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Cryptosporidium parvum is one of the most important enteric protozoan pathogens,
responsible for severe diarrhea in immunocompromised human and livestock. However,
few effective agents were available for controlling this parasite. Accumulating evidences
suggest that long non-coding RNA (lncRNA) played key roles in many diseases
through regulating the gene expression. Here, the expression profiles of lncRNAs
and mRNAs were analyzed in HCT-8 cells infected with C. parvum IId subtype
using microarray assay. A total of 821 lncRNAs and 1,349 mRNAs were differentially
expressed in infected cells at 24 h post infection (pi). Of them, all five types of lncRNAs
were identified, including 22 sense, 280 antisense, 312 intergenic, 44 divergent, 33
intronic lncRNAs, and 130 lncRNAs that were not found the relationship with mRNAs’
location. Additionally, real-time polymerase chain reactions of 10 lncRNAs and 10
mRNAs randomly selected were successfully confirmed the microarray results. The co-
expression and target prediction analysis indicated that 27 mRNAs were cis-regulated
by 29 lncRNAs and 109 were trans-regulated by 114 lncRNAs. These predicted
targets were enriched in several pathways involved in the interaction between host and
C. parvum, e.g., hedgehog signaling pathway, Wnt signaling pathway, and tight junction,
suggesting that these differentially expressed lncRNAs would play important regulating
roles during the infection of C. parvum IId subtype.

Keywords: mRNAs, lncRNAs, microarray, Cryptosporidium parvum IId subtype, signaling pathway, regulation

INTRODUCTION

Cryptosporidium, one of the most important enteric parasites to cause diarrhea in human and
animals (Holland, 1990; Nguyen et al., 2013; Koinari et al., 2014; Delafosse et al., 2015; Deshpande
et al., 2015; Nakamura and Meireles, 2015), has been recognized as the leading cause of chronic
diarrhea in HIV patients and was the second contributor of moderate-to-severe diarrhea in
children during the first 2 years of life (Checkley et al., 2015). After ingested, the sporozoites within
Cryptosporidium oocysts were released and colonized into epithelial cells of the gastrointestinal
tract, damaged the intestinal barriers to affect the host nutrition absorption, impaired immune
response, and persistently retarded growth (Guerrant et al., 1999; Gookin et al., 2002; Mondal et al.,
2009; Squire and Ryan, 2017).
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Currently, 33 valid Cryptosporidium species have been
confirmed and scattered around the world (Xiao, 2010; Fletcher
et al., 2012; Hu et al., 2014; Ryan et al., 2014, 2015; Li et al., 2015;
Holubová et al., 2016; Jezkova et al., 2016; Kváč et al., 2016; Feng
and Xiao, 2017; Zahedi et al., 2017). Of them, Cryptosporidium
parvum has been identified as the most common zoonotic species
infecting humans and most animals (Wang et al., 2014). Intra-
species genetic diversity of C. parvum was observed based on the
nucleotide sequence of 60 kDa glycoprotein (GP60) gene, and at
least 15 subtypes (IIa–IIi, IIk–IIp) were identified (Xiao, 2010;
Insulander et al., 2013; Wang et al., 2014). In China, C. parvum
has been detected in humans and 18 animal species from 19
provinces and one region (Qinling Mountain; Huang et al., 2014;
Qi et al., 2015; Zhang X.X. et al., 2015; Cai et al., 2017). Of them,
both subtypes IIa and IId were identified in China (Mi et al., 2013;
Cui et al., 2014; Zhao et al., 2015). The subtype IId was widely
detected in sheep, goats, and calves from China (Feng et al., 2013,
2017). Besides, the whole genome of two subtypes was different
in sizes and contents. For example, the total assembly length of
C. parvum IIaA15G2R1 was longer than IIdA19G1, and the gene
gains/losses (e.g., SKSRa, MEDLE family of secreted proteins,
Insulinase-like proteases) and single nucleotide variants (SNVs)
were also found between the genomes of two subtypes (Widmer
et al., 2012; Feng et al., 2017).

