs recognize their partners.

2. The N-Terminal Fuzzy Region of NTAIL down Regulates the Binding of the MoRE to Both XD
and Hsp70

As recalled in the introduction, the MoRE of NTAIL (aa 486 to 504) is responsible for XD binding
and is preceded by a long, N-terminal fuzzy region (aa 401 to 488). We have investigated the role
of this region by shortening it by ten residue intervals from aa 401 to aa 481 (Figure 2A), and then
assessing the binding ability of each truncation variant using a split-green fluorescent protein (GFP)
complementation assay [57,58]. In this assay, two proteins (X and Y) known to interact with each other
are respectively fused to the C-terminal end of the first seven N-terminal moiety of GFP (NGFP) and
the N-terminal end of the last four β-strands C-terminal moiety of GFP (CGFP) of GFP. Separately,
NGFP-X and Y-CGFP are unable to fluoresce. However, when NGFP-X and Y-CGFP are co-expressed
in E. coli, X and Y bind to each other within the cell, allowing NGFP and CGFP to reconstitute
the full-length fluorescent GFP. Since the fluorescence is proportional to the affinity between X and
Y [59,60], the interaction between different combinations of NGFP-X and Y-CGFP can be compared by
simply measuring the fluorescence of the bacteria co-expressing NGFP-X and Y-CGFP. In our case, X
was NTAIL or its truncation variants and Y was either XD or hsp70.

Results show a non-monotonic fluorescence increase with the truncation, with both XD (Figure 2B)
and hsp70 (Figure 2C). In agreement with the known higher affinity of NTAIL for XD (3 µM) [28]
compared to that for hsp70 (70 µM) [18], the overall fluorescence was found to be higher for XD than
for hsp70 (see the different Y-axis scales between Figure 2B,C). Thus, the fuzzy N-terminal region of
NTAIL negatively regulates the binding of NTAIL to two partners that differ in both size and affinity. We
have obtained similar results when NTAIL and XD from NiV and HeV were used [61] or when another
protein complementation assay based on split-luciferase [62] was used. Thus, the negative effect of
the fuzzy N-terminal region of NTAIL on XD binding is shared by at least three paramyxoviruses and
is maintained irrespective of whether the assay generates reversible (luciferase) or irreversible (GFP)
complexes [61].

We sought possible reasons for this negative effect. The importance of the primary structure
of NTAIL N-terminal region was first assessed. Since this region remains disordered after binding, a
possible reason for its observed negative effect on binding could be its mere fuzziness. If this were
the case, then swapping the wild-type sequence with another unrelated sequence would be expected
to elicit similar effects provided that it is similarly disordered. To test this hypothesis, we replaced
the wild-type N-terminal fuzzy region of NTAIL (aa 401 to 480) with another non-natural sequence.
Compared to its wild-type counterpart, this artificial sequence (i) has the same number of residues,
(ii) is predicted to be slightly more disordered (Figure 2D), (iii) shares only 6% identity. This artificial
sequence was fused to the remaining part (aa 481 to 525) of wild-type NTAIL to reconstitute an artificial
full-length NTAIL (aa 401 to 525) (artNTAIL). We then generated the same series of truncation variants
as those previously generated from the wild-type sequence (wtNTAIL) (Figure 2A) and compared their
effect on the binding to XD. As shown in Figure 2E, wtNTAIL and artNTAIL truncation variants yielded
similar binding patterns, with the binding strength increasing non-monotonically with the truncation.
However, results were not identical. Compared to wtNTAIL, the profile obtained with artNTAIL was
more linear, and each artNTAIL variant displayed a slightly lower interaction strength towards XD
than its wild-type counterpart, a property that could be related to the higher disorder probability of
full-length artNTAIL (Figure 2D). Thus, the negative effect of NTAIL N-terminal fuzzy region (aa 401 to
485) on XD binding was not due to its specific sequence but to a combination of length and fuzziness.
The sequence-independent nature of the effect exerted by the disordered appendage is not unique
to NTAIL, having also been observed in the case of human UDP-α-D-glucose-6-dehydrogenase. This
enzyme possesses a C-terminal disordered region that entropically rectifies the dynamics and structure



