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Abstract. Glioblastoma multiforme (GBM) is the most 
common type of brain cancer; it usually recurs and patients 
have a short survival time. The present study aimed to construct 
a gene expression classifier and to screen key genes associated 
with GBM prognosis. GSE7696 microarray data set included 
samples from 10 recurrent GBM tissues, 70 primary GBM 
tissues and 4 normal brain tissues. Seed genes were identi-
fied by the ‘survival’ package in R and subjected to pathway 
enrichment analysis. Prognostic genes were selected from the 
seed genes using the ‘rbsurv’ package in R, unsupervised hier-
archical clustering, survival analysis and enrichment analysis. 
Multivariate survival analysis was performed for the prog-
nostic genes, and the GBM data set from The Cancer Genome 
Atlas database was utilized to validate the prognostic genes. 
Of the 1,785 seed genes analyzed, 13 prognostic feature genes, 
including collagen type XXVIII α1 chain (COL28A1), PDS5 
cohesin‑associated factor A (PDS5A), zinc‑finger DHHC‑type 
containing 2 (ZDHHC2), zinc‑finger protein 24 (ZNF24), 
myosin VA (MYO5A) and myeloid/lymphoid or mixed‑lineage 
leukemia translocated to 4 (MLLT4), were identified. These 
genes performed well on sample classification and prognostic 
risk differentiation, and six pathways, including adherens junc-
tion, cyclic adenosine 3',5'‑monophosphate signaling and Ras 
signaling pathways, were enriched for these feature genes. The 
high‑risk group was slightly older compared with the low‑risk 
group. The validation data set confirmed the prognostic value 
of the 13 feature genes for GBM; of these, COL28A1, PDS5A, 
ZDHHC2, ZNF24, MYO5A and MLLT4 may be crucial. These 
results may aid the understanding of the pathogenesis of GBM 
and provide important clues for the development of novel diag-
nostic markers or therapeutic targets.

Introduction

Glioblastoma multiforme (GBM) is the most common and the 
most invasive subtype of brain cancer; it is characterized by 
symptoms that include personality changes, headaches, nausea 
and unconsciousness (1,2). GBM originates from normal brain 
cells or low‑grade astrocytoma, and may be induced by genetic 
disorders and radiation exposure (3,4). Clinical techniques for 
the treatment of GBM include surgery combined with radia-
tion therapy or chemotherapy; however, the survival benefit 
is limited to ~12‑15 months, or even shorter if the disease 
recurs (4). 

Gene therapy is a novel strategy for treating cancers (5). 
Transient receptor potential genes are overexpressed in GBM, 
which promote the survival of patients  (6,7). It has been 
previously reported that low expression of B cell‑specific 
Moloney murine leukemia virus integration site 1 suppresses 
proliferation and promotes apoptosis of U251 GBM cells, and 
enhances the chemosensitivity of these cells to cisplatin (8,9). 
The expression level of epidermal growth factor‑containing 
fibulin extracellular matrix protein 1 (EFEMP1) was asso-
ciated with the survival of patients with GBM treated with 
temozolomide (TMZ) (10); thus, EFEMP1 is considered a 
target for overcoming TMZ‑resistance in GBM. Enhancer of 
zeste homolog 2 (EZH2) overexpression was associated with 
tumor grade and predicts short overall survival in patients 
with GBM (11); thus, EZH2 may be a promising prognostic 
factor and therapeutic target for patients. Additionally, HOX 
transcript antisense RNA (HOTAIR) overexpression was asso-
ciated with poor outcome in patients with GBM, and HOTAIR 
may be a therapeutic molecular target for this disease (12,13). 
O‑6‑Methylguanine‑DNA methyltransferase (MGMT) meth-
ylation status and mutations in the isocitrate dehydrogenase 
1 (IDH1) gene are two known clinicopathological factors 
linked to overall survival of patients with GBM (14). MGMT 
methylation is significantly associated with the clinical prog-
nosis of GBM (15); IDH1 is a prognostic marker of GBM, and 
mutations in this gene diminish the malignant progression of 
glioma (16). In addition, high expression of interleukin‑13R 
mRNA is strongly associated with poor prognosis of 
GBM (17). POZ/BTB and AT hook‑containing zinc‑finger 
1 is another prognostic marker of GBM; it is overexpressed 
in GBM‑derived glioma‑initiating stem cells, and is associ-
ated with the characteristic stem cell capacity to grow as 
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neurospheres in vitro (18). Despite this collective knowledge, 
the genes involved in the prognosis of GBM have not been 
comprehensively reported.

In 2008, Murat et al (19) established the GSE7696 gene 
expression profile, and demonstrated that high expres-
sion levels of epidermal growth factor receptor and stem 
cell‑related ‘self‑renewal’ signature are involved in the resis-
tance to concomitant chemoradiotherapy of GBM. In 2011, 
Lambiv et al (20) used the GSE7696 data set to explore the 
action mechanism of tumor suppressor gene Wnt inhibitory 
factor 1 (WIF1) in GBM models, and concluded that WIF1 may 
have a tumor suppressive role in GBM through senescence. 

However, this data set has not been fully explored. Using 
the GSE7696 data, additional key genes associated with the 
prognosis of GBM were investigated using comprehensive 
bioinformatics methods, such as survival analysis, enrichment 
analysis and hierarchical clustering. Results from the present 
study provided novel insights into the prognosis of GBM and 
may aid in the development of novel therapeutic approaches.