In the process of C. parvum invasion and parasitism, the
host–parasite interaction occurred. The expression profiles of
both mRNA and non-coding RNA (ncRNA) during the infection
of C. parvum Iowa isolate (IIa subtype) have been investigated
(Abrahamsen et al., 1996; Deng et al., 2004; Zhou et al., 2014). The
differentially expressed mRNAs were predicted to be associated
with the promoter enrichment of suppressive epigenetic marker,
while ncRNAs may modulate epithelial immune responses
and epithelial anti-microbial defense against Cryptosporidium
infection (Abrahamsen et al., 1996; Zhou et al., 2009, 2014; Wang
et al., 2017b). However, the gene expression in hosts infected
with C. parvum subtype IId was not available. Additionally,
a new RNA molecule, long non-coding RNA (lncRNA), was
discovered and studied recently (Okazaki et al., 2002). Increasing
evidences have certificated that lncRNAs could interact with
mRNAs through cis- and trans-regulation to play key roles in
tumorigenesis, tumor development (He et al., 2014; Lee et al.,
2016), and infections of viruses (e.g., hepatitis C virus, influenza
A virus, and severe acute respiratory syndrome coronavirus) and
parasites (e.g., Leishmania, Plasmodium falciparum; Josset et al.,
2014; Broadbent et al., 2015; Zhang H. et al., 2015; Pawar et al.,
2017). To deeply understand the interaction between C. parvum
and host, herein, we systematically investigated the expression
profiles of mRNA and lncRNA in human cells infected with the
C. parvum IIdA19G1 subtype.

MATERIALS AND METHODS

C. parvum Isolates
The oocysts used in the present study were obtained from a
pre-weaned dairy calve with diarrhea in China and molecularly
identified as C. parvum IIdA19G1 subtype based on the sequence

of the gp60 gene locus. This isolate was passaged by pre-
weaned dairy calves in the laboratory with the specific pathogen-
free condition. C. parvum oocysts were purified by using the
Sheather’s sugar flotation technique and cesium chloride density
gradient centrifugation, and stored in PBS with the penicillin-
streptomycin (100 U/ml penicillin and 0.1 mg/ml streptomycin)
and amphotericin B solutions (0.25 µg/ml).

In Vitro Infection Model of C. parvum
The human adenocarcinoma (HCT-8) cell lines were purchased
from JENNIO Biological Technology (Guangzhou, China).
2 × 105 HCT-8 cells were seeded in each well of a fresh 24-well
plate and cultured for 24 h (or with 80% confluence) at RMPI
1640 medium and supplemented with 10% fetal bovine serum
(FBS) under 5% CO2 at 37◦C. C. parvum oocysts were treated
with 2% bleach for 20 min on ice and incubated into HCT-
8 cells with the ratio of oocysts: cells = 2–10:1. The infection
burden was measured using quantitative real-time polymerase
chain reaction (qRT-PCR) targeting the small subunit ribosomal
RNA (SSU rRNA) previously described (Zhao et al., 2018).

Sample Collection, RNA Extraction, and
Microarray Analysis
The cell samples were collected from both experimental
(C. parvum infection, O) and control (without parasites, C)
groups at 24 h post infection (pi) of C. parvum oocysts. Three
biological repeats were included in each group. Total RNA was
extracted using TRIzol reagent (500 µl) and the chloroform-
isopropyl alcohol method in accordance with the manufacturer’s
instructions and stored at −80◦C. The concentration and
purity of total RNA samples were measured by the Smart
Spec Plus spectrophotometer. The complementary DNA (cDNA)
was generated using the PrimeScript TM RT reagent Kit
with the gDNA Eraser (TaKaRa Shuzo Co., Ltd., Liaoning,
China) following the manufacturer’s instructions for reverse
transcription of the total RNAs (1 µg). Then, the samples
were taken and sent to the company (CapitalBio Technology
Corporation, Beijing, China) for microarray analysis. The
expression profiles of mRNAs and lncRNAs were detected by
using LncRNA+mRNA Human Gene Expression Microarray
V4.0 (4× 180 K). The Agilent Feature Extraction v10.7 was used
to analyze and extract data, and these data were then normalized
and analyzed by using Agilent GeneSpring GX software (13.1
revisions, 20151).

