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ABSTRACT
Background: Endoscopic deep learning systems are often developed using high‐quality imagery obtained from expert centers.
Therefore, they may underperform in community hospitals where image quality is more heterogeneous.
Objective: This study aimed to quantify the performance degradation of a computer aided detection system for Barrett's
neoplasia, trained on expert images, when exposed to more heterogeneous imaging conditions representative of daily clinical
practice. Further, we evaluated strategies to mitigate this performance loss.
Methods: We developed a computer aided detection system using 1011 high‐quality, expert‐acquired images from 373 Barrett's
patients. We assessed its performance on high, moderate and low image quality test sets, each containing images from an
independent group of 117 Barrett's patients. These test sets reflected the varied image quality of routine patient care and
contained artefacts such as insufficient mucosal cleaning and inadequate esophageal expansion. We then applied three methods
to improve the algorithm's robustness to data heterogeneity: inclusion of more diverse training data, domain‐specific pretraining
and architectural optimization.
Results: The computer aided detection system, when trained exclusively on high‐quality data, achieved area under the curve
(AUC), sensitivity and specificity scores of 83%, 85% and 67% on the high quality test set. AUC and sensitivity were significantly
lower with 80% (p < 0.001) and 62% (p = 0.002) on the moderate‐quality and 71% (p > 0.001) and 47% (p = 0.002) on the low‐
quality test set. Incorporating robustness‐enhancing strategies significantly improved the AUC, sensitivity and specificity to 92%
(p = 0.004), 88% (p = 0.84) and 81% (p = 0.003) on the high‐quality test set, 93% (p = 0.006), 86% (p = 0.01) and 83% (p = 0.09) on
the moderate‐quality test set and 84% (p = 0.001), 78% (p = 0.002) and 77% (p = 0.23) on the low‐quality test set.
Conclusion: Endoscopic deep learning systems trained solely on high‐quality images may not perform well when exposed to
heterogeneous imagery, as found in routine practice. Robustness‐enhancing training strategies can increase the likelihood of
successful clinical implementation.
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1 | Introduction

Over the past decade, the medical domain has witnessed a surge
of artificial intelligence (AI) systems [1]. This also holds true for
the field of gastrointestinal endoscopy [2, 3]. Several of these AI
applications have received FDA approval [4]. However, it is not
uncommon that AI systems underperform in clinical practice
compared with their original efficacy in controlled studies [5–7].
A core underlying issue is that virtually all endoscopic AI sys-
tems have been developed and evaluated in tertiary academic
centers, providing ideal conditions with high‐quality datasets
acquired by experts. In contrast to other imaging modalities,
such as CT or MRI, the image quality in endoscopy relies

FIGURE 1 | Example cases displaying the consequences of minimal image quality variation. The CADe system suffers from significant
performance loss when confronted with lower quality images of the same patient.

heavily on the endoscopist who performs the procedure. In
community‐based centers, the input data for an AI algorithm
can be significantly more heterogeneous. This creates a so‐called
“domain gap,” a common phenomenon where AI displays
excellent performance on familiar data and a converse drop
when confronted with data that differs from its training distri-
bution [8, 9]. For truly meaningful impact, AI systems should
produce robust and reliable results, especially in community
hospitals where the majority of these systems will be employed.

Recently, our group developed and validated a computer aided
detection (CADe) system for Barrett's neoplasia [10–12]. Despite
the unparalleled volume and heterogeneity of the datasets as well
as a rigorous evaluation process, all data originated from expert
centers. CADe performance may become less reliable when the
system is confronted with data with suboptimal image quality
(Figure 1). Strategies to improve the robustness of CADe systems
against a wide variety of endoscopic image quality are warranted.

While the evaluation of robustness in computer vision is a well‐
known topic, it remains a largely unexplored area in the field of
endoscopy. A previous study by our group [13] displayed a sig-
nificant lack of robustness of endoscopic AI systems on datasets
when exposed to artificially degraded images. In this study, we
aimed to quantify the expected decline in CADe performance
when transitioning from high‐quality imagery to a broader
spectrum of image quality, as may be encountered in daily prac-
tice. In addition, we evaluated preliminary strategies to reduce
performance decline.