Materials and methods

Data source. The GSE7696 microarray data set, based on 
the GPL570 [HG‑U133_Plus_2] Affymetrix Human Genome 
U133 Plus 2.0 Array (Thermo Fisher Scientific, Inc.) platform, 
along with the corresponding clinical information was down-
loaded from the Gene Expression Omnibus database (www.
ncbi.nlm.nih.gov/geo). The data set included 10 recurrent GBM 
tissue samples (2 females and 8 males; mean age, 51.31 years), 
70 primary GBM tissue samples (19 females and 51 males; 
mean age, 48.07 years) and 4 normal brain tissue samples (sex 
and age information not available). All patients participated in 
a phase II or randomized phase III trial (21,22), with informed 
consent provided. The GSE7696 data set is available and the 
study was approved by the local ethics committee (19). 

Selection of probes with expression changes in primary 
GBM tissue samples. The normalized data of GSE7696 were 
obtained, and the primary GBM tissue samples data were 
selected to use in the present study. Firstly, the unloaded 
probes were removed. Subsequently, the probes with varied 
expressions among 70 different patients with primary GBM 
were identified by the following steps. Firstly, the variance 
in probe expression level in each sample was calculated, 
and probes with variance <20% of the total probe variance 
were excluded. Secondly, the median probe expression in 
each sample was calculated and, as in the prior step, probes 
with a value <20% of the total median probe expression were 
removed. Finally, the probes with expression changes among 
these primary GBM tissue samples were selected. 

Survival analysis and pathway enrichment analysis. Using the 
‘survival’ package (23) in R (www.r‑project.org), univariate 
survival analysis was conducted for the above probes with 
expression changes, and those with P<0.05 were considered as 
seed genes. The Kyoto Encyclopedia of Genes and Genomes 
(KEGG; www.genome.ad.jp/kegg) is a database used to search 
for gene functions, connecting genomic with functional infor-
mation (24). Using the DAVID database (david.abcc.ncifcrf.
gov) (25), KEGG pathway enrichment analysis was performed 

for the seed genes to explore their functions. The categories 
with P<0.05 were considered to indicate a statistically signifi-
cant difference.

Screening of prognostic feature genes, unsupervised 
hierarchical clustering and analysis of prognostic char-
acteristics. Using the ‘rbsurv’ package in R (bioconductor.
org/packages/release/bioc/html/rbsurv.html)  (26), robust 
likelihood‑based survival modeling was constructed to 
identify prognostic feature genes  (27). The samples were 
classified based on the expression profiles of the prognostic 
feature genes using unsupervised hierarchical clustering (28). 
Thereafter, the prognostic differences among the classi-
fied samples were analyzed by the Kaplan‑Meier survival 
analysis  (29). The expression differences of the feature 
genes between primary GBM and normal samples were 
analyzed; and the scatter plot of the gene expression levels 
were drawn using the corrplot package (https://cran.r‑project.
org/web/packages/corrplot/vignettes/corrplot‑intro.html) in R 
(version 3.4.4).

Functional and pathway enrichment analysis for the feature 
genes. The Gene Ontology (GO) database (www.geneontology.
org) is used to predict potential functions of genes and their 
products (30). The prognostic feature genes were examined 
with GO functional and KEGG pathway enrichment analysis 
by the ‘clusterProfiler’ package in R (bioconductor.org/pack-
ages/release/bioc/html/clusterProfiler.html), with the threshold 
q‑value <0.05 (31).

Multivariate survival analysis. The prognostic feature genes 
underwent multivariate survival analysis to check their overall 
influences on prognosis. In addition, the ‘survivalROC’ 
package in R (cran.r‑project.org/web/packages/surviv-
alROC/index.html) was used to draw the receiver operating 
characteristic (ROC) curve and calculate the area under the 
ROC curve (AUC) (32). Specifically, the survivalROC package 
was used to calculate the ‘true positive rate’ and ‘false posi-
tive rate’ of each sample, and the differences between the 
‘true positive rate’ and ‘false positive rate’ for each sample 
were subsequently calculated. The sample with the smallest 
difference value was set as the cut‑off in the multifactorial cox 
regression analysis, and samples with a higher value than this 
cut‑off were deemed as the high‑risk group, while those with a 
lower value were the low‑risk group.

Validation of the prognostic feature genes using an inde-
pendent data set. The GBM dataset in The Cancer Genome 
Atlas (TCGA; cancergenome.nih.gov) database (downloaded 
in January 27, 2015; based on the Illumina HiSeq platform, 
and included RNA‑sequencing data in level 3 and clinical 
follow‑up data) was obtained to validate the prognostic feature 
genes. The 172 samples in the data set comprised 13 recur-
rent GBM samples, 154 primary GBM samples and 5 adjacent 
normal tissue samples. Of the 154 primary GBM samples, 2 
samples had no survival information. Finally, 152 primary 
GBM samples were selected for analysis. The data were trans-
formed using log2(x+1), followed by Cox regression analysis 
using the ‘survival’ package in R to compare the differences 
of prognosis and recurrence among the samples in different 
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groups. Differences in the identified factors (age and sex distri-
bution) were assessed using R software. The Mann‑Whitney 
test analysis was performed using the respective internal func-
tion in R, ‘wilcox.test’. The χ2 value was calculated using the 
‘chisq.test’ function in R.

Results

Survival analysis and pathway enrichment analysis for seed 
genes. The bioinformatics analysis process used in the present 
study is outlined in Fig. 1. Following calculation of the vari-
ance and median for the probes in the 70 primary GBM, a 
total of 38,370 probes with expression changes were identified. 
Based on the univariate survival analysis using the ‘survival’ 
package, a total of 1,785 gene probes significantly correlated 
with prognosis of GBM were selected as seed genes. KEGG 
pathway enrichment analysis identified six pathways that were 
significantly enriched for these seed genes, including ‘ribo-
some’, ‘regulation of actin cytoskeleton’, ‘endometrial cancer’, 
‘pathways in cancer’, ‘amino sugar and nucleotide sugar 
metabolism’ and ‘non‑small cell lung cancer’ (Table I).