Biomolecules 2019, 9, 8 5 of 14

of the enzyme to favor binding of an allosteric inhibitor, with this effect being independent from both
primary structure and chemical composition [63].Biomolecules 2018, 8, x FOR PEER REVIEW  5 of 14 
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Figure 2. Effect of the N-terminal fuzzy region of NTAIL on XD and hsp70 binding. (A) NTAIL deletion
variants were generated as described [60]. The N-terminal residue is indicated. The N-terminal
fuzzy region subjected to truncation is shown in grey and the MoRE is shown in green. (B,C) Split-
green fluorescent protein (GFP) complementation assay using XD (B) and hsp70 (C). Shown are
the mean values and standard deviation (SD) of an experiment performed in triplicate. Results are
expressed as percentage with 100% being the fluorescence value provided by full-length NTAIL (401).
For a detailed description of the procedure see Supplementary Information. (D) IUPred [64] disorder
prediction of wtNTAIL (blue) and artNTAIL (red) from residue 401 to residue 480. (E) Fluorescence
values obtained by split-GFP complementation assays using wild type (wt) (blue line) and art (red line)
NTAIL truncation variants and XD. Shown are the mean values and SD of an experiment performed
in triplicate. Results are expressed as percentage with 100% being the fluorescence value provided
by full-length wtNTAIL (401). (F) Binding kinetics of XD (at a constant concentration of 2 µM) with
excess concentrations of either wtNTAIL (black circles) or a peptide mimicking the MoRE (green
circles) in 10 mM sodium phosphate buffer and 150 mM NaCl at pH 7.0. Under all conditions, there
was an at least fivefold difference in concentration between the two proteins to ensure pseudo-first
order conditions. Experiments were carried out using a PTJ-64 capacitor-discharge T-jump apparatus
(Hi-Tech, Salisbury, UK). The temperature was rapidly changed with a jump size of 9 ◦C, from 11 ◦C to
20 ◦C. Data were taken from [60].

We tried to perform the same experiments using hsp70, but got results suffering from low
reproducibility for unknown reasons (not illustrated). We further investigated the molecular
mechanisms by which the fuzzy appendage of MeV NTAIL influences the interaction with XD by
analyzing binding kinetics (Figure 2F). In the case of full-length NTAIL (aa 401–525), a hyperbolic
dependence of kobs (the macroscopic observed rate constant) on ligand concentration was observed,
which accounts for the folding of NTAIL becoming rate-limiting at high reactant concentrations [28].
Conversely, when a MoRE-mimicking peptide (aa 485 to 506) was used, linear kinetics was observed.
Kinetic experiments could not be performed using hsp70 because of the low affinity of the interaction,
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and due to the presence of numerous tryptophan residues that could jeopardize the analysis.
In conclusion, the NTAIL N-terminal region could dampen the NTAIL/XD interaction, at least in part,
by lowering the rate of folding of the MoRE, although the subtle mechanisms underlying this ability
remain elusive and await future studies to be unraveled.

3. The Bindings of XD and Hsp70 to NTAIL MoRE Rely on Different Primary and Secondary
Structure Requirements

We have seen that MeV NTAIL N-terminal region (401 to 485) has comparable negative effects on
the binding of two different NTAIL partners: XD, a small viral protein [9] with a relatively high affinity
(3 µM) [28] and hsp70, a large cellular protein with a lower affinity (70 µM) for NTAIL [18]. Although
the MoRE has been shown to be the major hsp70-binding site [17,18], the structure of NTAIL-hsp70
complex has not been solved yet contrary to the NTAIL-XD complex [10]. As a consequence, we do
not know whether the MoRE folds into an α-helix upon binding to hsp70 as it does upon XD binding
and whether the interaction relies on the same MoRE residues. The relevance of investigating the
molecular mechanisms governing the NTAIL/hsp70 interaction lies in its well-documented impact on
viral transcription and replication [16,17] and on the innate immune response [65].