2 | Methods

2.1 | Experimental Set‐Up

For the purpose of our experiments, we first developed a new
CADe system for Barrett's neoplasia along the lines of our
previous work [10, 12]. This conventionally trained system was
trained solely on high‐quality expert‐acquired imagery. We then

Summary

� Summarize the established knowledge on this subject
◦ Current endoscopic AI systems are predominantly
trained on high‐quality, expert‐acquired datasets that
do not reflect the diverse imaging conditions encoun-
tered in routine clinical practice. This mismatch leads
to a phenomenon known as the “domain gap.”

◦ There is limited data regarding the impact of this
domain gap on the performance of AI systems.

� What are the significant and/or new findings of this
study?
◦ This study is the first to comprehensively evaluate the
performance decline of endoscopic AI systems when
exposed to heterogeneous input data, using Barrett's
neoplasia detection as an illustrative example.

◦ Performance of endoscopic AI systems, trained on
high‐quality data, decreases significantly when
exposed to varied imaging conditions, posing a major
challenge for successful clinical implementation.

◦ Future endoscopic AI systems should prioritize
robustness to data heterogeneity during both algo-
rithm development and performance evaluation.
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constructed a test set that included images spanning the full
range of endoscopic image quality. This variety represented the
potential input that a CADe system might encounter, from
dedicated high quality images taken by expert endoscopists in
tertiary centers to lower quality images encountered in daily
practice. This robustness test set was divided into three subsets:
high‐, moderate‐, and low‐quality images. The performance of
this conventionally trained CADe system was evaluated on the
high quality test set and subsequently on the moderate and low‐
quality test sets to quantify the domain gap. We then developed
a more robust CADe system using three robustness enhancing
training methods (described below). We evaluated the perfor-
mance of this more robust CADe system on the same three test
sets and compared its performance with the baseline perfor-
mance of the conventionally trained CADe system. For sec-
ondary analyses, we trained three additional CADe systems
based on only one robustness enhancing method. The experi-
mental set‐up is displayed in Figure 2.

2.2 | Data Acquisition

This study was conducted by the BONS‐AI consortium (Barrett's
esophagus imaging for Artificial Intelligence). All data were
collected in a strictly anonymized manner and originated from
previous studies [10, 12], which were registered at the Dutch
Trial Register under the number NL8411. The participating
BONS‐AI centers collected prospective imagery using a stan-
dardized protocol for image and video acquisition. This protocol
has been described in an earlier publication [10].

2.3 | Conventionally Trained CADe System

The conventionally trained CADe systemwas designed reflecting
the developmental approach of most currently used endoscopic
AI systems. The training dataset consisted exclusively of dedi-
cated still images acquired by expert endoscopists from 15 inter-
national tertiary centers according to a standardized protocol
[10], using HQ190/EZ1500 endoscopes with CV190/X1

processors (Olympus, Tokyo). Images were captured under
optimal conditions, including extensive mucosal cleaning,
adequate esophageal expansion, and consistent lighting, ensuring
high‐quality standards. It comprised 538 images from 184
neoplastic patients and 564 images from 206 non‐dysplastic Bar-
rett's esophagus patients. To rigorously assess its performance, 5‐
fold cross‐validation was conducted with a patient split. Given its
frequent use andwide acceptance formedical image classification
tasks, the ResNet‐50 architecture was selected as the foundation
for the CADe systems used in this study. Training parameters
such as learning rate, number of epochs and data augmentation
were kept fixed for all experiments and chosen based on experi-
mental findings for all models to converge. More specific details
on data acquisition, curation and model hyperparameter selec-
tion are described in the Supporting Information S1: (p. 3).

2.4 | Robust CADe System

The CADe system was then updated using three robustness
enhancing training methods. These were all integrated into one
robustCADe systemaimed to bemore resistant to varying levels of
image quality.