GO and KEGG Enrichment Analysis
To investigate the biological functions of mRNAs and lncRNAs,
the Gene Ontology (GO) analysis was executed. Three parts
were involved in the GO terms, including biological process
(BP), cellular component (CC), and molecular function (MF).
The enrichment analysis of GO terms with P < 0.05 was
considered significantly. Besides, Kyoto Encyclopedia of Genes
and Genomes (KEGG) was used to test the statistical enrichment
of differentially expressed mRNAs and lncRNAs to predict the

1http://genespring-support.com/
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possible pathways involved. Both GO and KEGG were carried out
by KOBAS 2.0 software (20162).

Validation of Microarray Data by
qRT-PCR
In order to validate the microarray results, five up- and five down-
regulated genes of both mRNA and lncRNA were, respectively,
selected for qRT-PCR validation, with GAPDH as an internal

2http://kobas.cbi.pku.edu.cn/index.php

control, and the sequences of primers listed in Supplementary
Table S1. The qRT-PCR was carried out using the SYBR
assay in a 10 µl reaction volume, containing 0.2 µl Forward
Primer, 0.2 µl Reverse Primer, 1 µl cDNA, 3.6 µl nuclease-
free H2O, and 5 µl Master Mix (CWBIO, Beijing, China).
The reaction program was initiated at 95◦C for 10 min, then
at 95◦C for 10 s, 60◦C for 60 s for a total 40 cycles. Three
replicates were conducted for each gene, and the data were
expressed as 2−11Ct to value the expression of mRNA and
lncRNA.

FIGURE 1 | Bioinformatics analysis of differentially expressed mRNAs and lncRNAs in HCT-8 cells infected with Cryptosporidium parvum IId subtype. (A) The volcano
plot shows the distributions of mRNAs. (B) The volcano plot shows the distributions of lncRNAs. The significantly up- and down-regulated RNAs are presented as
red or green dots, respectively, and the expression of RNAs not significantly differentially expressed is presented as black dots (fold change ≥ 1.2 and P < 0.05).

FIGURE 2 | Validation for the expression of 10 significantly differential expressions of mRNAs and 10 lncRNAs by qRT-PCR. Three biological repeats were included
in each gene. ∗P < 0.05.
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Statistical Analysis
All statistical analysis in this study was performed using the
software GraphPad Prism 7.0 (20163), with P < 0.05 considered
as statistically significant.

RESULTS

Identification of mRNA and LncRNA
Differentially Expressed in C. parvum
Infection Model
To explore the impact of Chinese prevalent C. parvum subtype
(IIdA19G1 subtype) on human cells, HCT-8 cells were exposed
to C. parvum IIdA19G1 subtype for 24 h and collected for
LncRNA+mRNA Human Gene Expression Microarray analysis.

3http://www.graphpad.com

The result revealed the differential expression profiles of mRNA
and lncRNA in HCT-8 cells after C. parvum infection. Because
of mild influence of C. parvum to host cell gene transcription
(Deng et al., 2004; Zhou et al., 2009; Ming et al., 2017), the fold
change ≥ 1.2 and P < 0.05 were used as the standard to map
differentially expressed genes. All microarray data obtained from
our study were deposited into GEO database with the number
GSE111565. The expression patterns of mRNA (Supplementary
Figure S1A) and lncRNA (Supplementary Figure S1B) between
experimental and control groups were found to be significantly
different by hierarchical clustering plot. A total of 1349 mRNAs
(including 535 up- and 814 down-regulated; Figure 1A and
Supplementary Table S2) and 821 lncRNAs (including 557
up- and 264 down-regulated; Figure 1B and Supplementary
Table S3) were found to be differentially expressed by volcano
plot and scatter plot filtering (Supplementary Figure S2). These
lncRNAs were grouped into five types reported previously,
including 22 sense, 280 antisense, 312 intergenic, 44 divergent,

FIGURE 3 | Gene Ontology (GO) analysis of the differentially expressed mRNAs. Go annotation of differentially expressed mRNAs with top 10 enrichment scores
covering domains of biological processes, cellular components, and molecular functions. The GO terms with corrected P-value less than 0.05 were considered
significantly enriched by differentially expressed genes.
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and 33 intronic lncRNAs. Additionally, 130 lncRNAs that were
not found the relationship with mRNAs’ location were also found
to be differentially expressed.