Screening of prognostic feature genes, unsupervised 
hierarchical clustering and analysis of prognostic char-
acteristics. Robust likelihood‑based survival modeling 

identified 13 prognostic feature genes from the 1,785 seed 
genes, including collagen type XXVIII α1 chain (COL28A1), 
PDS5 cohesin‑associated factor A (PDS5A; also known as 
sister chromatid cohesion protein 112), zinc‑finger DHHC‑type 
containing 2 (ZDHHC2), zinc‑finger protein 24 (ZNF24), 
myosin VA (MYO5A) and myeloid/lymphoid or mixed‑lineage 
leukemia translocated to 4 (MLLT4) (Table II). Unsupervised 
hierarchical clustering was conducted for these 13 prognostic 
feature genes. A heat map demonstrated that these genes may 
be used to classify the 70 primary GBM samples into two clus-
ters: Cluster 1 contained 51 samples and Cluster 2 contained 19 
samples (Fig. 2). Subsequently, Kaplan‑Meier survival analysis 
was used to analyze the prognostic differences between the 
two clusters. Patients in the Cluster 1 and in Cluster 2 had 
significant differences in their prognosis, which indicated that 
the 13 prognostic feature genes may effectively differentiate 
between high‑risk and low‑risk patients in a clinical setting 
(Fig. 3A). In addition, the expression levels of the 13 prognostic 
feature genes were relatively low, which suggested that they 
had low redundancy (Fig. 3B).

Functional annotation of prognostic feature genes. Using 
the ‘clusterProfiler’ package, functional annotation of 
the prognostic feature genes were conducted. The results 
identified three genes, including, natriuretic peptide receptor 

Figure 1. Bioinformatics workflow. The GSE7696 dataset that comprised 70 primary GBM samples was downloaded from the GEO database. Upon filtering 
out the unloaded probes, a total of 1,785 probes were obtained; the corresponding genes were subjected to pathway enrichment analysis. A total of 13 prog-
nostic feature genes were screened and subjected to unsupervised hierarchical clustering analysis and KM survival analysis. The TCGA dataset that included 
152 primary GBM samples was used to validate the results of the 13 prognostic feature genes, and was subjected to multivariate survival analysis and KM 
survival analysis. GBM, glioblastoma multiforme; GEO, Gene Expression Omnibus; KM, Kaplan‑Meier; TCGA, The Cancer Genome Atlas.
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3 (NPR3), ANKH inorganic pyrophosphate transport 
regulator and OTU deubiquitinase, ubiquitin aldehyde 
binding 1 (OTUB1) were significantly enriched in functions, 
including ‘natriuretic peptide receptor activity’, ‘inorganic 
phosphate transmembrane transporter activity’ and 
‘NEDD8‑specific protease activity’, respectively. In addition, 
myeloid/lymphoid or mixed‑lineage leukemia translocated to 
4 (MLLT4; also known as afadin, adherens junction formation 
factor) was indicated to be involved in six KEGG pathways, 
including ‘adherens junction’, ‘leukocyte transendothelial 
migration’, ‘tight junction’, ‘cAMP signaling pathway’, ‘Rap1 
signaling pathway’ and ‘Ras signaling pathway’. COL28A1, 
PDS5A, ZDHHC2 and MYO5A were enriched in ‘collagen 
biosynthesis and modifying enzymes’, ‘separation of sister 
chromatids’, ‘surfactant metabolism’ and ‘regulation of 
actin dynamics for phagocytic cup formation’ pathways, 
respectively. 

Multivariate survival analysis. To check the overall influence 
of the prognostic feature genes on prognosis, multivariate 
survival analysis was carried out. These genes were classified 
as having a positive effect on prognosis (area under the ROC 
curve=0.826) for the 70 primary GBM samples (Fig. 4A). 
Furthermore, Kaplan‑Meier survival analysis demonstrated 
that the samples in the high‑risk and low‑risk groups differed 
significantly in their prognosis (P=5.67x10‑12; Fig. 4B), which 
indicated that the 13 prognostic feature genes may effectively 
distinguish samples with a different prognostic risk.

Validation of the prognostic feature genes using another inde-
pendent data set. The GBM data set was downloaded from the 
TCGA database and used to validate the prognostic feature 
genes. Survival analysis demonstrated that the 13 prognostic 
feature genes had good classification effects on samples in 
the validation data set (area under the ROC curve =0.886) 
(Fig. 5A). The high‑risk and low‑risk groups differed signifi-
cantly in their prognosis (P=5.00x10‑5; Fig. 5B). Furthermore, 
age distribution analysis of the classified primary GBM 
samples demonstrated that samples in the high‑risk and 
low‑risk groups differed significantly in age, with the high‑risk 
group being older than the low‑risk group (61.54 vs. 56.96; 
P=0.04396; Table III). There was no significant difference 
concerning sex distribution of the classified samples. 

Discussion

In the present study, a total of 1,785 gene probes with signifi-
cant prognostic differences were selected as seed genes. From 
these, 13 prognostic feature genes, including COL28A1, 
PDS5A, ZDHHC2, ZNF24, MYO5A, MLLT4, NPR3, ANKH 
and OTUB1, were further screened. The prognostic feature 
genes performed well for the classification of samples into 
different prognostic risk categories. Additionally, the GBM 
data set downloaded from the TCGA database further 
confirmed the association of the 13 prognostic feature genes 
with the prognosis of GBM. 