3.1. Sequence Requirements of NTAIL Molecular Recognition Element for XD and Hsp70 Binding

To gain insights into this biologically relevant question, we first alanine scanned the MoRE, and
assessed the effect of these substitutions by monitoring the binding of each individual variant to XD
and hsp70 using the split-GFP complementation assay [64]. We used NTAIL truncation variant 471 (aa
471 to 525) as backbone to derive single-site variants because it binds XD better than full-length NTAIL

(Figure 2B) [61], and therefore provides higher fluorescence signals in split-GFP complementation
assay that are more appropriate than weak signals to study subtle modulation effects. In the case of
XD binding (Figure 3A), most alanine variants exhibited a decreased binding compared to that of the
wild-type sequence and, in a few cases (residues Ser491, Ala494, Leu495, Met501), the single alanine (or
glycine) substitution essentially abrogates binding [66]. These latter residues can therefore be defined
as critical for XD binding, a conclusion in agreement with the 3D structure of the MeV MoRE-XD
complex in which all these residues point toward XD and not to the solvent [10]. Very different results
were obtained with hsp70 (Figure 3B) [64]. First, several variants exhibited an increased binding
compared to the wild-type sequence. Secondly, no single residue proved to be mandatory for binding
to hsp70. Thus, although NTAIL binding to both XD and hsp70 was down-regulated by the NTAIL

N-terminal fuzzy region (Figure 2), these two proteins bind the MoRE using different residues thereof,
and hence through different mechanisms.

Based on the results provided by the alanine-scanning mutagenesis, we conceived an hsp70 “super
binder” (hsb) that was obtained by collectively introducing all the substitutions that individually
increased the binding to hsp70 (see Figure 4A) in the context of truncated variant 471 (hsb471). This
rationally designed variant displayed a much higher binding strength (2.35 times) towards full-length
hsp70 than wt471 in a split-GFP complementation assay (compare wt471 to hsb471 and wtMoRE
to hsbMoRE in Figure 4B). Because of the dampening effect of the N-terminal fuzzy appendage
(Figure 2C), this enhancement in affinity was even more pronounced when hsbMoRE was used
alone rather than in the context of truncated variant 471 (compare hsb471 and hsbMoRE bindings in
Figure 4B).
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Figure 3. Effect of primary and secondary structures of the MoRE on XD and hsp70 binding.
(A,B) Alanine scanning mutagenesis of NTAIL MoRE. MoRE residues (aa 486 to 504) of MeV NTAIL

truncation variant 471 were individually mutated into an alanine (or a glycine when the wild-type
residue was an alanine). The binding ability of each single NTAIL variant was then compared to that of
wild-type NTAIL by split-GFP complementation assay using either XD (A) or hsp70 (B). Ø, negative
control (fluorescence background obtained using an empty vector encoding NGFP alone); wt, positive
control (i.e., wild-type truncation variant 471). Results are expressed as percentage with 100% being
the fluorescence value provided by wt truncation variant 471. The horizontal dotted line indicates
the binding of the positive control. (C) Far-UV circular dichroism spectra of wtMoRE, AlaMoRE, and
GlyMoRE peptides. (D) Fluorescence values obtained by split-GFP complementation assays using
NTAIL MoRE variants with different α-helicities. See A for details; 401, full-length wtNTAIL; wt471, 471
truncated variant with a wtMoRE; Ala471, 471 truncated variant with AlaMoRE; Gly471, 471 truncated
variant with GlyMoRE. (E) Binding kinetics of MoRE peptides to XD. Data shown in panels A, B, and
D are the mean values and SD of an experiment performed in triplicate. Data were taken from [66].