Validation of Differentially Expressed
mRNAs and LncRNAs
To validate the microarray data, 10 differentially expressed
mRNAs (CALCA1, CALCA2, CDR1, EHF, Cxorf56, PRKCA,
INHBB, KRT13, MYADM, and PER2) and 10 lncRNAs
(CDR1AS, XLOC_001265, ENSG00000238005.2, LOC636429,
XLOC_005104, CRIP2, ENSG00000257497.1, BC062328,
ENSG00000232220.2, and AB488780) were randomly selected
for qRT-PCR. The consistent results were found between qRT-
PCR and microarray data for 10 mRNAs and nine lncRNAs
(Supplementary Figure S3). Although the difference in the
expression of the lncRNA AB488780 was not statistically
significant by qRT-PCR, a consistent expression trend of this
gene was observed between qRT-PCR and microarray (Figure 2).

GO and KEGG Pathway Analysis of
Differentially Expressed mRNAs
To explore the potential biological functions of the differentially
expressed mRNAs, the GO and KEGG pathway enrichments
were carried out. The GO analysis indicated that these
mRNAs were significantly enriched in chromosome organization,
chromatin organization, organelle organization, and chromatin
modification in BP; intracellular organelle, organelle, and

membrane-bounded organelle in CC; chromatin binding,
binding, transition metal ion binding, and protein binding in
MF (Figure 3 and Supplementary Table S6). The pathways and
molecular interactions associated with significantly differentially
expressed mRNAs were then predicted by KEGG pathway
enrichment analysis. The top 20 pathways were depicted in
Figure 4, with a great number of mRNAs enriched into hedgehog
signaling pathway, tight junction, and Wnt signaling pathway
(Supplementary Table S7).

Co-expression of LncRNA and mRNA
To reveal the correlation between differentially expressed
lncRNAs and mRNAs and figure out the possible mechanisms
of lncRNAs during C. parvum infection, the co-expression
network was constructed based on the mathematical relevance
(Correlation > 0.99, Correlation < −0.99, and P-value < 0.05)
to search similar expression profiles of lncRNAs and mRNAs.
The co-expression network was constructed by using Cytoscape
v3.6.0 (20154). In this network, one mRNA could be correlated
with one or more lncRNAs, and one lncRNA could also be
associated with one or more mRNAs (Supplementary Table S4).
For example, the mRNA MYADM was related to the two
lncRNAs (CDR1AS and ENSG00000238005.2), and the lncRNA
LOC636429 corresponded to more than 300 mRNAs (Figure 5
and Supplementary Table S4).

4http://www.cytoscape.org/

FIGURE 4 | KEGG pathway analysis of the differentially expressed mRNAs with top 20 enrichment scores.
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FIGURE 5 | Co-expression network of four significantly differentially expressed lncRNAs with their associate mRNAs. The network was based on the mathematical
relevance (Correlation > 0.99, Correlation < –0.99, and P-value < 0.05) to search similar expression profiles of lncRNAs and mRNAs using cytoscape software
(v3.6.0). The yellow triangle represents lncRNAs while the gradual color of red to green circular represents mRNAs. The black solid line indicates the correction of
lncRNAs and mRNAs.