Collagen XVI may promote the invasion of glioma cells by 
damaging cell‑cell interactions or mediating the β1‑integrin acti-
vation pattern, which provides new approaches for treating cancer 
in neuro‑oncology (33). Fibrillar collagens and the collagen 
internalization receptor, endocytic receptor 180 (Endo180), are 
overexpressed in GBM (34). Additionally, Endo180 affects the 
invasion and progression of tumors (34). Collagen type I α1 
(CO1A1) was reported to serve a suppressive biological role in the 
progression of glioma, suggesting that it may be applied to treating 
the disease (35). The COL28A1 protein is a filament‑forming 
collagen and is detected in the adult sciatic nerve (36). In our 
study, COL28A1 was enriched in ‘collagen biosynthesis and 
modifying enzymes’ pathway. Therefore, COL28A1 may serve a 
role in the progression of GBM.

PDS5A is tissue‑specific and has two‑fold effects in 
tumorigenesis, acting as a tumor suppressor or an oncogenic 

Table I. Pathways significantly enriched for the 1,785  seed 
genes. 

Term	 Count	 P‑value

hsa03010:Ribosome	 43	 2.31x10‑26

hsa04810:Regulation of	 27	 4.09x10‑03

actin cytoskeleton
hsa05213:Endometrial cancer	 10	 9.29x10‑03

hsa05200:Pathways in cancer	 34	 2.08x10‑02

hsa00520:Amino sugar and	   8	 3.19x10‑02

nucleotide sugar metabolism
hsa05223:Non‑small cell	   9	 3.31x10‑02

lung cancer

Table II. A total of 13 prognostic feature genes were identified 
from the 1,785 seed genes. 

Gene ID	 nloglik	 AIC	 Gene

219789_at	 198.94	 399.87	 NPR3
215201_at	 193.8	 391.6	 REPS1
213254_at	 190.47	 386.95	 TNRC6B
225526_at	 186.37	 380.73	 MKLN1
223093_at	 183.88	 377.77	 ANKH
239921_at	 180.76	 373.52	 COL28A1
217331_at	 177.81	 369.62	 PDS5A
224685_at	 177.78	 371.55	 MLLT4
244779_at	 176.76	 371.52	 ZDHHC2
228786_at	 176.17	 372.34	 PTCHD3P1
201245_s_at	 175.81	 373.63	 OTUB1
1554045_at	 173.56	 371.12	 ZNF24
204527_at	 170.83	 367.67	 MYO5A

AIC, Akaike's information criterion; ANKH, ANKH inorganic 
pyrophosphate transport regulator; COL28A1, collagen type 
XXVIII α1 chain; ID, identification; MKLN1, muskelin 1; MLLT4, 
myeloid/lymphoid or mixed‑lineage leukemia translocated to 4; 
MYO5A, myosin VA; NPR3, natriuretic peptide receptor 3; OTUB1, 
OTU deubiquitinase, ubiquitin aldehyde binding 1; PDS5A, PDS5 
cohesin‑associated factor A; PTCHD3P1, patched domain‑containing 
3 pseudogene 1; REPS1, PALBP1‑associated EPS domain‑containing 
1; TNRC6B, trinucleotide repeat‑containing 6B; ZDHHC2, zinc‑finger 
DHHC‑type containing 2; ZNF24, zinc‑finger protein 24.
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Figure 3. Kaplan‑Meier survival curve and expression correlations analysis for the 13 prognostic feature genes. (A) The survival curve of the two clusters. 
(B) The lower‑left part is the scatter plot of the gene expression levels. The red to blue color in the upper‑right part represent correlation coefficients ranging 
from ‑1 to +1, respectively. The diagonal line represents the expression distribution histogram of each gene. Asterisks indicate a correlation coefficient ≥0.45.

Figure 2. Clustering heatmap for the 13 prognostic feature genes. The horizontal axis represents the samples, and the vertical axis represents the genes.

Figure 4. Multivariate survival analysis for the 13 prognostic feature genes in the 70 primary GBM samples in GSE7696. (A) The AUC of multivariate survival 
analysis. (B) The Kaplan‑Meier survival curve. AUC, area under the Receiver Operating Characteristic curve.
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factor to promote tumor proliferation (37). PDS5A was previ-
ously reported to be overexpressed in high‑grade gliomas and 
is positively associated with the World Health Organization 
grade of gliomas (37). Based on our enrichment result, PDS5A 
was involved in ‘separation of sister chromatids’ pathway, 
indicating it might influence the tumor’s DNA synthesis phase 
in GBM development.

ZDHHC2 on chromosome 8p21.3‑22 belongs to the 
DHHC‑domain protein family of protein acyltransferases (38). 
As the largest transcription factor family in humans, zinc‑finger 
proteins serve roles in multiple biological processes, including 
autophagy, metabolism, development and differentiation, and 
in cancer progression (39). In addition, ZDHHC2 is associ-
ated with prognosis in a number of types of cancer. In gastric 
cancer, decreased ZDHHC2 expression is associated with 
lymph node metastasis and indicates a poor prognosis (40). In 
the present study, ZDHHC2 was highly associated with the 
‘surfactant metabolism’ pathway and identified as a prognostic 
gene in GBM, suggesting that it might have an important role 
in GBM prognosis. 

ZNF24 plays a critical role in brain development and 
various cancer types. Furthermore, ZNF24 may contribute to 
cell cycle promotion and maintenance of the progenitor stage 
of neural cells (41). Platelet‑derived growth factor receptor 
(PDGFR) signaling is a crucial mechanism for the initiation 
and development of GBM (42). In GBM cell lines, ZNF24 
negatively regulates two transcription factors, vascular endo-
thelial growth factor (VEGF) and PDGFR‑β (43). 

