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Abstract: An electret electrostatic MEMS vibration energy harvester for tire sensors mounted inside of
the tire tread is reported. The device was designed so as to linearly change an electrostatic capacitance
between the corrugated electret and output electrode according to the displacement of the proof mass.
The electromechanical linearity was effective at reducing the power loss. The output power reached
495 µW under sinusoidal vibration despite the footprint size being as small as 1 cm2. Under impact
vibration inside of the tire tread, the output power reached 60 µW at a traveling speed of 60 km/h.
It was revealed that a higher mechanical resonance frequency of the harvester adjusted within the
frequency band of a low-power spectral density of impact vibration acceleration was effective for
high efficiency harvest impact vibration energy.
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1. Introduction

In order to improve the driving safety of automobiles, the requirements of tire pressure monitoring
systems (TPMS) have advanced worldwide, starting with the United States and Europe. A tire sensor
with the TPMS inside of tire tread enables gathering information of the road surface and tires for
the detection of the degree of slippage. It is possible to control the attitude of the vehicle safely and
comfortably. The tire sensor consists of not only a pressure sensor, but also an acceleration sensor
and a temperature sensor, which improves the detection accuracy by analyzing the multifaceted data
at a high frequency. It is necessary to supply stable power to the tire sensor during the life of tire
because replacement of the power supply is not acceptable in consideration of user convenience and
the reduction of cost.

As a power source, the battery capacity is insufficient to be applied here. For this reason, we tried
to apply environmental power harvesters, which convert energy in the environment into electric
energy. The environmental power harvesters include photovoltaic and thermoelectric types, but they
are inappropriate because there is no light source or heat source inside of a tire. On the other hand,
a vibration energy harvester could recover the power demand of the tire sensor since vibration energy
is abundant inside of the tire [1,2].

An electrostatic vibration energy harvester is one of the expected candidates in power generation
methods because the power output density of the piezoelectric type or electromagnetic type is relatively
low, and the device size becomes large. The electrostatic type needs an external voltage source to
apply potential on electrodes for electric field generation [3]. An electrical charge holding an electret
can be used as an internal voltage source of an electrostatic type. The electret vibration energy
harvesters are classified mainly as the in-plane overlapping type [4] and the out-of-plane gap-closing
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type [5]. In the former type, the electrets displace in parallel to output electrodes in-plane. Methods
for enhancement of accumulated charges on the output electrodes are reported: a higher electret
potential using polymer electret [6], an inorganic insulator SiO2/Si3N4-laminated film in a cost-effective
CMOS (Complementary Metal Oxide Semiconductor)/MEMS (Micro Electro Mechanical Systems)
production line [7], an increased dielectric constant using ferroelectrics [8] and liquid crystals [9],
an opposite-charged electret [10], and a potassium ion electret [11]. Structural optimization is also
reported, a smaller air gap between electrets and output electrodes [12], and a mechanical nonlinearity
with a spring stopper [13,14]. In most of these works, vibration energy harvesters are evaluated under
sinusoidal vibration, which rarely exists in the real environment from the application point of view.
Stochastic noise-like vibration tests are reported in the experimental environment [15,16].

For the TPMS and the tire sensors, electret vibration energy harvesters have to be evaluated
considering the real impact vibration inside of the tire tread. The previously reported output
power was 4.5 µW in the case of Power Spectral Density (PSD) of impact vibration acceleration
of 7.3 × 10−2 g2·Hz−1 at a traveling speed of 50 km/h, and a mechanical resonance frequency of the
harvester of 550 Hz [2]. In this paper, an order of magnitude higher output power in spite of an order
of magnitude lower PSD is reported. It is revealed that the higher resonance frequency of the harvester
adjusted within the frequency band of low PSD is effective for high efficiency harvest impact vibration
energy. Output power from the harvester of a resonance frequency of 1.2 kHz reached 60 µW in the
case of PSD 5.0 × 10−3 g2·Hz−1 at a traveling speed of 60 km/h.

2. Design

2.1. Basic Concept of an Electrostatic MEMS Vibration Energy Harvester

A schematic cross-sectional view of the electret vibration energy harvester is shown in Figure 1.
Three substrates are stacked and bonded together. A mechanical resonator is provided on the
intermediate substrate, and the proof mass and spring are collectively formed by etching the Si
substrate. A stacked film of SiO2/Si3N4 as an electret material is deposited on the corrugated structure
of the proof mass and charged to a predetermined potential by a corona discharger. Al output
electrodes are made on the lower substrate, which is used to extract generated electricity.
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BCB, Benzocyclobutene.

A design concept of the Si spring is the adjustment to a higher mechanical resonance frequency
within the frequency band of PSD of the impact vibration acceleration inside of the tire tread, which
enables harvesting more power at a high frequency. The PSD in the tangential direction X of a circular
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tire is low from 5.0 × 10−3 g2·Hz−1–1.0 × 10−2 g2·Hz−1 at 250 Hz–1.5 kHz in the case of a traveling
speed of 60 km/h [7]. The resonance frequency of the Si spring is adjusted to a relatively high
frequency at 1.2 kHz, which is also an advantage to make the Si spring small and rigid against the
impact vibration.

