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Reduced Ki67 Staining in the Postmortem State
Calls Into Question Past Conclusions About the
Lack of Turnover of Adult Human 3-Cells
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Some report that adult human pB-cells do not replicate,
but we postulate this assumption is erroneous due a
postmortem decline in replication markers such as
Ki67. Our earlier report showed that Ki67-marked p-cells
were rarely found in human cadaveric pancreases but
were in the range of 0.2-0.5% in human islets trans-
planted into mice. This study subjected 4-week-old
mice to autopsy conditions that typically occur with
humans. Mice were Kkilled, left at room temperature
for 3 h, and then placed at 4°C for 3, 9, or 21 h. There
was a rapid marked fall in Ki67 staining of -cells com-
pared with those fixed immediately. Values at death were
6.9 + 0.9% (n = 6) after a 24-h fast, 4.1 = 0.9% (n = 6) at
3 h room temperature, 2.7 = 0.7% (n =5) at6 h, 1.6 =
0.6% (n =5) at 12 h, and 2.9 = 0.8% (n = 5) at 24 h. Similar
postmortem conditions in newborn pigs resulted in very
similar declines in Ki67 staining of their p-cells. These
data support the hypothesis that conclusions on the lack
of replication of adult human B-cells are incorrect and
suggest that adult human B-cells replicate at a low but
quantitatively meaningful rate.

Because a reduction in B-cell mass is fundamental to the
pathogenesis of diabetes, there has been great interest in
the replicative capacity of human B-cells (1). A marked
expansion of (-cell number occurs in childhood such that
much of the B-cell mass found in adults is achieved by the
age of 10 years (2). Many have argued that there is vir-
tually no replication of B-cells in the adult pancreas (2-4),
and pathologists have rarely found mitotic figures in
B-cells of autopsied pancreases (5).

To examine B-cell replication, one study used autopsy
samples from individuals who had received thymidine
analogs in clinical trials before death; tissue sections

were immunostained for these analogs to search for rep-
lication. The same study used isolated islets from organ
donors to estimate the genomic DNA integration of
atmospheric C'*. It concluded that no new B-cells were
born after the age of 30 years (6). Another approach
examined the accumulation of intracellular lipofucsin
bodies in B-cells, concluding that human B-cells live for
many years and have very little, if any, replication in
adult life (7). Other studies used samples taken from
pancreases at autopsy or after cadaveric organ donation.
Studies that used Ki67, a nuclear protein expressed by
cells in the active cell cycle, found that the B-cells of
adult pancreases usually had no Ki67 positivity (2,4,8).
However, evidence of active replication was found in
many of the pancreases of children younger than the
age of 10 years (2,4). A puzzling aspect of these studies
is that the B-cells of a number of pancreases from young
children had no Ki67 positivity.

Others suggest that adult human B-cells are able to
replicate. B-Cells in cultured human islets replicate
when stimulated by lactogenic hormones, albeit consider-
ably less so than rodent B-cells (9). More recent studies
have also found a low rate of replication, which can be
considerably enhanced by genetic manipulation of cell
cycle genes (10). In our study of islets obtained from adult
organ donors and transplanted into immunocompro-
mised mice, there was clear Ki67 positivity of B-cells in
the range of 0.2-0.7% (11). Others have reported similar
results (10). Also, samples taken at the time of surgery
have been reported to have Ki67 staining, ranging from
0.1% to 0.5%, of their B-cells (11,12).

Because of these discrepancies, we postulated that
pancreases subjected to warm and cold ischemia during
the process of autopsy and cadaveric donation would have
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a reduction in the appearance of replication markers.
Therefore, we subjected young mice and newborn pigs to
autopsy conditions of warm ischemia, followed by cold
ischemia, and evaluated their pancreatic tissue using
immunostaining for the replication markers Ki67 and
proliferating cell nuclear antigen (PCNA).

RESEARCH DESIGN AND METHODS

The Joslin Institutional Animal Care and Use Committee
approved all animal experiments.

Mouse Autopsy Conditions

Autopsy conditions that typically occur in humans
were replicated in 4-week-old C57BL/6 mice. Mice
were killed by CO, in a fed state or after a 24-h fast.
The cadavers were left at room temperature (RT) for
3 h and then moved to 4°C. Pancreases were removed
and fixed in 4% paraformaldehyde (PFA) immediately
after death, after 3 h at RT, or after 3, 9, or 21 h at 4°C
(Fig. 1).

Pig Autopsy Conditions

Piglets (6-day-old Yorkshire; Parsons Farm, Hadley,
MA) were killed by anesthetic overdose (ketamine and
xylazine) and exsanguination of the carotid and jugular
arteries. The cadavers were left at RT for 3 h, at which
point the first samples were taken, and then moved to
4°C for 21 h, after which the second sample was taken
from each pig.

