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Descending neuron population dynamics 
during odor- evoked and spontaneous 
limb- dependent behaviors
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Abstract Deciphering how the brain regulates motor circuits to control complex behaviors is an 
important, long- standing challenge in neuroscience. In the fly, Drosophila melanogaster, this is coor-
dinated by a population of ~ 1100 descending neurons (DNs). Activating only a few DNs is known to 
be sufficient to drive complex behaviors like walking and grooming. However, what additional role 
the larger population of DNs plays during natural behaviors remains largely unknown. For example, 
they may modulate core behavioral commands or comprise parallel pathways that are engaged 
depending on sensory context. We evaluated these possibilities by recording populations of nearly 
100 DNs in individual tethered flies while they generated limb- dependent behaviors, including 
walking and grooming. We found that the largest fraction of recorded DNs encode walking while 
fewer are active during head grooming and resting. A large fraction of walk- encoding DNs encode 
turning and far fewer weakly encode speed. Although odor context does not determine which 
behavior- encoding DNs are recruited, a few DNs encode odors rather than behaviors. Lastly, we 
illustrate how one can identify individual neurons from DN population recordings by using their 
spatial, functional, and morphological properties. These results set the stage for a comprehensive, 
population- level understanding of how the brain’s descending signals regulate complex motor 
actions.

Editor's evaluation
This article uses a genetically encoded calcium indicator to assess neural activity across a popula-
tion of axons connecting the fly’s brain to its ventral nerve cord while the tethered fly behaves on a 
floating ball. The preparation and large- scale analysis represent a significant step forward in deter-
mining how the brain compresses sensory and state information to convey commands to the ventral 
nervous system for behavior execution by motor circuits.

Introduction
The richness of animal behaviors depends on the coordinated actions of many individual neurons 
within a population. For example, neurons or small networks may compete in a winner- take- all manner 
to select the next most appropriate motor action (Cisek and Kalaska, 2010). To then drive behaviors, 
the brain conveys these decisions to motor circuits via a population of descending neurons (DNs) 
projecting to the spinal cord of vertebrates or ventral nerve cord (VNC) of invertebrates. There, DN 
axons impinge upon local circuits including central pattern generators (CPGs) that transform DN direc-
tives into specific limb or body part movements (Bouvier et al., 2015; Capelli et al., 2017; Caggiano 
et al., 2018; Orger et al., 2008). Because DNs make up only about 1% of brain neurons, DN popu-
lation activity represents a critical information bottleneck: high- dimensional brain dynamics must be 
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Figure 1. Recording descending neuron (DN) population activity and animal behavior. (a) Schematic of the 
Drosophila nervous system showing DNs projecting from the brain to motor circuits in the ventral nerve cord 
(VNC). For clarity, only two pairs of DNs (red and blue) are shown. Indicated (dashed gray line) is the coronal 
imaging region- of- interest (ROI) in the thoracic cervical connective. (b) In a ‘modulation’ framework for DN 
population control, new DNs (red) may be recruited to modulate ongoing behaviors primarily driven by core DNs 
(blue). Each ellipse is an individual DN axon (white, blue, and red). (c) In a ‘context dependence’ framework for DN 
population control, different DNs may be recruited to drive identical behaviors depending on sensory context. 
(d) Alternatively, in a ‘sensory encoding’ framework, many DNs may not drive or be active during behaviors but 
rather transmit raw sensory signals to the VNC. (e) An approach for deriving DN cell identity from population 
recordings. One may first identify sparse transgenic strains labeling specific neurons from DN populations (circled 
in black) using their functional attributes/encoding, positions within the cervical connective, and the shapes of their 
axons. Ultimately, one can use sparse morphological data to find corresponding neurons in the brain and VNC 
connectomes. (f, g) Template- registered confocal volume z- projections illustrating a ‘brain only’ driver line (otd- 
nls:FLPo; R57C10- GAL4,tub>GAL80>) expressing (f) a nuclear (histone- sfGFP) or (g) a cytosolic (smGFP) fluorescent 
reporter. Scale bar is 50 μm. Location of two- photon imaging plane in the thoracic cervical connective is indicated 
(white dashed lines). Tissues are stained for GFP (green) and neuropil (‘nc82’, magenta). (h) Schematic of the VNC 
illustrating the coronal (x–z) imaging plane. Dorsal- ventral (‘Dor’) and anterior–posterior (‘Ant’) axes are indicated. 
(i) Denoised two- photon image of DN axons passing through the thoracic cervical connective. Scale bar is 10 μm. 
(j) Two- photon imaging data from panel (i) following motion correction and  %∆F/F   color- coding. An ROI (putative 
DN axon or closely intermingled axons) is indicated (white dashed circle). (k) Sample normalized  %∆F/F   time- 
series traces for 28 (out of 95 total) ROIs recorded from one animal. Behavioral classification at each time point is 
indicated below and is color- coded as in panel (p). (l) Schematic of system for recording behavior and delivering 
odors during two- photon imaging (not to scale) while a tethered fly walks on a spherical treadmill. (m) Spherical 
treadmill ball rotations (fictive walking trajectories) are captured using the front camera and processed using 
FicTrac software. Overlaid (cyan) is a sample walking trajectory. (n) Video recording of a fly from six camera angles. 
(o) Multiview camera images are processed using DeepFly3D to calculate 2D poses and then triangulated 3D 
poses. These 3D poses are further processed to obtain joint angles. (p) Joint angles are input to a dilated temporal 
convolutional network (DTCN) to classify behaviors including walking, resting, head (eye and antennal) grooming, 
front leg rubbing, or posterior (abdominal and hindleg) movements.

Figure 1 continued on next page
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compressed into low- dimensional commands that efficiently interface with and are read out by motor 
circuits. The information carried by individual DNs has long been a topic of interest (Heinrich, 2002; 
Kien, 1990; Böhm and Schildberger, 1992). Through electrophysiological recordings in large insects, 
the activities of individual DNs have been linked to behaviors like walking and stridulation (Heinrich, 
2002). For some DNs, links between firing rate and behavioral features like walking speed have also 
been established (Böhm and Schildberger, 1992). However, how the larger population of DNs coor-
dinate their activities remains unknown.

The fruit fly, Drosophila melanogaster, is an excellent model for investigating how DNs regulate 
behavior. Flies are genetically- tractable, have a rich behavioral repertoire, and have a numerically small 
and compact nervous system (Olsen and Wilson, 2008). Drosophila are thought to have between 
~350 (Namiki et al., 2018) and ~500 (Hsu and Bhandawat, 2016) pairs of DNs. Sparse sets of these 
DNs can be experimentally targeted using transgenic driver lines (Namiki et al., 2018) for functional 
recordings (von Reyn et  al., 2014; Schnell et  al., 2017; Chen et  al., 2018; Ache et  al., 2019b; 
Namiki et al., 2022) or physiological perturbations (Cande, 2018; Zacarias et al., 2018; Ache et al., 
2019a; Namiki et al., 2022; Guo et al., 2022). The functional properties of DNs can be understood 
within a circuit context using emerging connectomics datasets (Zheng et al., 2018; Phelps et al., 
2021). Thus, by building upon foundational work in other insects (Heinrich, 2002; Kien, 1990; Böhm 
and Schildberger, 1992), studies in Drosophila can ultimately reveal how identified DNs work collec-
tively to regulate complex behaviors.

Until now, investigations of Drosophila have focused on individual or small sets of DNs. These 
studies have demonstrated that artificial activation of DN pairs is sufficient to drive complex behav-
iors including escape (Lima and Miesenböck, 2005) (giant fiber neurons, 'GF'), antennal grooming 
(Hampel et al., 2015)(antennal descending neurons, 'aDN'), backward walking (Bidaye et al., 2014) 
(moonwalker descending neurons, 'MDN'), forward walking (Bidaye et  al., 2020) (DNp09), and 
landing (Ache et al., 2019a) (DNp10 and DNp07). These results also suggest a command- like role for 
some DNs in that they are both necessary and sufficient to drive particular actions (Kupfermann and 
Weiss, 1978).