In the present study, the above three genes were among the 
13 crucial prognostic genes of GBM. The collective findings 
implicate PDS5A, ZDHHC2 and ZNF24 are involved in the 
pathogenesis of GBM. Although no studies have reported the 
potential roles of ZDHHC2 in GBM, this gene may also be 
associated with the prognosis of GBM, based on our results.

Myosin II is required for the invasion of glioma cells and is 
a promising target for the anti‑invasive treatment of malignant 
brain tumors (44,45). In 1321N1 GBM cells, MYO1C is crucial 
for lamellipodia formation to produce a protein complex 
promoting cell migration (46). MYO6 was implicated in human 
glioma and its inhibition may be a promising therapeutic 
method for the disease (47). The activation of myosin‑associ-
ated contractility sensitizes GBM tumor‑initiating cells, which 
subsequently weakens the invasive ability of the cells (48). In 
the present study, MYO5A was enriched in ‘regulation of actin 
dynamics for phagocytic cup formation’. Thus, MYO5A may 
serve a role in the progression of GBM.

MLLT4 is one of the aliases of the gene, afadin, adherens 
junction formation factor, which belongs to an adhesion 
system and encodes a protein participating in cell junctions 
during embryogenesis. Neurofibromin 1 (NF1) mutations have 
been identified in several cancer types, including GBM (49). 
Furthermore, in a mouse model of NF1‑associated optic 
pathway gliomas (OPG), cyclic adenosine 3',5'‑monophos-
phate (cAMP) inhibits the growth of OPG  (50). Notably, 
MLLT4 is one of the NF1‑regulated effectors downstream of 
RAS (51). Results from the present studies support the possible 

Figure 5. Multivariate survival analysis for the prognostic feature genes in the 152 primary GBM samples in TCGA (validation data set). (A) The AUC 
multivariate survival analysis. (B) The Kaplan‑Meier survival curve. AUC, area under the Receiver Operating Characteristic curve.

Table III. Age distribution of the samples in the high‑risk and low‑risk groups.

Sample group	 Min age	 Mean age	 Max age	 Mann‑Whitney test	 Female	 Male	 P‑value

High risk (n=95)	 21	 61.54	 89	 P=0.04396	 32	 64	 P=0.51
Low risk (n=57)	 21	 56.96	 85		  22	 35	
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importance of MLLT4 in GBM pathogenesis through the 
participation in the adherens junction, cAMP signaling and 
Ras signaling pathways. In addition, a number of pathways, 
such as leukocyte transendothelial migration, are enriched in 
GBM‑derived extracellular vesicles (EVs), which suggested 
that GBM cells may exhibit mechanisms to selectively combine 
these proteins in EVs (52). In the present study, leukocyte tran-
sendothelial migration was one of the six enriched pathways 
identified for MLLT3; therefore, this pathway may also be an 
important regulation target in GBM development. With regard 
to the tight junction pathway, junctional adhesion molecule 
(JAM) is one family of the immunoglobulin‑like superfamily 
expressed in tight junctions, and abnormal JAM‑A expression 
was reported to contribute to the progression of GBM (53). 
This may be evidence of the gene expression alterations in the 
tight junction pathway in the development of GBM. 

NPR3 encodes a natriuretic peptide receptor, which 
regulates metabolic processes. A long noncoding RNA 
(lncRNA), BCYRN1, has an oncogenic role in colorectal 
cancer cells by upregulating NPR3 expression (54). In clear 
cell renal cell carcinoma (ccRCC), the lncRNA MRCCAT1 
has been observed to promote ccRCC metastasis by inhibiting 
NPR3 (55). ANKH is identified as a novel putative oncogene 
in small cell lung cancer cell lines (56). In cervical cancer, 
ANKH is also suggested as an oncogene and the upregulation 
is validated by reverse transcription‑quantitative poly-
merase chain reaction (57). To the best of our knowledge, 
there have been no studies reporting an association between 
these two genes, NPR3 and ANKH, and glioma. However, 
in the present study, these were important prognostic genes 
of GBM and were enriched in crucial pathways, suggesting 
that they may be novel markers in GBM and correlate with 
prognosis. 

The OTUB1 protein is a deubiquitinating enzyme. In 
glioma tissues, expression of OTUB1 is increased and the 
expression level is associated with the glioma grade; on the 
other hand, knockdown of OTUB1 suppresses the tumor cell 
migration (58). This finding suggests that OTUB1 serves an 
important role in the etiology of glioma (58).

However, all these predictive results need to be further 
validated by in vitro and in vivo experiments. Notably, patients 
in the high‑risk group were slightly older compared with 
patients in the low‑risk group; although the difference was 
minor, it was significant. A previous study identified age as a 
risk factor for the process of dexamethasone‑induced leuko-
cytosis, which is associated with poor survival in the newly 
diagnosed GBM (59). Therefore, the present study suggested 
that age may be a risk factor of GBM, but this needs to be 
validated using larger data sets. 

In conclusion, the 13‑gene set was tested and verified, and 
very efficiently predicted the prognosis of GBM in independent 
data sets. In addition, COL28A1, PDS5A, ZDHHC2, ZNF24, 
MYO5A and MLLT4 were implicated as key genes involved 
in the prognosis of GBM. The adherens junction, cAMP and 
Ras signaling pathways may be important in the progression of 
GBM, and age may be a risk factor for prognosis. 

Acknowledgements

Not applicable.

Funding

No funding was received.

Availability of data and materials

The analyzed data sets generated during the present study are 
available from the corresponding author on reasonable request.