2.4.1 | Inclusion Diverse Training Data

The most intuitive solution to improve the robustness of CADe
systems is to incorporate a wider variety of endoscopic image
quality into the training set. Ideally, images originating fromnon‐
expert centers should be used for this purpose, but due to the low
prevalence of Barrett's neoplasia in these hospitals, this is prac-
tically not feasible. As an alternative, we elected to include video
frames. In contrast to still images (where the endoscopists makes
a decision call to store or to discard the image), videos contain a
wider variety of image quality, even in expert‐acquired videos.We
randomly sampled video frames fromcuratedneoplastic andnon‐
dysplastic sequences from the same patient cohort used for the
conventional CADe system with identical endoscopy equipment.
These video sequences were selected to contain a wide variety of

FIGURE 2 | Comparison of a conventionally trained CADe system with a robust CADe system across three test sets comprising the complete
spectrum of image quality.
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endoscopic image quality, but were strictly curated to make sure
that neoplastic sequences did indeed comprise visual neoplasia on
every frame. Image quality varied across factors such as mucosal
cleanliness, esophageal expansion, lighting, and motion artifacts.
The dataset generated with this process thereby represented im-
agery that can be expected to be found in a non‐expert setting. It
contained 5870 video frames from 184 neoplastic patients and
6141 video frames from 206 non‐dysplastic Barrett's esophagus
patients. Examples of this video frame training set are given in
Supporting Information S1: Figure S1.

2.4.2 | Domain‐Specific Pretraining

Traditionally, before actual training on application‐specific data
(e.g., images of Barrett's neoplasia or colorectal polyps), com-
puter vision algorithms are generally pre‐trained on large,
publicly available datasets such as ImageNet [14], containing
generic images (e.g., animals, vehicles and buildings). From
these images, an algorithm can learn to recognize basic image
characteristics such as colors, edges and simple shapes. This is a
valuable and essential step in algorithm development, especially
for tasks where training data is limited, such as in the medical
domain. Studies suggest that utilizing large datasets of in‐
domain images, that is, endoscopic images, for pretraining re-
sults in improved algorithm performance [15, 16]. We recently
proposed GastroNet‐5M [17, 18], a dataset of over 5 million
unlabeled general endoscopic images intended for domain‐
specific pretraining. In preliminary experiments, the use of
GastroNet‐5M improved algorithm robustness against artifi-
cially generated endoscopic quality artifacts such as a blurry
lens, motion blur and inadequate illumination [13]. In this
study, we substituted ImageNet with GastroNet‐5M as one of
the three robustness enhancing training methods.

2.4.3 | Algorithm Architecture

Currently, most AI applications in endoscopy are based on so
called convolutional neural networks (CNNs). Therefore, we
used the commonly used and widely accepted ResNet‐50 ar-
chitecture, a CNN, for our conventionally trained CADe system.
In 2021, vision transformers (ViTs) were introduced as a
powerful alternative to CNNs [19]. This architecture has
enabled significant improvements in the field of medical

imaging [20]. Our group has presented empirical evidence
suggesting its potential to improve endoscopic AI applications in
terms of performance and robustness to data variability [21].
Therefore, we implemented an updated algorithm architecture
mostly based on the ViT architecture but also incorporating
some components of CNNs [22].

All robustness enhancing training methods have been summa-
rized in Table 1.

2.5 | Robustness Test Sets

The robustness test sets aimed to represent the varying levels of
endoscopic image quality that may be encountered in clinical
practice. These consisted of three subsets based on three
different levels of image quality: a high‐, moderate‐, and low‐
quality test set. All subsets were paired on a per patient basis.
Endoscopic image quality can be affected by several factors. In
this study, we focused on endoscopist dependent image quality
parameters such as esophageal expansion, lighting conditions,
blurriness and degree of esophageal cleaning (Supporting
Information S1: Figure S2). The test sets were constructed by a
manual selection of video frames from an independent patient
population of 61 neoplastic and 56 non‐dysplastic patients
which were not included in the training sets. For each patient, a
matched triplet of video frames was collected by a research
fellow (MRJ), and this selection was subsequently confirmed by
an expert Barrett's endoscopist (JJB). This triplet comprised a
high‐quality, a medium‐quality and a low‐quality video frame
(Figure 3) of the same patient and the same position in the
Barrett's segment. Further test set specifications are listed in
Supporting Information S1: Table S1.

2.6 | Outcome Measures

We identified two primary outcome measures for the conven-
tionally trained CADe and our robust CADe system: (1) Absolute
performance, represented by the Area‐under‐the‐Curve (AUC),
sensitivity and specificity scores on the high, moderate and low‐
quality test sets, and (2) Performance difference, defined as the
difference in AUC, sensitivity and specificity scores on
the moderate and low‐quality test set compared to the high‐
quality test set. Secondary outcome measures were absolute

TABLE 1 | Differences between the conventionally trained and robust CADe systems.