Although a command- like role for individual DNs is intuitively easy to grasp it may not translate 
well toward understanding how natural behavior is coordinated by large DN populations. Notably, 
a behavioral screen revealed that optogenetic activation of most DNs drives only small changes in 
locomotor and grooming behaviors (Cande, 2018) rather than a large variety of distinct actions as 
might be expected if each DN was a command- like neuron. Therefore, DN populations likely employ 
additional control approaches. For example, some groups of DNs might modulate or fine- tune actions 
primarily driven by other command- like DNs. The balance between command- like and modulatory 
roles of DNs may differ for stereotyped versus flexible behaviors. In line with having a role in behav-
ioral modulation, studies in crickets and locusts have demonstrated that changes in the firing rates of 
some DNs (Böhm and Schildberger, 1992; Zorović and Hedwig, 2011) correlate with walking speed 
and turning (Heinrich, 2002). Alternatively, DN subpopulations may represent parallel pathways that 
are recruited depending on sensory context (Israel et al., 2022). For example, different groups of 
DNs may be differentially engaged during odor- evoked versus spontaneously- generated walking 
(Heinrich, 2002; Kien, 1990). Finally, some DNs may convey raw sensory information—instead of be 
active during behaviors—to enable feedback control of downstream motor circuits. For example, in 
addition to discovering DNs that are active during steering, one recent study also observed DNa02 
activity in response to fictive odors in immobile flies (Rayshubskiy, 2020). DNp07 activity has also 
been observed in response to visual stimulation in nonflying flies (Ache et al., 2019a).

To resolve how DNs engage and modulate ongoing behaviors, one would ideally measure the 
causal relationship between DN activation and behavioral output. Although this has already been 
done for sparse sets of DNs (Cande, 2018), emerging evidence suggests that in many instances DNs 
act as a population to control behaviors (Namiki et al., 2022). Thus, activating specific pairs or groups 

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Supporting details regarding neural denoising, driver line expression, odor stimulation, and 
behavior quantification.

Figure supplement 2. The range of joint angles explored during fly behaviors.

Figure 1 continued
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of DNs would be extremely valuable. However, achieving the precise co- activation of groups of DNs is 
technically challenging and combinatorially daunting. One important step is to first identify which DNs 
are co- active during population recordings in behaving animals. Similarly, to determine the degree to 
which DNs are recruited depending on sensory context and/or convey raw sensory information from 
the environment, rather than recording one DN at a time a faster complementary approach would be 
to record the activity of multiple DNs during the sequential presentation of well- controlled sensory 
cues. Until now DN population recordings have not been performed due to several technical chal-
lenges. First, there has been an absence of tools for selectively genetically targeting DN populations. 
Additionally, because DN cell bodies and neurites are distributed across the brain (Namiki et  al., 
2018), relatively invasive (Mann et al., 2017) volumetric imaging approaches would be required to 
simultaneously record the activity of many DNs at once. As an alternative, we previously developed a 
thoracic dissection approach that enables the optical recording of descending and ascending axons 
within the cervical connective in tethered, behaving animals (Chen et al., 2018; Hermans et al., 2021; 
Figure 1a). Here, we combined this imaging approach with genetic tools (Asahina et al., 2014) that 
restrict the expression of neural activity reporters to the brain. This allowed us to record populations 
of nearly 100 DNs in individual tethered, behaving flies. During these recordings we presented olfac-
tory stimuli and acquired behavioral data for 3D pose estimation (Günel et al., 2019), as well as fictive 
locomotor trajectories (Moore et al., 2014).

Using these tools, we could test the extent to which DN population activity patterns are consistent 
with roles in behavior modulation (Figure 1b), context- dependent recruitment (Figure 1c), and/or raw 
sensory signaling (Figure 1d). We observed that the largest fraction of DNs are active during walking. 
Principal component analysis (PCA) revealed diverse neural dynamics across epochs of walking. This 
variability reflected the activities of partially overlapping subsets of DNs that were correlated with 
turning and, to a far weaker extent, speed. These data support a role for DN populations in behav-
ioral modulation. DNs are active during walking or grooming irrespective of whether the behavior 
was generated spontaneously or during olfactory stimulation. These data suggest a lack of strong 
context dependence in DN population recruitment. In the future, this finding can be further tested 
for its generality by examining DN population activity in the presence of other visual, mechanosen-
sory, and olfactory cues. Notably, we did find that some DNs are specifically responsive to odors 
without carrying information about ongoing actions. Thus, motor circuits have access to surprisingly 
unfiltered sensory information. Finally, we illustrate how one can identify DNs from population record-
ings (Figure 1e). We studied a prominent pair of DNs that are asymmetrically active during antennal 
grooming. By using their topological and encoding properties, we could identify a sparse driver line 
that targets these neurons used morphological analysis (MultiColor FlpOut [MCFO] and connecto-
mics) and propose that they are DNx01 neurons originating from the antennae (Namiki et al., 2018). 
These data provide a more expansive view of DN population activity during natural behaviors and 
open the door to a comprehensive mechanistic understanding of how the brain’s descending signals 
regulate motor control.

Results
Recording descending neuron population activity in tethered, behaving 
Drosophila
To selectively record the activity of populations of DNs, we devised an intersectional genetic and 
optical approach. First, we restricted the expression of GCaMP6s (a fluorescent indicator of neural 
activity; Chen et  al., 2013) and tdTomato (an anatomical fiduciary) to the supraesophageal zone 
of the brain (Asahina et al., 2014) (;otd- nls:FLPo; R57C10- GAL4, tub>GAL80>). We confirmed that 
transgene expression was restricted to cell bodies in the brain (Figure 1f). The axons of DNs could 
be seen passing through the cervical connective, targeting motor circuits within the VNC (Figure 1g). 
Thus, although our driver line lacks expression in the subesophageal zone (SEZ) (Figure 1—figure 
supplement 1c)—a brain region known to house at least 41 DNs (Sterne et  al., 2021; Namiki 
et al., 2018) some of which can drive grooming (Guo et al., 2022) (DNg11, DNg12)—we could still 
capture the activities of a large population of DNs. Second, by performing coronal (x–z) two- photon 
imaging of the thoracic cervical connective (Chen et al., 2018), we could exclusively record DN axons 
(Figure 1h) in tethered animals while they behaved on a spherical treadmill. This imaging approach 

https://doi.org/10.7554/eLife.81527
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could also compensate for image translations 
during animal behavior, keeping regions- of- 
interest (ROIs) within the field of view (FOV). We 
then applied image registration (Chen et  al., 
2018)—to correct for translations and deforma-
tions—as well as image denoising (Lecoq et al., 
2021)—to obtain higher signal- to- noise images. 
We confirmed that denoising does not system-
atically delay or prolong the temporal dynamics 
of neural activity (Figure 1—figure supplement 
1a and b). Resulting images included a number 
of elliptical ROIs that likely represent individual 
large axons or possibly tightly packed groups of 
smaller axons (Figure 1i). From here on, we will 
interchangeably refer to ROIs as DNs or neurons. 
From these data, we calculated  ∆F/F  images 
(Figure 1j) from which manually labeled 75–95 of 
the most distinct and clearly visible ROIs for each 
animal. This resulted in high- dimensional neural 
activity time series (Figure 1k).

To test the context- dependence and sensory 
feedback encoding of DNs, we built an olfactom-
eter that could sequentially present humidified air 
and one of two odors: ACV (an attractive odorant; 
Semmelhack and Wang, 2009) or MSC (a puta-
tively aversive odorant; Mohamed et al., 2019). 
During experiments we alternated presentation 
of ACV and MSC with humid air. We performed 
photoionization detector (PID) measurements 
to confirm that our olfactometer could deliver a 

steady flow of air/odor with minimal mechanical perturbations during switching (Figure 1—figure 
supplement 1d–f).