The three-fold increase in binding strength towards hsp70 upon replacement of as many as 13
residues out of 19 (i.e., almost 70%) of the sequence of the wtMoRE with alanine or glycine (Figure 4A) is
puzzling. How can NTAIL binding to hsp70 be specific of the MoRE while being relatively independent
of the sequence of the latter? Conceivably, hsp70 may recognize not a precise amino acid sequence
or motif, but rather a set of few residues with specific chemical features and no strict positional
conservation. While hydrophobicity on its own cannot explain the increased binding strength of
hsbMoRE [64], the enrichment in Ala, Gly, and Leu residues (in this order) and the depletion in Asp
residues of hsbMoRE (Figure 4A) might provide a rational explanation: indeed, previous studies
identified these features as favoring binding of peptides to hsp33, a redox-regulated chaperone [67].
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Figure 4. Binding abilities of hsb towards hsp70. (A) Amino acid sequence of wt and hsbMore.
In the latter, all the residues individually shown to lead to increased NTAIL-hsp70 binding strength
by the alanine scanning mutagenesis were collectively replaced with alanine, or with glycine when
the wild-type residue was alanine. (B) Binding abilities of NTAIL variants as obtained by split-GFP
complementation assays. Y-axis: fluorescence values of each culture divided by the optical density
at 600 nm. X-axis: NTAIL variants-hsp70 pairs. Shown are the mean values and SD of an experiment
performed in triplicate. The scheme of the NTAIL constructs is shown above the graph, with wt and hsb
MoREs being represented in grey and black, respectively, and fuzzy regions in white. Orientation is
from left (N-terminal end) to right (C-terminal end). Data were taken from [66].

3.2. Secondary Structure Requirements of NTAIL Molecular Recognition Element for XD and Hsp70 Binding

Single residue substitutions of the alanine scanning aimed at providing information on the
sequence requirement of XD and hsp70 binding but not at changing the secondary structure of the
MoRE. The latter is known to fold into an α-helix upon XD binding. However, nothing is known about
the conformation it takes upon binding to hsp70. To address this question, we constructed two MoRE
variants with opposite folding properties [66]. Both MoRE variants were generated using truncation
variant 471 as backbone for the reason given above. In the first one (Ala471), all residues the alanine
scanning identified as non-critical for XD binding were replaced with alanine. In the second one
(Gly471), those residues were replaced with glycine. Since alanine promotes α-helix formation whereas
glycine has the opposite effect [68], Ala471 and Gly471 were expected to be more and less α-helical
than wtMoRE, respectively. This assumption, strengthened by disorder prediction and modeling [66],
was experimentally confirmed by circular dichroism (CD) analysis of MoRE peptides (Figure 3C).

The wt471, Ala471, and Gly471 variants were then tested for their ability to bind XD or hsp70
by split-GFP complementation assay. Results (Figure 3D, left panel), indicated that increasing the
α-helicity (Ala471) slightly increased binding to XD compared to wt471, whereas the lack of α-helicity
(Gly471) resulted in a complete loss of binding in spite of the presence of the residues revealed
to be critical for XD binding by alanine scanning [64]. Conversely, Ala471 and Gly471 behaved
similarly when assessed for their binding to hsp70: they both exhibited a moderately decreased
binding compared to wt471 (Figure 3D, right panel) [66]. The lower XD binding ability of Gly471
compared to that of wt471 and Ala471 was also confirmed by kinetics experiments (Figure 3E). While
AlaMoRE and wtMoRE behaved similarly, there was a detectable destabilization of the complex in the
case of GlyMoRE as judged from the lower slope of its binding kinetics [64]. These results definitely
indicate that XD and hsp70 did not rely on the same structural requirements to bind to the MoRE of
NTAIL. More specifically, increasing the α-helicity of the MoRE increased XD binding but decreased
hsp70 binding suggesting that the latter did not trigger α-helical folding of the MoRE, a conclusion
strengthened by the ability of hsp70 to bind a MoRE that is unable to fold into an α-helix.
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In conclusion, in addition to using a different set of NTAIL residues, XD and hsp70 did not induce
the same folding within the MoRE, therefore indicating that they likely interacted with NTAIL through
completely different mechanisms.