The Si proof mass moves because of resonance under external vibration (sinusoidal vibration or
impact vibration). Electric fields formed by charges stored in the electret induce charges at the facing
output electrodes [17]. The proof mass displaces parallel to the direction in which strip-shaped output
electrodes are arranged. The amount of charges on the output electrode is increased or decreased in
response to the change of the electric fields. As a result, alternating current flows in the load circuit
connected between the two output electrodes.

2.2. Electrode Configuration for High Power Generation

The convex portion of the electret is arranged to face the two output electrodes with the same
overlap area. When the proof mass is displaced by the external vibration, the overlap area of the two
opposed portions changes, keeping the total opposed area the same. For example, when the area of
one facing part increases with a certain value, the area of the other facing part decreases with the
same value. The maximum displacement of the proof mass is 100 µm according to the expansion and
contraction of the Si spring. A width of the convex portion of the electret is wele = 250 µm. In this
case, the output electrode width is designed to be we = 200 µm so that the convex portion displaces
within the two opposed output electrodes. Even when the displacement reaches the maximum value,
the configuration is designed so as not to displace up to the third output electrode. An electrostatic
capacitance between the electret and the one side output electrode changes linearly with respect to
the relative displacement. An output signal waveform can be made into a regular sinusoidal wave in
order to reduce power loss with the electromechanical linearity [18,19]. A glass insulator is used as
the lower substrate for the reduction of parasitic capacitance between the output electrodes and the
substrate, which is also effective to increase the power generation, avoiding signal transmission loss.

2.3. Electret Structure for a High Charge Ratio on Output Electrodes

The corrugated electret structure is one of features of this developed generator. Conventionally,
the electret material is patterned on a flat surface in order to ensure an electric potential difference on
the output electrode between the state in which the electret and the output electrode are opposed and
the state in which they are not opposed to each other [20]. The electric field of the patterned electret
is quite homogeneous due to a fringing field, and it is the cause of the degradation of the electric
potential difference between narrow rectangular electrets and spaces. The electret material is deposited
on the corrugated structure without the necessity of the electret patterning. A capacitance change can
be obtained since the distance from the convex portion or the concave portion to the output electrode
varies. It is possible to change the amount of induced charges on the output electrodes and to obtain
high power generation capability with this configuration. It is supposed as a note that the non-uniform
fringing electric fields of the corrugated electret also have an influence on the movement of the proof
mass, even for a submicron irregular displacement, which is linked to energy damping [21].

3. Fabrication

3.1. Process Flow

Firstly, the surface of the middle Si substrate was deeply etched dele = 100 µm by DRIE (Deep
Reactive Ion Etching) to form a corrugated structure. Then, 1 µm-thick SiO2 and 150 nm-thick Si3N4 as
the electret materials were grown covering the corrugated structure. The proof mass and the springs
were formed by DRIE through the whole thickness of 650 µm of the substrate. The SiO2/Si3N4 stacked
film was used as the hard mask for the DRIE. The Si spring has a high aspect ratio in the thickness
direction. The electret side of the substrate was discharged by a corona discharger to functionalize as
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an electret. An optical microscope image of the proof mass and the spring during vibration is shown
in Figure 2a.

A Al electrode was formed on a glass substrate as the lower substrate, which was bonded
to the middle substrate via BCB (Benzocyclobutene). The distance between the electret and the
output electrode was adjusted to 10 µm with a thickness of the BCB bonding frame patterned using
photolithography. The bonding resin (SU-8) was formed by roller coating on the top glass substrate
that was partially engraved, and the top substrate was bonded to and packaged with the middle
substrate via the SU-8.
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Figure 2. Fabricated electrostatic MEMS vibration energy harvester: (a) optical microscope image of
the proof mass and spring during vibration; (b) Thermally-Stimulated current (TSC) spectrum of the
electret SiO2/Si3N4 stacked film.

3.2. Annealing Process for a Highly-Stable Inorganic Electret

In order to improve the charge retention stability of the electret, heat treatment (annealing) was
performed after deposition of SiO2/Si3N4 materials. The charge retention stability was evaluated
introducing Thermally-Stimulated current (TSC). The TSC temperature dependence of the inorganic
electret is shown in Figure 2b. The TSC’s sharper peak with respect to temperature means higher
charge retention stability because higher activation energy was necessary to move the trapped charge.
The peak became steep by applying the annealing, the peak width in temperature at TSC −2.0 pA was
∆50 K from 620–670 K with annealing and ∆70 K from 620–690 K without annealing. It was confirmed
that the deep potential wells around 650 K for the stable charge trapping were more uniformly formed.