Along with neural recordings and odor delivery, we quantified limb and joint positions by video 
recording tethered animals from six camera angles synchronously at 100 frames per second (fps) 
(Figure  1l). A seventh, front- facing camera recorded spherical treadmill rotations that were then 
converted into fictive locomotor trajectories using FicTrac (Moore et al., 2014; Figure 1m). Multi-

view camera images (Figure  1n) were postpro-
cessed using DeepFly3D (Günel et al., 2019) to 
estimate 3D joint positions (Lobato- Rios et  al., 
2022; Figure 1o). These data were used to train 
a dilated temporal convolutional neural network 
(DTCN) (Whiteway et al., 2021) that could accu-
rately classify epochs of walking, resting, head 
(eye and antennal) grooming, front leg rubbing, 
and posterior movements (a grouping of rarely 
generated and difficult to distinguish hindleg and 
abdominal grooming movements) (Figure  1p, 
Figure  1—figure supplement 1g). Animals 
predominantly alternated between resting, 
walking, and head grooming with little time spent 
front leg rubbing or moving their posterior limbs 
and abdomen (Figure  1—figure supplement 
1h). Notably, we also observed structure in our 
behavioral data: flies were more likely to walk 
after resting or generating posterior movements 

Video 1. Representative recording and processing 
of descending neuron population activity and animal 
behavior. (Top left) Fly behavior as seen by camera 5. 
Odor stimulus presentation is indicated. (Middle left) 
Fictive walking trajectory of the fly calculated using 
FicTrac. White trajectory turns gray after  2 s . (Bottom 
left) 3D pose of the fly calculated using DeepFly3D. 
Text indicates the current behavior class. (Top right) 
Raw two- photon microscope image after center- of- 
mass alignment. (Middle right)  ∆F/F   image after 
motion correction and denoising of the green channel. 
(Bottom right) Linear discriminant analysis- based low- 
dimensional representation of the neural data. Each 
dimension is a linear combination of neurons. The 
dimensions are chosen such that frames associated 
with different behaviors are maximally separated.

https://elifesciences.org/articles/81527/figures#video1

Video 2. Behavior- triggered average  ∆F/F   during 
walking. Averaged  ∆F/F   images aligned with respect 
to behavior onset for all walking epochs. Red circles 
(top left in each imaging panel) indicate the onset of 
behavior. When the red circle becomes cyan less than 
seven behavior epochs remain and the final image with 
more than eight epochs is shown. Shown as well is an 
example behavior epoch (top left) indicating the time 
with respect to the onset of behavior and synchronized 
with  ∆F/F   panels.

https://elifesciences.org/articles/81527/figures#video2

https://doi.org/10.7554/eLife.81527
https://elifesciences.org/articles/81527/figures#video1
https://elifesciences.org/articles/81527/figures#video2
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(Figure  1—figure supplement 1i). Flies also 
frequently performed front leg rubbing after head 
grooming (Seeds et al., 2014; Figure 1—figure 
supplement 1i). Taken together, this experimental 
and computational pipeline yielded a rich dataset 
of DN population activity and associated odor- 
evoked and spontaneous behaviors (Video 1).

Encoding of behavior in 
descending neuron populations
With these data, we first asked to what extent 
DN populations encode—and potentially drive 
or regulate—each of our classified behaviors: 
resting, walking, head grooming, posterior 
movements, and front leg rubbing. The word 
‘encoding’ has commonly been used to convey 
that a neuron’s activity correlates with some 
continuously varying property of the sensory envi-
ronment or an animal’s motor behavior. The word 
‘encoding’ has also previously been used in refer-
ence to DN functional properties (Gray et  al., 

2010; Suver et al., 2016; Nicholas et al., 2018; Jaske et al., 2021). Although fluorescence imaging 
has lower temporal resolution than electrophysiological recordings–making it less able to fully resolve 
the specificity of feature/behavioral encoding–we use the term 'encoding' for the sake of brevity. 

We identified DN behavioral encoding in two ways. First, we asked how well each behavior could 
be predicted based on the activity of each neuron by using a linear model to quantify the extent to 
which a given DN’s activity could explain the variance of (i.e., encode) each behavior (Figure 2a and 
b). The largest fraction (~60%) of DNs encode walking. The second largest group of DNs encode head 
grooming (~15%). Only a very small fraction of DNs encode resting and no neurons encode front leg 
rubbing or posterior movements (Figure 2c). However, some of these behaviors were very infrequent 
(posterior movements) or of short duration (front leg rubbing) (Figure 1—figure supplement 1h), 
weakening the power of our analysis in these cases. As well, although none of the DNs best explained 
posterior movements and front leg rubbing out of all behaviors we observed that DNs encoding 
walking also encoded posterior movements. Similarly, DNs encoding head grooming also encoded 

front leg rubbing (Figure  2b). This may be due 
to the strong sequential occurrence of these pairs 
of behaviors (Figure  1—figure supplement 1i) 
and the long decay time constant of GCaMP6s 
(~1 s; Chen et  al., 2013), resulting in elevated 
calcium signals for the subsequent behavior in 
the pair. To resolve the extent to which these DNs 
truly encode one behavior versus the other we 
performed a more narrow linear regression anal-
ysis. We used equal amounts of data from this pair 
of sequential behaviors and calculated the neural 
variance (rather than the behavioral variance) 
uniquely explained by these two behaviors alone. 
These analyses confirmed that DNs predom-
inantly encode walking rather than posterior 
movements (Figure  2—figure supplement 1a) 
and head grooming rather than front leg rubbing 
(Figure 2—figure supplement 1b).

We next asked to what extent DNs encode—
and presumably drive—the kinematics of joints, 

Video 3. Behavior- triggered average  ∆F/F   during 
resting. Averaged  ∆F/F   images aligned with respect 
to behavior onset for all resting epochs. Red circles 
(top left in each imaging panel) indicate the onset of 
behavior. When the red circle becomes cyan less than 
seven behavior epochs remain and the final image with 
more than eight epochs is shown. Shown as well is an 
example behavior epoch (top left) indicating the time 
with respect to the onset of behavior and synchronized 
with  ∆F/F   panels.

https://elifesciences.org/articles/81527/figures#video3

Video 4. Behavior- triggered average  ∆F/F   during 
head grooming. Averaged  ∆F/F   images aligned 
with respect to behavior onset for all head grooming 
epochs. Red circles (top left in each imaging panel) 
indicate the onset of behavior. When the red circle 
becomes cyan less than seven behavior epochs remain 
and the final image with more than eight epochs is 
shown. Shown as well is an example behavior epoch 
(top left) indicating the time with respect to the onset 
of behavior and synchronized with  ∆F/F   panels.

https://elifesciences.org/articles/81527/figures#video4

https://doi.org/10.7554/eLife.81527
https://elifesciences.org/articles/81527/figures#video3
https://elifesciences.org/articles/81527/figures#video4
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Figure 2. Encoding of behavior in descending neuron (DN) populations. (a) Shown for walking (top) and head 
grooming (bottom) are the activity (normalized and cross- validation predicted  ∆F/F  ) of individual walk- and 
head groom- encoding DNs (red and purple lines), as well as predicted  ∆F/F   traces derived by convolving binary 
behavior regressors with a calcium response function (crf) (black lines). The output of the behavior classifier is 
shown (color bar). (b) The cross- validation mean of behavioral variance explained by each of 95 DNs from one 
animal. Colored asterisks are above the two DNs illustrated in panel (a). (c) The percentage of DNs encoding 
each classified behavior across five animals. Box plots indicate the median, lower, and upper quartiles. Whiskers 
signify furthest data points. (d) Mean time projection of GCaMP6s fluorescence over one 9 min recording. Image 
is inverted for clarity (high mean fluorescence is black). Manually identified DN regions of interest (ROIs) are shown 
(red rectangles). Scale bar is 10 μm. Panels (d–i) share the same scale. (e) DNs color- coded (as in panel c) by the 
behavior their activities best explain. Radius scales with the amount of variance explained. Prominent head groom- 
encoding neurons that are easily identified across animals are indicated (white arrowheads). (f) Behavior- triggered 
average  ∆F/F   image for head grooming. Prominent head grooming DNs identified through linear regression 
in panel (e) are indicated (white arrowheads). (g) Locations of DNs color- coded by the behavior they encode 
best. Data are from five animals. (h, i) Kernel density estimate based on the locations of (h) walking or (i) head 
grooming DNs in panel (g). (j) Amount of variance explained by the principal components (PCs) of neural activity 
derivatives during walking. (k, l) Neural activity data during (k) walking and (l) resting evolve on two lobes. The PC 
embedding was trained on data taken during walking only. Colored lines indicate individual epochs of (k) walking 
and (l) resting. Time is color- coded and the temporal progressions of each epoch is indicated (arrowheads). Note 
that color scales are inverted to match the color at transitions between walking and resting. Black arrows indicate 
ROIs with high PC loadings. ROI number corresponds to the matrix position in panel (b). For their locations within 
this fly’s cervical connective, see Figure 2—figure supplement 4d.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Disentangling the relative encoding of frequently sequential behavior pairs.