Tissue Processing and Immunohistochemistry

Samples of mouse and pig pancreas were fixed in 4%
PFA for 6 h and then stored in PBS at 4°C until process-
ing and paraffin embedding. Immunostaining was per-
formed on adjacent sections for 1) Ki67 and insulin and
2) PCNA and insulin. Sections were washed in 0.3% Triton
X for 15 min, followed by antigen retrieval in citrate buffer
(pH 6.0) for 15 min in the microwave. After blocking
with an avidin-biotin blocking kit (Vector Laboratories,
Burlingame, CA) and normal donkey serum at 1:50 (Jackson
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Figure 1—Study plan for mice. Six groups of killed mice were stud-
ied at five different times —0, 3, 6, 12, and 24 h—with varying lengths
of exposure to warm ischemia (RT) and cold ischemia (4°C). SAC,
sacrificed.
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ImmunoResearch, West Grove, PA), rabbit anti-Ki67 (Abcam,
Cambridge, MA) and rabbit anti-PCNA at 1:200 (Dako,
Carpenteria, CA), primary antibodies were added. Sec-
tions were incubated overnight at 4°C. To identify the
B-cells, sections were costained with guinea pig anti-
insulin (1:500, Dako) for 1 h at RT. Incubation with
secondary antibodies (biotinylated anti-rabbit IgG,
Alexa Fluor 488 streptavidin; Alexa Fluor 594 anti-guinea
pig IgG, 1:200; all Jackson ImmunoResearch) was for 1 h
at RT. Slides were mounted with Vectashield with DAPI
(Vector Laboratories).

Microscopy and Analysis

Photographs of insulin-positive cells were systemati-
cally taken across the whole section using a LSM 710
confocal microscope (X25 objective, Zeiss). Zen soft-
ware was used to quantify all cells stained for insulin
or costained for insulin and Ki67 or PCNA on blinded
images; at least 500 (-cells were counted per sample. To
assess the peri-insular acinar cells under mouse autopsy
conditions, the same images containing islets in at
least 20 cells in cross section were blindly counted for
Ki67 positivity and total acinar cells (determined by
nuclear morphology visualized with DAPI); more than
1,000 peri-insular acinar cells were counted per sample.
Glucagon-rich areas of the pancreas were counted as con-
firmed by immunostaining for glucagon and pancreatic
polypeptide.

Statistics

Data are presented as mean * SEM. Statistical signifi-
cance was tested with unpaired two-tailed Student ¢ tests.
For comparison of multiple time points, ANOVA, followed
by the Bonferroni test, was used.

RESULTS

Markers of 3-Cell Replication in Mouse Pancreas After
Warm and Then Cold Ischemia

To replicate human autopsy conditions, we followed the
schema shown in Fig. 1. With delayed fixation of the pan-
creas, there was a rapid marked fall in the frequency of
Ki67 staining in B-cells compared with those fixed imme-
diately (Fig. 2). At the time of death in the fed state,
frequency was 9.3 = 0.5% (n = 3) and was 6.9 = 0.9%
after a 24-h fast (n = 6, no significant difference). However,
the frequency of Ki67-positive B-cells fell to 4.1 = 0.9%
(n = 6) after just 3h at RT, to 2.7 = 0.7% at 6 h (n = 5), to
16 = 0.6% at12h (n=5), and to 2.9 * 0.8% (n = 5) at
24 h (ANOVA P < 0.001).

The replication marker PCNA was also evaluated on
the adjacent sections of nonfasted mice after immedi-
ate fixation and after 24 h of warm/cold ischemia. For
the immediate fixation group, values were 7.9 * 1.4%
(n = 8), very similar to the Ki67 values. At 24 h
the PCNA was 5.2 = 1.3% (n = 5), which failed to be
statistically lower than after immediate fixation
(P =0.176).
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Figure 2—Autopsy conditions show a rapid marked reduction of Ki67 staining in mouse B-cells. Confocal images show insulin (red) and
Ki67 (green) staining of representative islets. Compared with immediate fixation (A), there is a marked loss of Ki67 already by 3 h of warm
ischemia (B); with an additional 21 h of cold ischemia (C), even less Ki67 can be seen in the B-cells. D: With quantification of Ki67-positive
insulin-positive cells, the fed and fasted controls did not differ, but reduction of Ki67 staining in B-cells was found after warm and cold

ischemia (n = 5-9). Scale bar, 40 um. *P < 0.005, **P < 0.001.

Markers of Acinar Cell Replication in Mouse Pancreas
After Warm and Then Cold Ischemia

To determine if the declines in Ki67 positivity were
restricted to B-cells, acinar cells were evaluated on the
same images. Peri-insular acinar cells were considered to
be the acinar cells surrounding islets of at least 20 cells
in cross section and no more than 5 acinar cells in any
direction from islets of this size; this selection of acinar
cells was done to provide consistency. Similar to what
we saw in [B-cells, Ki67 positivity in the peri-insular
acinar cells fell from 8.26 * 1.5 after immediate fixation
to 2.69 * 0.78 after 24 h of warm/cold ischemia
(P =0.006).