4. Conclusions

Deletion studies have shown that the long, N-terminal fuzzy region of NTAIL inhibits the
interaction with XD and hsp70. This raises the question of what could be the possible functional
role of this auto-inhibition. According to the so-called cartwheeling mechanism, the NTAIL-XD
interaction needs to be dynamically made and broken to ensure progression of the polymerase complex
onto the nucleocapsid to allow transcription and replication [69]. A too strong interaction between
NTAIL and XD is therefore predicted to hinder the polymerase processivity. The discovery that the
fuzzy appendage acts as a natural dampener of the interaction provides a conceptual framework to
understand why the MoRE is preceded by such a long arm. It is tempting to speculate that in the
course of evolution, the length of this region has been under selective pressure so as to ensure an
optimal affinity towards XD. This speculation is in agreement with recent studies by the group of
Plemper that showed that a mutated measles virus in which the region preceding the MoRE has been
shortened suffers from an imbalance between transcription and replication [70].

Alanine-scanning mutagenesis of the MoRE unveiled that XD is very sensitive to substitutions,
in line with experimental evidence showing that the MoRE of NTAIL is poorly evolvable in terms of
XD binding [58]. This implies that the sequence of the MoRE has been shaped during evolution to
achieve maximal binding to XD, a finding in striking contrast with the postulated positive selection of
a long fuzzy appendage dampening the interaction. Although apparently contradictory, these effects
of natural selection have in fact resulted in a finely tuned system in which the strongest possible
MoRE-XD interaction is “entropically rectified” [63] by the N-terminal fuzzy region of NTAIL to achieve
a precise NTAIL-XD interaction strength. The latter is in fact required to ensure dynamic anchoring of
the L–P polymerase complex [71] and efficient transcription re-initiation at each intergenic junction of
the MeV genome [72].

By contrast, hsp70 is much more tolerant to substitutions within the MoRE, and the MoRE-hsp70
interaction appears to be highly evolvable. The high evolvability of the NTAIL-hsp70 interaction might
arise from the fact that the two binding partners have not been subjected to an as tight co-evolution
as that of the NTAIL-XD pair due to the multiple functional roles that hsp70 plays in the cell and
that are not exclusively related to MeV infection. In addition, a high affinity between NTAIL and
hsp70 might not be required for the interaction to take place and elicit the known effects on viral
transcription and replication [17,73] and on the innate immune response [65] given the very high
intracellular concentrations of both hsp70 and N in MeV infected cells [53]. A high affinity could
even be deleterious for the viral replication since hsp70 could then fully out compete XD for NTAIL

binding [17].
The discovery that the NTAIL-hsp70 interaction does not rely on the same residues mediating

the NTAIL-XD interaction, and does not imply α-helical folding emphasizes the plasticity and
polymorphism of this IDP. The structure adopted in the bound form seems therefore to be “sculpted”
by the partner, thereby providing an additional example of “templated folding” [41]. This high
extent of malleability with respect to the partner challenges the role of preconfiguration of MoREs
in the recognition process. NTAIL seems indeed to be relatively insensitive to the structure of its
pre-recognition motif, being able to adopt a non α-helical conformation upon binding to hsp70 in spite
of the partial α-helical preconfiguration of its MoRE.

Finally, and from a more applied perspective, the much higher affinity of hsb compared to
wt MoRE towards hsp70 holds promise for future potential therapeutic applications. Since the
NTAIL-hsp70 interaction stimulates viral transcription and replication [16,17], and since hsbMoRE
binds hsp70 three times better than wtMoRE, over-expressing hsbMoRE in MeV-infected cells
might expectedly inhibit MeV replication (provided that hsbMoRE is non-toxic for eukaryotic cells).
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Incidentally, hsbMoRE could also be used as an anti-cancer drug, based on previous studies that have
described the anti-viral [74] and anti-cancer [75,76] effect of 2-phenylethynesulfonamide, a specific
hsp70 inhibitor. Experiments are ongoing in our lab to assess the therapeutic potential of hsbMoRE.
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