Figure supplement 2. Encoding of behavior in descending neuron (DN) populations across individual animals.

Figure supplement 3. Neural variance explained by distinct kinematic features.

Figure supplement 4. Principal component (PC) analysis of neural activity during walking and resting across 
individual animals.

https://doi.org/10.7554/eLife.81527


 Research article      Neuroscience

Aymanns et al. eLife 2022;11:e81527. DOI: https://doi.org/10.7554/eLife.81527  8 of 29

limbs, or limb pairs rather than behaviors. To test this possibility, we quantified how much better neural 
activity could be predicted from joint angles rather than from behavior. Specifically, we computed the 
amount of variance in DN activity that could be uniquely explained by subgroups of joint angles but 
not behavior categories or any of the remaining joint angles. Separating joint angles into groups (all, 
pairs, or individual legs) allowed us to probe the possibility that some neurons might control pairs of 
legs or individual legs and helped to mitigate the effect of correlations between joint angles within 
individual legs. Because of the rapid movements of each leg ( 5−20 Hz ; Ravbar et al., 2021; Mendes 
et al., 2013) and the long decay time of our calcium indicator, we also convolved joint angle and 
behavior regressors with a calcium response function (crf) kernel. We found that joint angles can 
only very marginally improve the prediction of neural activity beyond simply using behavior regres-
sors (Figure  2—figure supplement 3). Thus, DN populations largely encode high- level behaviors 
suggesting that they delegate low- level kinematic control to downstream circuits in the VNC.

The spatial organization of descending neuron encoding
Previous morphological analyses demonstrated a clear organization of Drosophila DN projections 
within the VNC (Namiki et al., 2018). This is likely linked to the distinct functional partners of DNs 
that regulate limb- dependent (e.g., walking and grooming) versus wing- dependent (e.g., flight and 
courtship display) behaviors. To further explore the relationship between function and topology, we 
next asked to what extent we might observe a relationship between a DN’s encoding of behavior and 
its axon’s position within the cervical connective (Figure 2d). We found that DNs encoding walking 
are spread throughout the dorsal connective (Figure 2e, g and h). On the other hand, head groom- 
encoding DNs are predominantly in the ventral connective (Figure 2g and i) including two prominent 
pairs—lateral and medial- ventral (Figure 2e, white arrowheads)—whose activities explain the largest 
amount of variance in head grooming across animals (Figure 2—figure supplement 2c). Surprisingly, 
we also observed DNs that encode resting. These were located medially, close to the giant fibers, as 
well as in the lateral extremities of the connective (Figure 2e, olive circles). We speculate that rest- 
encoding DNs may suppress other behaviors or could actively drive the tonic muscle tone required to 
maintain a natural posture.

We next performed a complementary analysis to further examine the functional–topological orga-
nization of DNs in the connective. Specifically, we generated behavior- triggered averages of  ∆F/F  
images. The results of this approach were only interpretable for frequently occurring behaviors so here 
we focused on walking, resting, and head grooming (Figure 1—figure supplement 1h; Videos 2–4). 
Across animals, we consistently observed DNs in the dorsal connective encoding walking, and two 
pairs of ventral DNs encoding head grooming (Figure  2f, Figure  2—figure supplement 2d). By 
contrast, rest- encoding DNs were located in less consistent locations within the connective. These 
findings confirm that DN populations for walking and head grooming are largely spatially segregated, 
a feature that may facilitate the identification of specific cells from DN population recordings across 
animals.

Descending neuron population dynamics suggest more nuanced feature 
encoding
Thus far we have observed that DN subpopulations encode distinct behaviors and that, by far, the 
largest fraction encode walking. However, locomotion is not monolithic. It continuously varies in 
speed and direction within a single walking trajectory. Thus, the large number of DNs active during 
walking may represent an aggregate of subpopulations that are differentially engaged during distinct 
locomotor modes. To address this hypothesis, we first closely examined the temporal structure of DN 
population activity dynamics only during walking epochs. We asked to what extent there is variability 
and structure in population activity that could potentially support the modulatory encoding of walking 
speed, forward/backward, or turning.

As in a similar analysis of Caenorhabditis elegans population dynamics (Kato et al., 2015), we 
calculated the temporal derivative of each DN’s activity and then performed principal component 
analysis (PCA) on these time series. We found that the first two PCs can explain upwards of 60% of 
the variance in DN population activity during walking (Figure 2j, Figure 2—figure supplement 4a). 
Visualizing 2D trajectories (PC 1 and PC 2 subspace) of DN activity during individual walking bouts 
revealed that they move primarily along two directions (Figure 2k, Figure 2—figure supplement 

https://doi.org/10.7554/eLife.81527
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4b). These directions are even more clear for resting data (embedded within the same PC space) just 
before the fly began to walk (Figure 2l, Figure 2—figure supplement 4c).

To identify individual DNs that most heavily influence this dynamical divergence we next found 
those with the largest PC loadings. These neurons’ activities most strongly influence the position of 
population activity in PC space (Figure 2k and l, Figure 2—figure supplement 4b and c). Consis-
tently, also in flies with a less clear divergence in neural trajectories, we found subsets of DNs whose 
activities correspond to one of these two directions. By examining the positions of their axons we 
observed that they are spatially segregated on opposite sides of the connective (Figure 2—figure 
supplement 4d, cyan arrowheads).

Descending neurons that encode walking include spatially segregated 
turn-encoding clusters
The divergence of population dynamics and spatial segregation of associated neurons led us to 
hypothesize that subsets of walk- encoding DNs might preferentially become active during left and 
right turning. Alternatively, they might encode fast versus slow walking speeds (Bidaye et al., 2020). 
Studies in other insects and vertebrates have shown that DNs can play a modulatory role by regulating 
turning and speed during locomotion (Capelli et al., 2017; Heinrich, 2002). As well, in Drosophila, the 
activation of DNp09 neurons can drive forward walking (Bidaye et al., 2020). Recordings from sparse 
sets of DNa01 (Chen et al., 2018; Rayshubskiy, 2020) and DNa02 (Rayshubskiy, 2020) neurons also 
show turn encoding (i.e., steering).

Therefore, we next tested whether variability in the activity of DNs might reflect fine- grained 
encoding of turning and speed during forward walking. We did not analyze backward walking due 
to its scarcity (Figure  3—figure supplement 1a), brevity (Figure  3—figure supplement 1b), and 
minimal dynamic range (Figure 3—figure supplement 1c) in our experimental data. Specifically, we 
quantified the degree to which DN population activity could uniquely explain yaw (turning) or pitch 
(speed) angular velocity of the spherical treadmill. Both of these time- series data were convolved 
with a crf to account for slow calcium indicator decay dynamics. To capture information about turning 
and walking speed that could not simply be explained by whether the fly was walking or not we 
compared the explained variance of our neuron- based ridge regression to a model predicting these 
features from just a binary walking regressor and shuffled neural data (Figure  3a). Neural activity 
could explain a great deal of variance in turning and, to a lesser extent, speed. Here, the absence of 
speed encoding may be because the binary walking regressor alone can partially predict speed vari-
ance from transitions between resting and walking ( R2 = 25% ). Therefore, we refined our analysis by 
only using data from walking epochs and calculating the amount of turning and speed variance that 
could be explained using neural activity. In this manner, we confirmed that neural activity can uniquely 
explain turning to a greater extent (~60%) than it can explain walking speed (~30%) (Figure 3b).