Functional Prediction of LncRNAs During
C. parvum Infection
Long non-coding RNAs have been identified to function as
regulators by cis- and trans-patterns (Huang et al., 2016). To
predict the target genes of differentially expressed lncRNAs, the

co-expressed neighboring coding genes located within 10 kb
of these lncRNAs were selected for analysis. A total of 27
coding genes corresponding to 29 lncRNAs were predicted (cis-
regulation). Additionally, 114 lncRNAs were also identified to
indirectly regulate the expression of 109 distant genes through

Frontiers in Microbiology | www.frontiersin.org 6 June 2018 | Volume 9 | Article 1409

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-01409 June 25, 2018 Time: 14:56 # 7

Liu et al. mRNA and lncRNA During C. parvum Infection

FIGURE 6 | Gene Ontology (GO) analysis of the differentially expressed lncRNAs. Go annotation of differentially expressed lncRNAs with top 10 enrichment scores
covering domains of biological processes, cellular components, and molecular functions. The GO terms with corrected P-value less than 0.05 were considered
significantly enriched by differentially expressed genes.

binding miRNAs (trans-regulation). All these cis- and trans-
targets were predicted and listed in Supplementary Table S5. The
GO enrichment analyses indicated that these target genes were
significantly associated with BP in membrane raft organization,
membrane organization, membrane assembly and regulation of
signal transduction, CC in intracellular organelle, dihydrolipoyl
dehydrogenase complex, tricarboxylic acid cycle enzyme complex
andintracellular part, MF in binding, cytoskeletal protein
binding, and histone threonine kinase activity (Figure 6 and
Supplementary Table S6). The KEGG pathway enrichment
analyses showed that these targets were also significantly enriched
in hedgehog signaling pathway, tight junction, and Wnt signaling
pathway (Figure 7 and Supplementary Table S7).

DISCUSSION

Although some advances were achieved in biology, pathogenicity,
and genetic characterization of Cryptosporidium (McDonald
et al., 2001; Lee et al., 2017), no effective measures were
developed to control cryptosporidiosis. The key challenge is
that the interaction mechanism of host-Cryptosporidium has not
been fully understood and appreciated. Unveiling the nature of
host non-coding RNA world (e.g., lncRNA and miRNA) in last
decades provided novel targets and strategies for preventing and

treating infections of Theiler’s virus and Salmonella inflammatory
bowel disease (IBD), diabetes, and multiple sclerosis in animals
and humans (Atianand and Fitzgerald, 2014). In the present
study, we systemically investigated the expression profiles of
lncRNAs and mRNAs in HCT-8 cells infected with C. parvum IId
subtype using microarray.

A total of 1,349 mRNAs were differentially expressed after
the infection of C. parvum IId subtype. Among them, several
inflammatory factors, e.g., IL-8, PTGS2, TCL-4, and CCL5
(RANTES), were up-regulated, and some genes associated with
the cell proliferation and apoptosis were also significantly
differentially expressed, e.g., up-regulated genes of thymidylate
kinase, Cyclin A2, TM4SF1, IL1RN, Bcl2, and DUSP4, and
down-regulated genes of Cyclin D1, Cyclin G2, BTG1, LAMB1,
and LGALS1. These findings were consistent with previous
studies using HCT-8 cells infected with C. parvum Iowa stain
(IIaA15G2R1; Deng et al., 2004; Mele et al., 2004; Liu et al., 2009;
Yang et al., 2015). Previous studies indicated that these genes
would be involved in processes of inflammation, anti-apoptosis
effect, and initiation and regulation of mucosal response during
C. parvum, suggesting the important role of these genes within
the interaction of host-Cryptosporidium. However, divergent
expression patterns of mRNAs were also observed in HCT-8 cells
infected with two subtypes of C. parvum. For example, the cell
proliferation-related gene stratifin was down-regulated in our
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FIGURE 7 | KEGG pathway analysis of the differentially expressed lncRNAs with top 20 enrichment scores.

study, while it was up-regulated after the infection of C. parvum
Iowa stain (Deng et al., 2004). Furthermore, the opposite trend
of mRNA expression was detected for some negatively regulated
genes (e.g., MT1B, MT1X, and MT1G) of apoptosis during
infections of two different C. parvum subtypes (Liu et al., 2009),
suggesting different pathogenic mechanisms of two subtypes.