Authors' contributions

HY performed data analyses and wrote the manuscript. LJ 
contributed significantly to the data analysis and manuscript 
revision. XS conceived and designed the study. All authors 
read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

  1.	Bleeker FE, Molenaar RJ and Leenstra S: Recent advances in 
the molecular understanding of glioblastoma. J Neurooncol 108: 
11‑27, 2012.

  2.	Young RM, Jamshidi A, Davis G and Sherman JH: Current trends 
in the surgical management and treatment of adult glioblastoma. 
Ann Transl Med 3: 121, 2015.

  3.	McGuire S: World Cancer Report 2014. Geneva, Switzerland: 
World Health Organization, International Agency for Research 
on Cancer, WHO Press, 2015. Adv Nutr 7: 418‑419, 2016.

  4.	Gallego O: Nonsurgical treatment of recurrent glioblastoma. 
Curr Oncol 22: e273‑e281, 2015.

  5.	Fulci G and Chiocca EA: The status of gene therapy for brain 
tumors. Expert Opin Biol Ther 7: 197‑208, 2007.

  6.	Alptekin M, Eroglu S, Tutar E, Sencan S, Geyik MA, Ulasli M, 
Demiryurek AT and Camci C: Gene expressions of TRP chan-
nels in glioblastoma multiforme and relation with survival. 
Tumor Biology 36: 9209‑9213, 2015.

  7.	 Chen J, Luan Y, Yu R, Zhang Z, Zhang J and Wang W: Transient 
receptor potential (TRP) channels, promising potential diagnostic 
and therapeutic tools for cancer. Biosci Trends 8: 1‑10, 2014.

  8.	Hong Y, Shang C, Xue YX and Liu YH: Silencing of Bmi‑1 gene 
enhances chemotherapy sensitivity in human glioblastoma cells. 
Med Sci Monit 21: 1002‑1007, 2015.

  9.	 Ye L, Wang C, Yu G, Jiang Y, Sun D, Zhang Z, Yu X, Li X, Wei W, 
Liu P, et al: Bmi‑1 induces radioresistance by suppressing senes-
cence in human U87 glioma cells. Oncol Lett 8: 2601‑2606, 2014.

10.	 Hiddingh L, Tannous BA, Teng J, Tops B, Jeuken J, Hulleman E, 
Boots‑Sprenger SH, Vandertop WP, Noske DP, Kaspers GJ, et al: 
EFEMP1 induces γ‑secretase/Notch‑mediated temozolomide 
resistance in glioblastoma. Oncotarget 5: 363‑374, 2014.

11.	 Zhang J, Chen L, Han L, Shi Z, Zhang J, Pu P and Kang C: 
EZH2 is a negative prognostic factor and exhibits pro‑oncogenic 
activity in glioblastoma. Cancer Lett 356: 929‑936, 2015.

12.	Zhou X, Ren Y, Zhang J, Zhang C, Zhang K, Han L, Kong L, 
Wei J, Chen L, Yang J, et al: HOTAIR is a therapeutic target in 
glioblastoma. Oncotarget 6: 8353‑8365, 2015.

13.	 Zhang K, Sun X, Zhou X, Han L, Chen L, Shi Z, Zhang A, Ye M, 
Wang Q, Liu C, et al: Long non‑coding RNA HOTAIR promotes 
glioblastoma cell cycle progression in an EZH2 dependent 
manner. Oncotarget 6: 537‑546, 2015.



YANG et al:  THIRTEEN-GENE SET PREDICTS GLIOBLASTOMA PROGNOSIS1620

14.	 Insin P and Prueksaritanond N: Evaluation of four risk of malig-
nancy indices (RMI) in the preoperative diagnosis of ovarian 
malignancy at Rajavithi hospital. Thai J Obstet Gynaecol 21, 
2013.

15.	 Sim J, Nam DH, Kim Y, Lee IH, Choi JW, Sa JK and Suh YL: 
Comparison of 1p and 19q status of glioblastoma by whole 
exome sequencing, array‑comparative genomic hybridization, 
and fluorescence in situ hybridization. Med Oncol 35: 60, 2018.

16.	 Yao Q, Cai G, Yu Q, Shen J, Gu Z, Chen J, Shi W and Shi J: IDH1 
mutation diminishes aggressive phenotype in glioma stem cells. 
Int J Oncol 52: 270‑278, 2017.

17.	 Han J and Puri RK: Analysis of the cancer genome atlas (TCGA) 
database identifies an inverse relationship between interleukin‑13 
receptor α1 and α2 gene expression and poor prognosis and 
drug resistance in subjects with glioblastoma multiforme. 
J Neurooncol 136: 463‑474, 2018.

18.	Guadagno E, Vitiello M, Francesca P, Calì G, Caponnetto F, 
Cessel l i   D,  Camoran i   S,  Bor rel l i   G,  Ca l i fano  M, 
Cappabianca P, et al: PATZ1 is a new prognostic marker of 
glioblastoma associated with the stem‑like phenotype and 
enriched in the proneural subtype. Oncotarget 8: 59282‑59300, 
2017.

19.	 Murat A, Migliavacca E, Gorlia T, Lambiv WL, Shay T, Hamou MF, 
de Tribolet N, Regli L, Wick W, Kouwenhoven MC, et al: Stem 
cell‑related ‘self‑renewal’ signature and high epidermal growth 
factor receptor expression associated with resistance to concomi-
tant chemoradiotherapy in glioblastoma. J  Clin Oncol  26: 
3015‑3024, 2008.

20.	Lambiv WL, Vassallo  I, Delorenzi M, Shay T, Diserens AC, 
Misra A, Feuerstein B, Murat A, Migliavacca E, Hamou MF, et al: 
The Wnt inhibitory factor 1 (WIF1) is targeted in glioblastoma 
and has a tumor suppressing function potentially by induction of 
senescence. Neuro Oncol 13: 736‑747, 2011.