We next investigated which individual or groups of neurons contribute to the prediction of turning 
and walking speed. To do this we only used the activity of one neuron at a time in our model (by 
contrast, above we used all neurons). Among DNs that encode walking, we found specific DNs that 
strongly explain right or left turning. By contrast, a more distributed set of DNs weakly encode walking 
speed (Figure  3c, Figure  3—figure supplement 2a). Having identified clusters of DNs encoding 
right (red) and left (blue) turning, we next investigated whether there might be groups encoding 
other walking features. Among neurons that best explain walking we again observed clusters for 
turning but no prominent clusters for speed (Figure 3d, Figure 3—figure supplement 2b). This was 
also reflected in the amount of variance explained: across animals some walk- encoding DNs also 
strongly encoded turning (Figure 3e) whereas these DNs only encoded a tiny fraction of the variance 
in walking speed (Figure 3f).

Simple models for locomotor control (Braitenberg, 1986) suggest that turning can be controlled 
by the relative activities of DNs on one side of the brain versus the other. This is supported by studies 
showing that flies generate turning during asymmetric activation or asymmetric activity of DNa01 
neurons (Chen et al., 2018; Rayshubskiy, 2020) and MDNs (Sen et al., 2017). To examine the degree 
to which this spatial asymmetry extends beyond pairs of neurons to much larger DN populations we 
quantified the spatial location of turn- encoding DNs in the cervical connective. We found both ipsi- 
and contralateral turn- encoding DNs on both sides of the connective (Figure 3g, Figure 3—figure 
supplement 2c) but a clear ipsilateral enrichment (Figure 3h, Figure 3—figure supplement 2d). Many 

https://doi.org/10.7554/eLife.81527
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Figure 3. Turning and speed encoding in descending neuron (DN) populations. (a) Predictions of (top) turning and 
(bottom) walking speed modeled using convolved behavior regressors and all neurons in one animal. Shown are 
predictions (green) with all regressors intact or (blue) with neural data shuffled across time. Indicated are  R2  values 
obtained by comparing predicted and real (black) turning and walking speed. These are subtracted to obtain 
neural unique explained variance (UEV). The fly’s behavior throughout the recording is indicated (color bar). (b) UEV 
obtained only using data taken during walking, thus accounting for trivial explanations of speed and turning 
variance resulting from transitions between resting and walking. Shown are data from five trials each for five flies 
(color- coded). (c) UEV of each DN from one animal for walking speed or left and right turning ordered by clustering 
of Pearson’s correlation coefficients in panel (d). Walking  R2  values are the same as in Figure 2b but reordered 
according to clustering. The models for turning and walking speed were obtained using behavior regressors as 
well as neural activity. To compute the UEV, activity for a given neuron was shuffled temporally. The behavior whose 
variance is best explained by a given neuron is indicated (color bar). (d) Pearson’s correlation coefficient matrix 
comparing neural activity across DNs ordered by clustering. Shown as well are the correlation of each DN’s activity 
with right, left, and forward walking (right). (e, f) UEV for (e) turning or (f) speed for DNs that best encode walking. 
Neurons are sorted by UEV. Shown are the distributions for individuals (translucent lines), and the mean across all 
animals (opaque line). (g) Locations of turn- encoding DNs (UEV > 5%), color- coded by preferred direction (left, 
blue; right, red). Circle radii scale with UEV. Dashed white line indicates the approximate midline of the cervical 
connective. Scale bar is 10 μm for panels (g) and (i). (h) Kernel density estimate of the distribution of turn encoding 
DNs. Shown are the distributions for individuals (translucent lines), and the mean distribution across all animals 
(opaque lines). Probability densities are normalized by the number of DNs along the connective’s medial–lateral 
axis. (i) Locations of speed encoding DNs (UEV > 2%). Circle radii scale with UEV. Dashed white line indicates the 
approximate midline of the cervical connective. (j) Kernel density estimate of the distribution of speed encoding 
DNs. Shown are the distributions for individuals (translucent lines) and the mean distributions across all animals 
(opaque lines). Probability densities are normalized by the number of DNs along the connective’s medial–lateral 
axis.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure 3 continued on next page
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of the DNs encoding turning had high PC loading (Figure 2—figure supplement 4d) revealing that 
turning contributes heavily to the variance in DN population dynamics during walking. By contrast, 
DNs encoding walking speed were more homogeneously distributed across the connective with no 
clear spatial enrichment (Figure 3i and j, Figure 3—figure supplement 2e and f). Overall, these 
data support the notion that, during walking, DN population activity largely varies due to turn- related 
modulation rather than shifts in walking speed.

Descending neurons are active during behaviors irrespective of 
olfactory context
Beyond a modulatory role, the large number of DNs active during walking could reflect context 
dependence: specific subpopulations may only be engaged as a function of sensory context. The 
possibility of recruiting separate pools of DNs for walking is supported by the observation that an 
attractive odor, ACV, decreases resting and increases walking (Figure  4—figure supplement 1a), 
increases forward walking speed (Figure 4—figure supplement 1b), and reduces turning (Figure 4—
figure supplement 1c and d).

To address the extent to which subgroups of DNs are recruited depending on olfactory context, 
we studied the amount of walking or head grooming variance explained by each DN using only data 
acquired during exposure to either humidified air, ACV, or MSC—rather than analyzing all walking 
epochs as in our previous analysis. Humidified air data were subsampled to match the smaller amount 
of data available for ACV and MSC presentation. We found that largely the same DNs were highly 
predictive of walking (Figure  4—figure supplement 2a) and head grooming (Figure  4—figure 
supplement 2b) irrespective of olfactory context. Only a very small fraction of DNs were differentially 
recruited during odor presentation (Figure 4—figure supplement 2a and b, black asterisks, two- 
sided Mann–Whitney U- test on cross- validation folds). Of these four DNs with different recruitment, 
three achieve significance because they have only a few values distinct from zero in a single trial. The 
overall explained variance is also very small (Figure 4—figure supplement 2c). These data suggest 
that changing odor context alters action selection and locomotor kinematics but does not shift the 
identity of active DN subpopulations driving behavior.

Descending neurons exhibit raw odor encoding
Although walk- and head groom- encoding DN populations are recruited irrespective of odor context, 
it has been shown that a fictive odor (i.e., optogenetic activation of Orco>CsChrimson) can activate 
DNa02 neurons in immobile animals (Rayshubskiy, 2020). This implies that DNs may encode the 
presence and identity of real odors. To examine the extent of this raw sensory encoding we trained 
and cross- validated linear discriminant odor classifiers using neural residuals (i.e., the neural activity 
remaining after subtracting activity that could be predicted using a model based on crf convolved 
behavior regressors). These residuals allowed us to control for the fact that odor presentation also 
modulates behavioral statistics (Figure 4—figure supplement 1a–c).

Classification using neural residuals performed significantly better than classification using behav-
ioral information alone ( p<10−5

  for a two- sided Mann–Whitney U- test; Figure 4a). This reveals raw 
odor encoding within DN populations. However, this might result from many neurons with weak, 
complementary odor encoding or a few neurons with strong odor encoding. To distinguish between 
these possibilities, we next identified which DNs encode olfactory signals. We predicted each neuron’s 
activity using regressors for behavior and the presence of each odor. The more intuitive approach of 
modeling neural activity by just using odor regressors does not account for the confound that behav-
iors are also modulated by specific odors. Therefore, we computed the amount of neural variance that 
could uniquely be explained by the presence of an odor and none of the behavior variables. We found 
that the activity of a few DNs could be uniquely explained by each of the odors (Figure 4b, aster-
isks). In these neurons, clear activity peaks coincided with the presence of MSC (Figure 4c) or ACV 

Figure supplement 1. Backward walking is infrequent and brief.