Markers of B-Cell Replication in Neonatal Porcine
Pancreas After Warm and Then Cold Ischemia
Pancreases taken from 6-day-old neonatal pigs were sub-
jected to 3 h of warm ischemia at RT, followed by 21 h of
cold ischemia at 4°C. Pancreatic tissue was not taken for
immediate fixation, but only after 3 h of warm ischemia,

at which point the B-cell Ki67 positivity was higher in the
tail of the pancreas than in the body/head portion (17.9 *
0.7 vs. 11.8 = 0.7, n = 4 each; P = 0.001) (Fig. 3). We do not
have an explanation for the difference between the tail and
body/head regions, but because of glucagon staining of the
islets in the body/head region, the difference cannot be
attributed to sampling from the ventral lobe. Comparing
3 h of warm ischemia with the following 21 h of cold ische-
mia, the Ki67 positivity of B-cells fell markedly from 17.9 =
0.7 to 5.2 = 1.7 in the tail region (P = 0.002) and from
11.8 = 0.7 to 3.6 = 1.1 for the body/head region (P =
0.002). As shown in Fig. 4, the marked decline in Ki67-
positive 3-cells was similar in mice and newborn pigs.
When the replication marker PCNA was evaluated on adja-
cent sections, the positivity of B-cells fell from 234 = 1.9
at the end of the 3 h warm ischemia period to 3.7 = 1.8 after
21 h of cold ischemia (P = 0.0003). The difference between the
PCNA positivity of the B-cells in the tail and body/head por-
tions for either condition was not significant.
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Figure 3—Pig pancreas under autopsy conditions show marked
reduction of Ki67 in their B-cells. Porcine B-cells subjected to 3 h
of warm ischemia at RT, followed by 21 h of cold ischemia at 4°C,
showed a significant loss of Ki67 staining compared with 3 h of
warm ischemia only. There was also a significant difference be-
tween the percentage of Ki67-positive B-cells in the tail and the
body/head part of the pancreas after 3 h of warm ischemia. This
difference is not due to overrepresentation of ventral lobe tissue in
the body/head portion (n = 4). *P < 0.001, **P < 0.005.

DISCUSSION

Our data indicate that exposure of the pancreas to cold
and warm ischemia, as occurs with autopsies and ca-
daveric pancreas collection, leads to reduced Ki67 pro-
tein staining in (-cells and acinar cells and PCNA
staining in B-cells. Pathologists have long known that
delays of fixation for even less than 2 h can lead to
a marked reduction in the frequency of mitotic figures
(13) and more recently to loss of Ki67 (14-16). These
findings suggest that estimates of (-cell proliferation
using pancreatic tissue from autopsies or cadaveric
donors are unreliable.

If the measurements of Ki67 positivity in autopsied
and cadaveric donor pancreases are unreliable, valid in-
formation should be obtained from freshly fixed pancreatic
tissue. Indeed, data from surgical specimens, transplanted
human islets, and cultured human islets support the con-
cept that adult human B-cells have Ki67 positivity in the
range of 0.1-0.7% (9,11,12,17).
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Figure 4—Decline of Ki67 staining in B-cells after 24 h of autopsy
conditions is similar in B-cells of mice (n = 5-9) and pigs (n = 4).
*P < 0.005.
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Major questions for diabetes are: How much B-cell
turnover occurs in the adult human pancreas and can
this be harnessed to regenerate meaningful numbers of
new [-cells? In addition to B-cell replication, there is
growing evidence that new [-cells are produced from neo-
genesis. Some argue that the presence of B-cells in or
adjacent to the duct epithelium supports this concept
(18), but these cells could have been there since fetal
life or early childhood. Others point out the increase in
B-cells as singlets or in small clumps that can be seen with
pregnancy (19) or insulin resistance (17), but it is possible
that these resulted from replication. A stronger argument
comes from the findings of increased numbers of cells
costained for duct markers and islet hormones, in partic-
ular, the combination of insulin and cytokeratin, which
suggests an active process (11,20,21).

What can we say about the rate of B-cell turnover in
the adult human pancreas if replication and neogenesis
are both taking place? We know there is some rate of
B-cell death as seen in studies using markers such as
TUNEL (22). This should be balanced by an equivalent
rate of B-cell birth. However, TUNEL staining represents
an event and not a rate. Ki67 staining might provide some
insight, although positive staining does not necessarily
represent the birth of a new cell. The appearance of Ki67
means that a cell has entered the cell cycle, yet division
may not occur. Moreover, there can be death of replicating
cells (23,24). Despite these caveats, because the length of
the cell cycle may be ~27 h (25), Ki67 staining might be
seen for a slightly shorter time. Thus, if B-cells in an adult
human had 0.4% Ki67 positivity and if there were no neo-
genesis or cell death, B-cell mass could double in less than
a year.

In summary, the current study finds that the frequency
of Ki67-stained B-cells falls markedly when mouse and
neonatal pig pancreases are subjected to warm and cold
ischemia. These findings suggests that pancreases obtained
from autopsies or organ donors will have reduced Ki67
staining of B-cells, leading to the mistaken conclusion
that adult human B-cells do not replicate. The rates of
B-cell turnover in the human pancreas and the capacity
for B-cell regeneration remain to be determined.
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