4. Measurement Result

4.1. Sign-Wave Vibration

The basic performance of the fabricated energy harvesters was evaluated under sinusoidal
vibration. The frequency response and output voltage waveform are shown in Figure 3a,b. The Root
Mean Squared (RMS) value of the output current irms had a Lorentzian shape and good linearity with
respect to the frequency of external vibration. The proof mass, the mechanical resonant frequency of
the first mode, and the electret potential were m = 160 mg, f vib = 728 Hz, and Vele = 120 V, respectively.
The frequency of the external vibration was adjusted to the mechanical resonant frequency, and the
acceleration of the external vibration was changed. For the output current irms flowing through load
resistance R, the average output power P can be calculated with the relation of P = R * irms

2. The load
matching was achieved at the load resistance R = 5 MΩ. The output voltage amplitude varied linearly
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with the vibration acceleration. The output voltage amplitude reached the maximum value of 41 V
when the proof mass reached the maximum displacement with the vibration acceleration avib = 2.9 g.

On the fabricated energy harvesters, the parameters were increased to the ideal mechanical
resonance frequency f vib = 1.2 kHz and Vele = 200 V. The vibration acceleration dependence of the
output power is shown in Figure 4. The high output power of P = 495 µW was obtained although the
footprint size was as small as about Adev = 1 cm2.
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4.2. Impact Vibration in Tire Tread

In order to detect information from the road surface more accurately, a tire sensor was mounted
inside of the tire tread. The performances of the fabricated energy harvesters had to be evaluated under
impact vibration generated when the tire sensor contacted the road surface. In situ measurements were
performed by mounting the energy harvester and an accelerometer inside of the tire tread using an
adhesive agent. The acceleration sensor measured the vibration in the tangential direction X, the lateral
direction Y, and the radial direction Z of the circular tire. We attempted to harvest the vibration
energy in the tire rotation direction X by aligning the vibration direction of the proof mass of the
energy harvester.
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The measured acceleration of the impact vibration is shown in Figure 5a. The impact vibration
occurred every time the tire rotated, and the acceleration increased at faster traveling speeds.
The output voltage of the energy harvester with the impact vibration is shown in Figure 5b. The
voltage value became the maximum when the harvester contacted the road surface and then decreased
due to free damped oscillation of the proof mass while the harvester detached from the road surface. It
was confirmed that the output voltage increased at higher traveling speed. The PSD dependence of
the output power is shown in Figure 6. The PSD of the impact vibration acceleration was reproduced
by an electrodynamic shaker. The output power 60 µW was obtained in spite of the low PSD value
of 5.0 × 10−3 g2·Hz−1 reproduced for a traveling speed of 60 km/h. It was revealed that a higher
resonance frequency of spring adjusted to the frequency band of low PSD was effective for high
efficiency harvest impact vibration energy.
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In the case of the output electrode width we = 100 µm, a capacitance between the electret and
the one side output electrode changed non-linearly with respect to relative displacement because the
convex portion of the electret reached the next nearest neighbor output electrode when the proof mass
reached the maximum displacement. The output wave became an irregular waveform rather than a
sinusoidal waveform, and the output power degraded as described in Section 2.2. It was confirmed
that the electromechanical linearity was effective to increase the power generation.

The Alternating Current (AC) generated from the vibration energy harvester was converted to
Direct Current (DC) using an AC/DC converter in order to use the energy harvester as a DC power
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supply. We developed a high efficiency AC/DC converter to deal with the high output voltage of
the electrostatic generator. The MPPT (Maximum Power Point Tracking) technology was introduced
to realize a high conversion efficiency of 88% [22]. In addition, this is a concept of self-starting by
generated power, which can eliminate an activating circuit. The vibration energy harvester could be
used as a DC power supply for tire sensors.
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5. Conclusions

We developed vibration energy harvesters inside of a tire tread. An inorganic insulator SiO2/Si3N4

film usable in a Si-based CMOS/MEMS production line was used as an electret material. By making
the electret into a corrugated structure, a capacitance change could be obtained since the distance from
the convex portion or the concave portion to the output electrode varied. It was possible to change the
amount of induced charges on the output electrodes. In addition, the device was designed to change
the capacitance between the convex portion of the electret and the output electrode linearly with
displacement of the proof mass. The electromechanical linearity was effective at reducing the power
loss. The output power reached 495 µW under sinusoidal vibration at an adjusted high frequency
1.2 kHz despite the footprint size being as small as 1 cm2.

Under impact vibration inside of the tire tread, the output power reached 60 µW in the case of
PSD 5.0 × 10−3 g2·Hz−1 at a traveling speed of 60 km/h. The performance was an order of magnitude
higher output power in spite of an order of magnitude lower PSD compared to previous works.
It was revealed that the higher mechanical resonance frequency of the harvester adjusted within the
frequency band of low PSD was effective for high efficiency harvest impact vibration energy inside of
the tire tread.

In further work, it is expected that electrostatic MEMS vibration energy harvesters inside
of tire treads will enhance the function of tire sensors, which will enable the evolution of
intelligent automobiles.
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