Figure supplement 2. Turning and speed encoding in descending neuron (DN) populations across individual 
animals.

Figure 3 continued
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(Figure 4d). Notably, there appears to be no overlap between the DNs encoding MSC or ACV within 
individual animals (Figure 4—figure supplement 1e). MSC encoding neurons were found dorsally on 
the lateral sides of the giant fibers in the connective while ACV encoding neurons were more broadly 
dispersed (Figure 4e and f).

Identifying individual descending neurons from population recordings
Until now we have demonstrated that DN populations exhibit heterogeneous encoding: large, distrib-
uted groups encode walking and, by contrast, a few prominent pairs encode head grooming. Deter-
mining how these subpopulations control adaptive behavior is an important future challenge that 
will require a comprehensive approach examining phenomena ranging from global DN population 
dynamics down to the synaptic connectivity of individual DNs. The recent generation of hundreds of 
sparse transgenic driver lines (Jenett et al., 2012; Namiki et al., 2018) and several connectomics 
datasets (Phelps et al., 2021) suggests that this bridging of mechanistic scales may soon be within 
reach in Drosophila.

To illustrate how this might be accomplished, we aimed to identify specific DNs within our popu-
lation imaging dataset. Specifically, while analyzing head grooming DNs we noticed a large pair of 
ventral neurons (Figure  5a) that sometimes exhibited asymmetric activity (Figure  5b, gray arrow-
heads) when flies appeared to touch one rather than both antennae (Video 5). To quantify this obser-
vation, we replayed limb 3D kinematics in NeuroMechFly, a biomechanical simulation of Drosophila 
(Lobato- Rios et al., 2022; Figure 5c). By detecting leg- antennal collisions as a proxy for antenna 
deflection, we found that occasional asymmetries (Figure 5d) did coincide with asymmetric activity in 
corresponding neural data (Figure 5b, purple traces). These results suggested that this pair of DNs 
encodes mechanosensory signals associated with antennal deflections.
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Figure 4. Odor encoding in descending neuron (DN) populations. (a) Neural residuals—obtained by subtracting 
convolved behavior regressors from raw neural data—can predict the presence of an odor significantly better than 
behavior regressors convolved with a calcium response function (‘Behavior’). Two- sided Mann–Whitney U- test. The 
classification score was obtained using a linear discriminant classifier with cross- validation. Shown are five trials 
for five animals (color- coded). (b) Matrix showing the cross- validated ridge regression unique explained variance 
(UEV) of a model that contains behavior and odor regressors for one animal. The first row (‘Behavior’) shows the 
composite  R2  for all behavior regressors with odor regressors shuffled. The second and third rows show the UEVs 
for regressors of the odors methyl salicylate (MSC) or apple cider vinegar (ACV), respectively. Colored asterisks 
indicate neurons illustrated in panel (a). (c, d) Example DNs best encoding (c) MSC or (d) ACV, respectively. 
Overlaid are traces of neural activity (gray), row one in the matrix (blue), and row one with odor data shuffled (red). 
(e, f) Locations of odor encoding neurons in (e) one individual and (f) across all five animals. Scale bar is 10 μm.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Odor- modulated behaviors and encoding in descending neuron (DN) populations across 
individuals.

Figure supplement 2. Largely identical descending neuron (DN) populations are recruited during walking and 
head grooming irrespective of odor context.
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Figure 5. Identifying a pair of antennal deflection- encoding descending neurons (DNs) from population 
recordings. (a) A pair of head groom- encoding DNs (purple circles and white arrowheads) can be identified from 
DN population recordings based on their shapes, locations, and activity patterns. (b) Example  ∆F/F   traces (black) 
of DNs highlighted in panel (a). Sample time points with bilaterally asymmetric neural activity are indicated (gray 
arrowheads). Overlaid is a prediction of neural activity derived by convolving left and right antennal collisions 
measured through kinematic replay in the NeuroMechFly physics simulation (purple). (c) Kinematic replay of 
recorded joint angles in NeuroMechFly allow one to infer antennal collisions from real, recorded head grooming. 
(d) Left and right antennal collisions during simulated replay of head grooming shown in panel (b). Sample time 
points with bilaterally asymmetric collisions are indicated (gray arrowheads). (e) Two- photon image of the cervical 
connective in a R65D11>OpGCaMP6f, tdTomato animal. Overlaid are regions of interest (ROIs) identified using 
AxoID. The pair of axonal ROIs are in a similar ventral location and have a similarly large relative size like those 
seen in DN population recordings. Scale bar is 5 μm. (f) Sample neural activity traces from ROIs 0 and 1. Bilaterally 
asymmetric neural activity events (gray arrowheads), behaviors (color bar), and CO2 puffs directed at the antennae 
(gray bars) are indicated. (g, h) CO2 puff- triggered average of neural activity for ROIs (g) 0 and (h) 1. Only events 
in which animals did not respond with head grooming or front leg rubbing were used. Stimuli were presented at 
 t = 0 . Shown are individual responses (gray lines) and their means (black lines). (i) Confocal volume z- projection 
of MultiColor FlpOut (MCFO) expression in an R65D11- GAL4 animal. Cyan neuron morphology closely resembles 
DNx01 (Namiki et al., 2018). Scale bar is 50 μm. (j, k) Higher- magnification MCFO image, isolating the putative 
DNx01 from panel (i), of the (j) brain and (k) ventral nerve cord (VNC). Scale bars are 20 μm. (l) The locations 
of axons in the cervical connective (purple) from neurons identified as DNx01. Scale bar is 10 μm. (m) Manual 
reconstruction of a DNx01 from panel (l). Scale bar is 50 μm.
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To further reveal the identity of these DNs, 
we examined data from our functional screen 
of sparse Gal4 and split Gal4 driver lines (Chen, 
2022). In this dataset, we observed similar asym-
metric activity during antennal grooming in 
R65D11- GAL4. Coronal (x–z) two- photon imaging 
in R65D11 animals expressing OpGCaMP6f and 
tdTomato shows axons that are similarly large and 
ventromedially located within the cervical connec-
tive (Figure 5e). These also produce asymmetric 
activity during antennal grooming (Figure  5f). 
This suggests that these neurons may report 
something unique to head grooming (e.g., coin-
cident front limb movements) or simply antennal 
deflection. To distinguish between these possi-
bilities we analyzed neural responses to CO2 puff 
stimulation of the antennae while discarding data 
with resulting head grooming or front leg rubbing 
to ensure that the antennae were not touched by 
the legs. We measured an increase in the activity 
of both DNs upon puff stimulation (Figure  5g 
and h) suggesting that, like the neurons recorded 

in DN populations, R65D11 neurons also encode sensory signals—antennal deflection—rather than 
behavior.

To confirm that these sparse neurons are DNs, we next performed MCFO (Nern et al., 2015) and 
confocal imaging of their morphologies. R65D11 drives expression in several neurons. However, we 
found similarly large axonal projections from only one set of neurons that descend from the brain 
to the VNC (Figure 5i, cyan). Close examination of these neurites in the brain (Figure 5j) and VNC 
(Figure  5k) revealed a striking resemblance to the reported structure of DNx01 neurons (Namiki 
et al., 2018) with cell bodies outside of the brain—putatively in the antennae and enabling antennal 
mechanosensing.

These results enable the analysis of synaptic connectivity in identified DNs. To illustrate this, based 
on their unique location and size, we identified DNx01s in a VNC electron microscopy dataset (Phelps 
et al., 2021; Figure 5l) via manual reconstruction and observed a striking morphological similarity to 
R65D11 DNs (Figure 5m). From this reconstruction, once the full VNC connectome becomes avail-
able, one may identify synaptic partners of DNx01s to further understand how they contribute to 
controlling antennal grooming and other behaviors. Taken together, these data suggest a possible 
road map for using functional, topological, and morphological data to decipher the cellular identity of 
individual DNs from population recordings.