Additionally, a total of 821 lncRNAs were found to
be differentially expressed after the infection of C. parvum
IIdA19G1. Co-expression and target prediction revealed 27
coding genes cis-regulated by 29 lncRNAs and 109 mRNAs
trans-regulated by 114 lncRNAs. Function prediction of these
differentially expressed transcripts was mainly involved in
various pathways related to the infection and pathogenicity
of Cryptosporidium, e.g., hedgehog signaling pathway, Wnt
signaling pathway, and tight junction. In previous studies,
the integrity of tight junction Zonula-Occludens-1 (ZO-1) was
disrupted by Cryptosporidium infection (Buret et al., 2003). Wnt
signaling plays a crucial role in the process of maintenance of
intestinal epithelium. A particular hypothesis was undergoing
investigated that Wnt signaling pathway was attenuated in
intestinal epithelium infected with C. parvum (Zhang et al.,
2016). The hedgehog signaling pathway showed negative effect
within the Wnt signaling pathway and inhibition role in intestine
proliferation (Katoh and Katoh, 2006). These findings suggested
the possible regulating roles of host lncRNAs in these pathways
during Cryptosporidium infection. Additionally, the qRT-PCR

validation of 10 deregulated lncRNAs was consistent with the
microarray data. Of them, the lncRNA XLOC_001265 was
predicted to target RNF125. Previous studies have proved that
mi-15b could regulate the Japanese Encephalitis Virus (JEV)-
induced inflammatory cytokine (TNF-α, IL-1β, IL-6, CCL5, and
IL-12p70) expression by targeting RNF125 (Zhu et al., 2015)
in the JEV mouse model. Therefore, XLOC_001265 may be
involved in the process of proinflammation caused by C. parvum
IId subtype by regulating the expression of RNF125 because
C. parvum had been proved to induce the expression of several
inflammatory factors (IL-12, IL-17, IL-18, TNF-α, and TNF-γ;
Ehigiator et al., 2005; Petry et al., 2010; O’Hara and Chen, 2011).

CONCLUSION

The expression profiles of mRNA and lncRNA were investigated
in the present study, and a total of 1,349 mRNAs and 821
lncRNAs were significantly differentially expressed in the HCT-8
cells infected with C. parvum IId subtype. Co-expression analysis
revealed that these differentially expressed lncRNAs would
potentially cis- and trans-regulate the expression of mRNAs
during C. parvum infection. Findings in the present study
would provide novel insights for exploring the control measures
for diagnosis and control of cryptosporidiosis in humans and
animals.
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FIGURE S1 | Bioinformatics analysis of differentially expressed mRNAs and
lncRNAs in HCT-8 cells infected with Cryptosporidium parvum IId subtype. (A)
Hierarchical clustering plot showing expression profile of mRNAs. (B) Hierarchical
clustering plot showing expression profile of lncRNAs. HCT-8 cells infected with
C. parvum IIdA19G1 (O1–3) or without parasites (C1–3) were cultured for 24 h at
RMPI 1640 medium and supplemented with 10% fetal bovine serum (FBS) under
5% CO2 at 37◦C and collected for microarray analysis.

FIGURE S2 | (A) The scatter plot showed the distributions of mRNAs. The values
of x and y axes in the scatter plot were the normalized signal values of the
samples (log2 scaled), and the R represents the correlation coefficient of the two
group samples. The red point in the plot represents up-regulated mRNAs and
lncRNAs, while the green point represents down-regulated mRNAs and lncRNAs.
(B) The scatter plot showed the distributions of lncRNAs.

FIGURE S3 | Comparison between microarray data and qRT-PCR results
revealed a good correlation of two methods. The heights of the columns represent
the fold changes computed from the microarray data and qRT-PCR results. The
positive numbers represent up-regulated genes, while the negative numbers
represent down-regulated genes.

TABLE S1 | The primers of mRNAs and lncRNAs.

TABLE S2 | The significantly differentially expressed mRNAs.

TABLE S3 | The significantly differentially expressed lncRNAs.

TABLE S4 | Co-expression of lncRNAs and mRNAs.

TABLE S5 | The target genes predicted of lncRNAs.

TABLE S6 | Go enrichment analysis of mRNAs and lncRNAs.

TABLE S7 | KEGG pathway analysis of mRNAs and lncRNAs.
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