Aspect Conventional CADe system Robust CADe system
Training data
type

Still images Video frames

Training data
size

538 neoplastic images (184 patients); 564 non‐dysplastic
images (206 patients)

5870 neoplastic frames (184 patients); 6141 non‐
dysplastic frames (206 patients)

Training data
quality

High‐quality only (clean mucosa, adequate esophageal
expansion, clear images)

Diverse quality (varying degrees of mucosal cleaning
and esophageal expansion; may contain blur and

illumination artefacts)

Pretraining Generic (ImageNet‐1K) Domain‐specific (GastroNet‐5M)

Model
architecture

Convolutional neural network (CNN) Hybrid CNN‐Transformer
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performance and performance difference from the CADe systems
encompassing solely one of the three robustness enhancing
methods (i.e., incorporation of video frames, domain‐specific
pretraining or the ViT architecture).

2.7 | Statistical Analysis

The conventionally trained CADe system functioned as a
baseline for all subsequent CADe systems trained with experi-
mental robustness improvement methods. For every CADe
system, we performed 5‐fold cross‐validation and reported the
means. These five folds allowed for direct comparison of CADe
systems using two‐sided paired t‐tests. Direct comparisons were
made for both outcome measures: (1) absolute performance,
comparing different CADe systems on the same test sets and (2)
performance difference, comparing the same CADe system on
different test sets. In all instances, a p‐value of less than 0.05 was
considered statistically significant. All calculations were con-
ducted utilizing Python 3.8 (Python Software Foundation).

3 | Results

3.1 | Primary Outcome Measures

3.1.1 | Conventionally Trained CADe System

On the high‐quality test set, the conventionally trained CADe
system reached an AUC score of 83%. On the moderate‐quality
test set, AUC decreased significantly to 80% (p = 0.0007). AUC
score on the low‐quality test set decreased even further to 71%
(p < 0.0001). This loss could mainly be attributed to a loss of

sensitivity, which was 85% on the high‐quality test set and
decreased to 62% and 47% on the moderate‐ and low‐quality test
sets, respectively.

3.1.2 | Robust CADe System

Compared to the performance of the conventionally trained
CADe system, the robust CADe system reached a higher AUC
on the high‐, moderate‐ and low‐quality test sets with scores of
92% (p = 0.004), 93% (p = 0.0006) and 85% (p = 0.0001). In
addition, the difference in the AUC score of the robust CADe
system on the moderate and low‐quality test sets was signifi-
cantly smaller (p = 0.004 and p = 0.01), when compared to the
conventionally trained system. This reduction in performance
loss was primarily due to the limited sensitivity loss, which
decreased from 88% on the high‐quality test set to 87% and 78%
on the moderate‐ and low‐quality test sets.

Results are summarized in Figure 4 and Table 2.

3.2 | Secondary Outcome Measures

We then evaluated the contributions of each individual
robustness‐enhancing method.

3.2.1 | Diverse Training Data (Video Frames)

The baseline CADe system updated with a training set
comprising video frames of more diverse quality reached
higher AUC scores compared to the conventionally trained

FIGURE 3 | Representative neoplasia cases from three different quality test sets: high‐quality (left), moderate‐quality (center), and low‐quality
(right).
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CADe system on the high‐quality (87%; p = 0.05), moderate‐
quality (85%; p = 0.01) and low‐quality (76%; p = 0.17) test
sets. The corresponding AUC difference in moderate (−1%;
p = 0.04) and low‐quality (−11%; p = 0.63) test sets was
reduced.

3.2.2 | Domain‐Specific Pretraining

After incorporating theGastroNet‐5Mdataset for domain‐specific
pretraining into the baseline CADe model, the GastroNet‐based
CADe system reached higher AUC scores on the high,

FIGURE 4 | Results of the conventionally trained CADe system versus the robust CADe system. Dashed bars represent the scores on the high‐
quality test set.
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moderate and low‐quality test sets with 95% (p = 0.0004), 89%
(p= 0.007) and 76% (p= 0.14), respectively. Despite this, AUC loss
differences were actually larger on the moderate (−5%; p = 0.11)
and low‐quality (−19%; p = 0.04) test sets.