Discussion
Here, by combining genetic and optical imaging approaches, we recorded the behavioral and sensory 
encoding of DN populations in behaving Drosophila. Although electrophysiology provides higher 
temporal resolution (e.g., being capable of reporting spike timing; von Reyn et al., 2014), neural 
population imaging serves an important complementary role in capturing the proportion and spatial 
locations of co- active neurons. Electrophysiological recordings and calcium imaging of sparse DN 
driver lines can more easily enable links to be made between neural encoding and cellular identity. 
However, these approaches suffer from two major disadvantages. First, there exist split- Gal4 driver 
lines for only a small fraction of DNs (Namiki et al., 2018). Second, determining the encoding of an 
equivalent number of neurons requires many more sparse neural recordings than population imaging 
experiments. Therefore, by focusing on population imaging our study allowed us to more rapidly 
survey the encoding of a large number of DNs. Using this approach we found that most recorded 
DNs encode walking. A smaller number are active during head grooming and resting. We did not 
find DNs encoding posterior movements possibly due to the infrequency of this behavior. We also did 
not identify neurons that are active during multiple behaviors. This suggests that each ROI consists of 

Video 5. Asymmetric activity in a pair of DNx01s is 
associated with asymmetric leg- antennal collisions 
during antennal grooming. Three head grooming 
epochs in the same animal having leg contact with 
(top) primarily the left antenna, (middle) both antennae, 
or (bottom) primarily the right antenna. Shown are 
corresponding (right) neural activity  ∆F/F   images 
(note putative DNx01s in dashed white circles), (middle) 
behavior videos (camera 2), and (left) leg- antennal 
collisions (green) during kinematic replay of 3D poses in 
the NeuroMechFly physics simulation. Video playback 
is 0.25× real time.

https://elifesciences.org/articles/81527/figures#video5
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individual neurons or that, if an ROI contains many neurons, they all show similar encoding. Subsets 
of walk- encoding DNs were also strongly active during turning: they were at higher density on the 
ipsilateral half of the cervical connective with respect to turn direction. By contrast, DNs distributed 
throughout the connective very weakly encoded walking speed. However, we caution that the small 
range of walking speeds in our data—flies accelerate rapidly from resting to walking and vice versa— 
may mask stronger speed encoding. The partial overlap between turn- and speed- encoding DNs 
leaves open the possibility that neurons simultaneously encode these two properties in a differential 
steering fashion. Notably, we did not observe any DNs that are only active during transitions between 
multiple behaviors. However, the fly makes fast transitions suggesting that the signal- to- noise and 
temporal resolution of our approach may not be sufficient to identify such neurons—higher temporal 
resolution electrophysiological recordings would be required to confirm the absence of DN encoding 
for behavioral transitions or for precise limb kinematics. Our dataset consists of natural walking and 
grooming behaviors. Therefore, some joint angles are more frequent than others (Figure 1—figure 
supplement 2). In future work, along with performing higher temporal resolution recordings, a larger 
range of possible joint angles could be explored by eliciting rarer and more complex behaviors 
including reaching or tethered locomotion over rugged terrain.

The encoding—and presumptive control—of walking by large numbers of DNs supports the notion 
that the brain tightly regulates locomotion. In contrast to walking, head grooming is encoded by far 
fewer neurons in our dataset. This may be because grooming limb movements are more stereotyped 
and thus may rely more heavily on controllers within the VNC (a notion that is supported by the ability 
of headless flies to perform spontaneous grooming; Harris et  al., 2015). Other studies have also 
shown brain- wide activity during walking but not during other behaviors (Aimon et al., 2019; Schaffer 
et al., 2021; Brezovec et al., 2022). This difference may arise because adaptive locomotion—to avoid 
obstacles (Tanaka and Clark, 2022), cross gaps (Triphan et al., 2010), and court potential mates 
(Coen et al., 2014)—depends heavily on the brain’s descending signals. Thus, we hypothesize that, 
although a core set of command neurons can drive both walking and grooming, more DNs are addi-
tionally engaged during walking to allow for more flexible navigation in continuously changing and 
complex environments. Interestingly, many ascending neurons (ANs) have also been shown to encode 
walking (Chen, 2022; Fujiwara et al., 2022) with a large fraction projecting to the gnathal ganglia 
(GNG), a brain region that is also heavily innervated by DNs (Namiki et al., 2018). Thus, we speculate 
that ANs and DNs may be directly connected—possibly to mediate action selection (Mann et al., 
2013; Bidaye et al., 2014)—and that this may lead to similar functional encoding.

Because of the large number of DNs involved in walking we hypothesized that subsets might repre-
sent parallel channels that are recruited depending on sensory context. For example, there may be 
DN subpopulations that drive walking in the presence of attractive odors and others engaged in the 
presence of aversive odors. This notion is supported by studies showing that optogenetic activation 
of a large variety of DNs elicits only a small set of stereotyped behaviors (Cande, 2018). However, our 
population imaging data do not support this notion: largely the same DNs encode walking and head 
grooming irrespective of olfactory context.

A nonbehavioral role for DNs has also been suggested by previous studies showing that the 
perception of a fictive odor modulates the activity of specific DNs involved in steering in immobile 
flies (Rayshubskiy, 2020). In line with this, we also identified DNs encoding odors and not behavior. 
Notably, the two odors we presented—ACV and MSC—were encoded by distinct DNs. Extrapolating 
beyond ACV and MSC, it seems unlikely that DNs encode many individual odors with high specificity: 
the number of DNs is far smaller than what would be required to cover an enormous olfactory space. 
Instead, we speculate that DN odor- encoding may represent classes like attractive versus aversive 
odors or the valence of sensory inputs in general. Where odor information is conveyed to within 
downstream motor circuits and for what purpose is a fascinating subject for future study.

Many fewer neurons encode head grooming as opposed to walking. Because our transgenic strain 
does not drive expression in SEZ neurons we could not record several DNs whose activation has been 
shown to be sufficient to drive antennal grooming (aDN), front leg rubbing (DNg11), or both head 
grooming and front leg rubbing (DNg12) (Guo et al., 2022). Thus, we expect that with the addition 

https://doi.org/10.7554/eLife.81527
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of these SEZ DNs the apparent dichotomy that many neurons encode walking and fewer encode 
grooming may become less pronounced. Nevertheless, groom- encoding DNs were notable in that 
they could be more reliably identified across individual animals. Among our head groom- encoding 
DNs a pair passing through the ventral cervical connective appear to encode limb contact during 
antennal grooming as well as puff- dependent antennal deflections. We speculate that mechanosen-
sory signals from the antennae may be used for feedback control in the VNC: being aware of whether 
the antennae are touched while grooming may allow for a continuous modulation of grooming kine-
matics and force application by the front legs. This may be a conserved control mechanism as similar 
DNs have been identified in the blow fly (Nässel et al., 1984).

Our morphological and physiological evidence suggests that these antennal mechanosensory 
signals are provided by DNx01s, a subset of bilateral campaniform sensillum (bCS) neurons that are 
also found on the legs and form major presynaptic connections to fast motor neurons (Phelps et al., 
2021). Thus, DNx01s may have a role beyond feedback control during grooming. This is also implied 
by the large size of DNx01 axons and their high sensitivity to puff- mediated antennal deflection. 
Because other DNs with large axons (e.g., giant fiber neurons) are often implicated in fast reflexive 
movements (King and Wyman, 1980; Azevedo et al., 2020), DNx01s may be used to respond to, 
for example, strong gusts of wind that initiate a stance stabilization reflex. Testing this hypothesis will 
require the creation of split- Gal4 driver lines that precisely and uniquely target DNx01 neurons.

Our analysis of DNx01 illustrates a potential road map for combining functional, topological, and 
morphological data to uncover the cellular identity of individual DNs from population recordings. 
Notably, our efforts were facilitated by DNx01’s unusual bilaterally asymmetric functional properties 
and large caliber axons. Taking this route to identify another, arbitrary DN would likely be more chal-
lenging and may require additional tools. For example, after functional imaging of DN populations 
one might focally photoactivate and image GFP within individual DN axons of interest (Datta et al., 
2008; Ruta et al., 2010). Resulting morphological images could then be compared with DNs recon-
structed in connectomics datasets (Zheng et al., 2018; Phelps et al., 2021).