21.	 Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, 
Taphoorn  MJ, Belanger  K, Brandes  AA, Marosi  C, 
Bogdahn U, et al: Radiotherapy plus concomitant and adjuvant 
temozolomide for glioblastoma. N Engl J Med 352: 987‑996, 
2005.

22.	Stupp R, Dietrich PY, Ostermann Kraljevic S, Pica A, Maillard I, 
Maeder P, Meuli R, Janzer R, Pizzolato G, Miralbell R, et al: 
Promising survival for patients with newly diagnosed glio-
blastoma multiforme treated with concomitant radiation plus 
temozolomide followed by adjuvant temozolomide. J  Clin 
Oncol 20: 1375‑1382, 2002.

23.	Therneau  TM: Survival analysis (R package survival 
version 2.39‑5). 2015.

24.	Kanehisa M, Sato Y, Kawashima M, Furumichi M and Tanabe M: 
KEGG as a reference resource for gene and protein annotation. 
Nucleic Acids Res 44: D457‑D62, 2015.

25.	Huang  DW, Sherman  BT, Tan  Q, Collins  JR, Alvord  WG, 
Roayaei J, Stephens R, Baseler MW, Lane HC and Lempicki RA: 
The DAVID gene functional classification tool: A novel biolog-
ical module‑centric algorithm to functionally analyze large gene 
lists. Genome Boil 8: R183, 2007.

26.	Cho HJ, Kim S, Kang J and Lee JW: How to use the rbsurv 
Package. 2010.

27.	 Renaud G, Stenzel U, Maricic T, Wiebe V and Kelso J: deML: 
Robust demultiplexing of Illumina sequences using a likeli-
hood‑based approach. Bioinformatics 31: 770‑772, 2015.

28.	Wang SJ: Unsupervised hierarchical clustering based on sequen-
tial partitioning and merging. International Symposium on Vlsi 
Design, Automation and Test, 2016.

29.	 Porcher R: CORR Insights(®): Kaplan‑meier survival analysis 
overestimates the risk of revision arthroplasty: A meta‑analysis. 
Clin Orthop Relat Res 473: 3431‑3442, 2015.

30.	Smith B, Williams J and Schulze‑Kremer S: The ontology of the 
gene ontology. AMIA Annu Symp Proc: 609‑613, 2003.

31.	 Yu  G, Wang  LG, Han  Y and He  QY: clusterProfiler: An R 
package for comparing biological themes among gene clusters. 
OMICS 16: 284‑287, 2012.

32.	Heagerty PJ, Thomas L and Pepe MS: Time‑dependent ROC 
curves for censored survival data and a diagnostic marker. 
Biometrics 56: 337‑344, 2000.

33.	 Bauer R, Ratzinger S, Wales L, Bosserhoff A, Senner V, Grifka J 
and Grässel S: Inhibition of collagen XVI expression reduces 
glioma cell invasiveness. Cell Physiol Biochem 27: 217‑226, 2011.

34.	Huijbers IJ, Iravani M, Popov S, Robertson D, Alsarraj S, Jones C 
and Isacke CM: A role for fibrillar collagen deposition and the 
collagen internalization receptor endo180 in glioma invasion. 
PLoS One 5: e9808, 2010.

35.	 Honma  K, Miyata  T and Ochiya  T: Type  I collagen gene 
suppresses tumor growth and invasion of malignant human 
glioma cells. Cancer Cell Int 7: 12, 2007.

36.	Veit  G, Kobbe  B, Keene  DR, Paulsson  M, Koch  M and 
Wagener R: Collagen XXVIII, a novel von Willebrand factor 
A domain‑containing protein with many imperfections in the 
collagenous domain. J Biol Chem 281: 3494‑3504, 2006.

37.	 Hagemann C, Weigelin B, Schommer S, Schulze M, Al‑Jomah N, 
Anacker J, Gerngras S, Kühnel S, Kessler AF, Polat B, et al: The 
cohesin‑interacting protein, precocious dissociation of sisters 
5A/sister chromatid cohesion protein 112, is up‑regulated in 
human astrocytic tumors. Int J Mol Med 27: 39‑51, 2011.

38.	Oyama T, Miyoshi Y, Koyama K, Nakagawa H, Yamori T, Ito T, 
Matsuda H, Arakawa H and Nakamura Y: Isolation of a novel 
gene on 8p21.3‑22 whose expression is reduced significantly 
in human colorectal cancers with liver metastasis. Genes 
Chromosomes Cancer 29: 9‑15, 2000.

39.	 Jen J and Wang YC: Zinc finger proteins in cancer progression. 
J Biomed Sci 23: 53, 2016.

40.	Yan SM, Tang JJ, Huang CY, Xi SY, Huang MY, Liang JZ, 
Jiang YX, Li YH, Zhou ZW, Ernberg I, et al: Reduced expres-
sion of ZDHHC2 is associated with lymph node metastasis 
and poor prognosis in gastric adenocarcinoma. PLoS One 8: 
e56366, 2013.

41.	 Khalfallah O, Ravassard P, Che SL, Fligny C, Serre A, Bayard E, 
Faucon‑Biguet N, Mallet J, Meloni R and Nardelli J: Zinc finger 
protein 191 (ZNF191/Zfp191) is necessary to maintain neural 
cells as cycling progenitor. Stem Cells 27: 1643‑1653, 2009.