3.2.3 | Algorithm Architecture

When the standard ResNet‐50 architecture of the baseline CADe
model was replaced with a more novel and presumably more
robust architecture, the AUC score for this ViT‐based CADe
model was similar to the high‐ and moderate‐quality test sets
with 84% (p = 0.58) and 78% (p = 0.11). On the low‐quality test
set, AUC was lower with 64% (p = 0.005). AUC differences were
larger on the moderate (−6%; p = 0.03) and low‐quality (−20%
p = 0.1) test sets.

Results of individual robustness enhancing methods are sum-
marized in Supporting Information S1: Table 1 and Figure S3.

4 | Discussion

In this study, we investigated the impact of image quality on the
performance of CADe systems for early Barrett's neoplasia. The
results reveal a significant vulnerability of CADe systems to
realistic image quality variation. The CADe system developed
along the lines of most current AI systems displayed a drop of
AUC up to −12% and a neoplasia miss rate of 53% when exposed
to low‐quality images. This is a significant finding and may be a
partial explanation of the lower performance of many AI sys-
tems when externally evaluated [5–7].

In this paper, three robustness‐enhancing methods are proposed
to bridge the domain gap between the performance of CADe
systems developed using expert‐acquired high‐quality imagery
and their performance in community hospitals. When we
retrained our conventionally trained CADe system integrating
these three methods, it outperformed the conventionally trained
system on all test sets. More importantly, on moderate and low‐
quality images, the performance loss in terms of AUC and
sensitivity was significantly smaller, when compared to the
conventionally trained system, indicating robustness against

heterogeneity in quality. An example is given in Supporting
Information S1: Figure S4.

As a secondary analysis, we focused on each of the three robust-
ness enhancing methods separately. Enhancing the training set
with a substantial number of randomly selected video frames
significantly improved the robustness of the CADe system.
Notably, theCADeversion that incorporated video‐based training
data as its sole modification outperformed the other twomethods
in terms of performance loss reduction in suboptimal image
quality. Only a relatively small drop inAUCand sensitivity (−11%
and −11%, respectively) was observed on the low‐quality test set.
This improvement is likely attributable to the inherent diversity
in image quality found in video frames, as opposed to the more
homogeneous quality of still images. One could argue that the
observed effect can be solely attributed to the increased size of the
training set, which included a tenfold increase in video frames
compared to the conventional CADe system. To account for the
potential influence of training set size, we conducted an addi-
tional experiment using a video frame dataset matched in size to
the original still image training dataset. Even with this matched
size, a comparable trend persisted, underscoring that data di-
versity, rather than sheer dataset size, likely contributed to the
observed robustness. This has been described inmore detail in the
Supporting Information S1: (3 and Figure S5).

Incorporating GastroNet‐5M for domain‐specific pretraining
into the CADe system's training regimen mainly affected the
absolute performance of the CADe system. AUC scores on the
low‐, moderate‐, and high‐quality test sets improved by 5%–12%
when compared to the conventionally trained system. The
relative performance difference in the lower quality test sets was
comparable to the conventional CADe system. Still, the
enhanced performance on lower‐quality images, particularly in
terms of sensitivity, can be viewed as an indication of the sys-
tem's increased robustness.

Substituting the ResNet‐50 architecture with a presumably more
robust ViT architecture as an isolated robustness‐enhancement
method did not yield improvements in the CADe system's ab-
solute performance or its reduction in performance loss. This
underperformance could stem from the known dependency of
ViTs on large training datasets [23]. Given that our training set
comprised only 1011 Barrett's images, it is possible that the

TABLE 2 | Results of both CADe systems on the high, moderate and low‐quality test sets.

Test set Metric Conventional CADe system Robust CADe system p‐value
High‐quality AUC 83% 92% 0.0039

Sensitivity 85% 88% 0.4415

Specificity 67% 81% 0.0025

Moderate‐quality AUC 80% 93% 0.0006

Sensitivity 62% 87% 0.0108

Specificity 78% 84% 0.0865

Low‐quality AUC 71% 85% 0.0001

Sensitivity 47% 78% 0.0024

Specificity 83% 77% 0.2343
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dataset was too small to utilize the ViTs full potential. This
theory is supported by the observation that the combination of
the ViT architecture and domain‐specific pretraining with 5
million images did result in more robust performance across
high‐, moderate‐, and low‐quality test sets compared to the
CADe systems using just one of these methods (Supporting
Information S1: Figure S6).

An up‐to‐this‐point unmentioned robustness‐enhancing
method is data augmentation. While data augmentation may
appear to be a feasible approach to bridging the gap between
expert‐acquired data and data from community centers, it has
inherent limitations for this application. Augmentation tech-
niques such as brightness adjustments, addition of motion blur,
and contrast modification can replicate certain image artifacts
and introduce some level of image quality variability. However,
these methods are too limited to fully capture the range of
quality issues encountered in real‐world settings. Complex fac-
tors, such as mucosal cleaning or esophageal expansion,
significantly affect image quality in ways that data augmenta-
tion cannot simulate. We conducted preliminary experiments
with data augmentations that mimicked typical endoscopic ar-
tifacts, including motion blur, focal blur, and varying lighting
conditions. However, these augmentations did indeed not result
in substantial improvements in performance robustness.
Further details on these experiments are provided in the Sup-
porting Information S1: (3–4).

A notable finding in this study was that specificity of the
conventionally trained CADe system increased on lower quality
images. Although it remains speculative, this could be attributed
to the fact that the conventional system is not familiar with low‐
quality images that contain e.g., improper illumination or
blurriness. As blur and poor illumination are generally no image
characteristics of neoplasia, they may be classified as non‐
dysplastic. This bias toward negative predictions could be
detrimental to the efficacy of the system in daily practice. In
contrast, the robust CADe system has been trained with blurry
and poorly illuminated neoplastic and non‐dysplastic data (i.e.,
video frames), which lowers the chance of introducing un-
wanted biases.

This study has some unique features. First, it is one of the few
studies addressing the current domain gap between academic
development and daily practice, leading to degradation of re-
ported AI performance. Second, we provide multiple solutions
to bridge this domain gap, which are relatively easy to imple-
ment by other research groups, such as the use of video frames
and selecting more appropriate model architectures. As domain‐
specific pretraining requires large datasets and vast computa-
tional resources, it may be challenging for others to implement.
To circumvent this issue, our group is planning to release the
GastroNet‐5M dataset for public use. Several GastroNet‐
pretrained models are already available [18]. Third, the test
sets were carefully designed to comprise a large variety of image
quality. The paired nature of the test sets results in a reliable
and methodologically solid experiment. Finally, given the close
resemblance of the training datasets with those of our recently
published CADe system [12], these suggested modifications can
be directly integrated into the current algorithm infrastructure.

The study also has some limitations. First, all data in this study
originate from expert centers, which may limit the generaliz-
ability of our results. While the test set encompassed three care-
fully curated subsets reflecting diverse endoscopic image quality,
these remain a surrogate for community‐based data. Ideally, the
test data would originate from various community centers to
capture its full heterogeneity, including factors such as endo-
scopic expertise and sedation type. However, collecting large‐
scale non‐expert data remains challenging for Barrett's
neoplasia due to its low incidence in these centers. Moving for-
ward, we plan to include data from non‐expert endoscopists in
future preclinical studies and to evaluate the system in random-
ized clinical trials within community surveillance settings. Sec-
ond, this study only involved a fraction of the training data used
for our previously published CADe system [12]. The aim of this
study was not to strive for an optimally performing CADe system
but to evaluate domain‐gap and robustness as a scientific exper-
iment. Third, this study is limited to one specific endoscope
manufacturer and a single specific clinical task, i.e., detection of
Barrett's neoplasia. However, it is reasonable that these results
will extrapolate to other endoscopy systems and clinical tasks.
Finally, this study specifically addresses endoscopist‐dependent
factors that influence the successful clinical implementation of
endoscopic AI systems. Other endoscopist‐independent factors
that may affect CADe performance—such as variations in
endoscopy equipment and software settings, aswell as differences
in neoplasia prevalence between test datasets and routine clinical
practice—were not addressed.

In conclusion, this study reveals a significant vulnerability of AI
systems to variability in endoscopist‐dependent image quality.
This poses a major challenge for successful clinical imple-
mentation. For the development of future endoscopic AI sys-
tems, robustness to data heterogeneity should be taken into
account. We propose several methods to improve the robustness
of AI applications. All modifications to algorithm development
listed above will be incorporated into an updated version of our
previously published system for the detection of early Barrett's
neoplasia. Given the adaptability of these changes to other
endoscopic deep learning systems, we encourage other groups to
explore if these modifications are advantageous for their own
applications.
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