42.	Carrasco‑Garcia  E, Martinez‑Lacaci  I, Mayor‑López  L, 
Tristante  E, Carballo‑Santana  M, García‑Morales  P, 
Ventero Martin MP, Fuentes‑Baile M, Rodriguez‑Lescure Á and 
Saceda M: PDGFR and IGF‑1R inhibitors induce a G2/M arrest 
and subsequent cell death in human glioblastoma cell lines. 
Cells 7: E131, 2018.

43.	 Li JZ, Chen X, Liu Y, Ding L, Qiu L, Hu ZL and Zhang J: The 
transcriptional repression of platelet‑derived growth factor 
receptor‑beta by the zinc finger transcription factor ZNF24. 
Biochem Biophys Res Commun 397: 318‑322, 2010.

44.	Beadle C, Assanah MC, Monzo P, Vallee R, Rosenfeld SS and 
Canoll P: The role of myosin II in glioma invasion of the brain. 
Mol Biol Cell 19: 3357‑3368, 2008.

45.	 Ivkovic S, Beadle C, Noticewala S, Massey SC, Swanson KR, 
Toro  LN, Bresnick  AR, Canoll  P and Rosenfeld  SS: Direct 
inhibition of myosin II effectively blocks glioma invasion in the 
presence of multiple motogens. Mol Biol Cell 23: 533‑542, 2011.

46.	Edimo  WE, Ramos  AR, Ghosh  S, Vanderwinden  JM and 
Erneux C: The SHIP2 interactor Myo1c is required for cell 
migration in 1321 N1 glioblastoma cells. Biochem Biophys Res 
Commun 476: 508‑514, 2016.

47.	 Xu R, Fang XH and Zhong P: Myosin VI contributes to malig-
nant proliferation of human glioma cells. Korean J  Physiol 
Pharmacol 20: 139‑145, 2016.

48.	Wong  SY, Ulrich  TA, Deleyrolle  LP, MacKay  JL, Lin  JM, 
Martuscello RT, Jundi MA, Reynolds BA, Kumar S: Constitutive 
activation of myosin‑dependent contractility sensitizes glioma 
tumor‑initiating cells to mechanical inputs and reduces tissue 
invasion. Cancer Res 75: 1113‑1122, 2015.

49.	 Brennan  CW, Verhaak  RG, McKenna  A, Campos  B, 
Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, 
Berman SH, et al: The somatic genomic landscape of glioblas-
toma. Cell 155: 462‑477, 2013.

50.	Warrington  NM, Sun  T, Luo  J, Mckinstry  RC, Parkin  PC, 
Ganzhorn  S, Spoljar ic  D, Albers  AC, Merkelson  A, 
Stewart DR, et al: The cyclic AMP pathway is a sex‑specific 
modifier of glioma risk in type I neurofibromatosis patients. 
Cancer Res 75: 16‑21, 2015.

51.	 Kiuru M and Busam KJ: The NF1 gene in tumor syndromes and 
melanoma. Lab Invest 97: 146‑157, 2017.

52.	de  Vrij  J, Maas  SL, Kwappenberg  KM, Schnoor  R, 
Kleijn  A, Dekker  L, Luider  TM, de  Witte  LD, Litjens  M, 
van Strien ME, et al: Glioblastoma‑derived extracellular vesicles 
modify the phenotype of monocytic cells. Int J Cancer 137: 
1630‑1642, 2015.

53.	 Leech  AO, Cruz  RG, Hill  AD and Hopkins  AM: Paradigms 
lost‑an emerging role for over‑expression of tight junction adhe-
sion proteins in cancer pathogenesis. Ann Transl Med 3: 184, 2015.

54.	Gu L, Lu LS, Zhou DL and Liu ZC: Long noncoding RNA 
BCYRN1 promotes the proliferation of colorectal cancer cells 
via Up‑regulating NPR3 expression. Cell Physiol Biochem 48: 
2337‑2349, 2018.



MOLECULAR MEDICINE REPORTS  19:  1613-1621,  2019 1621

55.	 Li JK, Chen C, Liu JY, Shi JZ, Liu SP, Liu B, Wu DS, Fang ZY, 
Bao Y, Jiang MM, et al: Long noncoding RNA MRCCAT1 promotes 
metastasis of clear cell renal cell carcinoma via inhibiting NPR3 and 
activating p38‑MAPK signaling. Mol Cancer 16: 111, 2017.

56.	Coe BP, Henderson LJ, Garnis C, Tsao MS, Gazdar AF, Minna, J, 
Lam S, Macaulay C and Lam WL: High‑resolution chromosome 
arm 5p array CGH analysis of small cell lung carcinoma cell 
lines. Genes Chromosomes Cancer 42: 308‑313, 2005.

57.	 Kloth JN, Oosting J, van Wezel T, Szuhai K, Knijnenburg J, 
Gorter A, Kenter GG, Fleuren GJ and Jordanova ES: Combined 
array‑comparative genomic hybridization and single‑nucleotide 
polymorphism‑loss of heterozygosity analysis reveals complex 
genetic alterations in cervical cancer. BMC Genomics 8: 53, 2007.

58.	Xu L, Li J, Bao Z, Xu P, Chang H, Wu J, Bei Y, Xia L, Wu P, 
Yan K, et al: Silencing of OTUB1 inhibits migration of human 
glioma cells in vitro. Neuropathology 37: 217‑226, 2017.

59.	 Dubinski D, Won SY, Gessler F, Quick‑Weller J, Behmanesh B, 
Bernatz S, Forster MT, Franz K, Plate KH, Seifert V,  et  al: 
Dexamethasone‑induced leukocytosis is associated with poor 
survival in newly diagnosed glioblastoma. J Neurooncol 137: 
503‑510, 2018.

This work is licensed under a Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 
International (CC BY-NC-ND 4.0) License.