Our work sets the stage for a more comprehensive, multiscale investigation of how the brain regu-
lates complex limb- dependent motor behaviors. Nevertheless, overcoming several technical limita-
tions in our study should also be a focus of future work. First, although we could achieve precise limb 
kinematic measurements at  100 Hz , it will be critical to record neural data at equally high temporal 
resolution. The fly can walk with stride frequencies of up to  20 Hz  (Mendes et  al., 2013) and leg 
movements during grooming occur at up to  7 Hz (Ravbar et al., 2021). This currently makes it difficult 
to relate neural activity—read out by the relatively slow fluorescence fluctuations of a genetically 
encoded calcium indicator—to individual joint angles and limb positions. To address this challenge, 
one might use faster indicators of neural activity (e.g., newer variants of GCaMP [Zhang, 2020] or 
voltage indicators [Piatkevich et al., 2018]). Additionally, coronal section two- photon imaging in the 
thoracic cervical connective with a piezo- driven objective lens limited our neural data acquisition to 
~16 Hz. One might perform data acquisition at a higher rate using more advanced imaging methods 
including single- objective light- sheet microscopy (Voleti et al., 2019). Alternatively, the fly could be 
forced to generate slower limb movements using a motorized treadmill (Aimon et al., 2022). Another 
challenge is that DNs from the SEZ are absent in our driver line. The SEZ is considered a center for 
action section (Mann et  al., 2013; Tastekin et  al., 2015) and is known to house numerous DNs 
(Namiki et al., 2018; Hsu and Bhandawat, 2016). Thus, complementing our driver line with an SEZ- 
expressing transgene (Simpson, 2016) would enable a fully comprehensive recording of DN popula-
tion dynamics. Nevertheless, we expect our observation to remain intact: locomotion is regulated by 
large DN populations in a distributed manner, while more stereotyped grooming behaviors engage 
fewer DNs. This would suggest a dichotomy in DN population control for flexible versus stereotyped 
motor behaviors. Future studies may test whether this holds true as well for wing- dependent behav-
iors like continuous steering during flight (Schnell et al., 2017; Namiki et al., 2022) versus stereo-
typed wing displays during courtship (Pavlou and Goodwin, 2013).

https://doi.org/10.7554/eLife.81527
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Materials and methods
Key resources table 

Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Genetic reagent 
(Drosophila melanogaster)

W; tub>stop>GAL80
(CyO) ; MKRS

TM3, Sb(21−21)
Asahina lab (Salk Institute, 
San Diego, CA) (Asahina 
et al., 2014)

Genetic reagent (D. 
melanogaster)

W; Otd−nls:FLP (attP40)
(CyO) ; TM2

TM6B(26−27)
Asahina lab (Salk Institute, 
San Diego, CA) (Asahina 
et al., 2014)

Genetic reagent (D. 
melanogaster)

w; tubP- (FRT.GAL80); Bloomington Drosophila 
Stock Center

BDSC: #62103

Genetic reagent (D. 
melanogaster)

w; +; R57C10- GAL4; Bloomington Drosophila 
Stock Center (Jenett et al., 
2012)

BDSC: #39171

Genetic reagent (D. 
melanogaster)

w; +; 10xUAS- IVS- myr::smGFP- FLAG (attP2) Bloomington Drosophila 
Stock Center (Nern et al., 
2015)

BDSC: #62147

Genetic reagent (D. 
melanogaster)

+[HCS]; P{20XUAS- IVSGCaMP6s} attP40; 
P{w[+mC]=UAS- tdTom.S}3

Dickinson lab (Caltech, 
Pasadena, CA)

Genetic reagent (D. 
melanogaster)

;P20XUAS- IVS- Syn21- OpGCaMP6f- 464 p10 
su(Hw)attp5; Pw[+mC]=UAS- tdTom.S3

Dickinson lab (Caltech, 
Pasadena, CA)

Genetic reagent (D. 
melanogaster)

R57C10- 446 Flp2::PEST in su(Hw)attP8;; HA- 
V5- FLAG

Bloomington Drosophila 
Stock Center (Nern et al., 
2015)

BDSC: #64089

Genetic reagent (D. 
melanogaster)

w;;P{w[+mC]=20xUAS- DSCP>H2A::sfGFP- 
T2A- mKOk::Caax} JK66B

McCabe lab (EPFL, Lausanne, 
Switzerland) (Jiao et al., 
2022)

Genetic reagent (D. 
melanogaster)

;Otd- nls:FLPo (attP40)/(CyO); R57C10- GAL4, 
tub>GAL80>/(TM6B)

This paper

Antibody Anti- GFP (rabbit monoclonal) Thermo Fisher AB2536526 1:500

Antibody Anti- Bruchpilot (mouse monoclonal) Developmental Studies 
Hybridoma Bank

AB2314866 1:20

Antibody Anti- rabbit conjugated with Alexa 488 (goat 
polyclonal)

Thermo Fisher AB143165 1:500

Antibody Anti- mouse conjugated with Alexa 633 (goat 
polyclonal)

Thermo Fisher AB2535719 1:500

Antibody Anti- HA- tag (rabbit monoclonal) Cell Signaling Technology AB1549585 1:300

Antibody Anti- FLAG- tag DYKDDDDK (rat monoclonal) Novus AB1625981 1:150

Software, algorithm noise2void Krull et al., 2019 Denoising of red channel

Software, algorithm deepinterpolation Lecoq et al., 2021 Denoising of green channel

Software, algorithm DeepFly3D Günel et al., 2019 Pose estimation

Software, algorithm NeuroMechFly Lobato- Rios et al., 2022 Kinematic replay, collision 
detection

Software, algorithm utils2p This paper Preprocessing of two- photon 
images, synchronization

Software, algorithm utils video This paper Creation of videos
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Fly husbandry and stocks
All experiments were performed on female D. melanogaster raised at 25°C and 50% humidity on a 
12 hr light–dark cycle. Flies were 10 days post- eclosion (dpe) for experiments and had been starved 
overnight on a wet precision wipe (Kimtech Science, 05511, USA). Sources of each genotype used are 
indicated in Key Resources Table.

Olfactometer
Mass flow controllers (MFCs) were used to regulate air flow (Vögtlin, GSC- B4SA- BB23 [ 2 L min−1 ], GSC- 
A3KA- BB22 [ 100 mL min−1 ]). The larger MFC, set to  42 mL min−1 , was used to continuously bubble 
odor vials, maintaining a constant head space odorant concentration. The smaller MFC was used to 
stimulate the fly at  41 mL min−1 . We directed air flow using six solenoid valves (SMC, S070C- 6AG- 32, 
Japan) controlled by an Arduino Mega (Arduino, A000067, Italy). One valve in front of each of the 
three odor vials was used to switch between inputs from each MFC. A second valve after each odor 
vial was used to direct air flow either toward the fly or into an exhaust. The second valve was placed as 
close to the fly as possible (~10 cm) to minimize the delay between solenoid switching and odor stim-
ulation. To direct air flow to the fly’s antennae, we used a glass capillary held in place by a Sensapex 
zero- drift micro- manipulator (Sensapex, uMp- 3, Finland). We minimized mechanical perturbations by 
blowing humidified (nonodorized) air onto the fly between odor trials. We used a PID (Aurora Scien-
tific, miniPID, Canada) and visual assessment of animal behavior to confirm that switching generated 
minimal mechanical perturbations.

Two-photon microscopy
We performed neural recordings using a ThorLabs Bergamo two- photon microscope (Thorlabs, 
Bergamo II, USA) connected to a Mai Tai DeepSee laser (Spectra Physics, Mai Tai DeepSee, USA). To 
perform coronal section imaging, we operated the microscope in kymograph mode using the galvo- 
resonant light path. Images were acquired at a magnification of 7.4× resulting in a 82.3 μm wide FOV. 
To prevent the cervical connective from leaving the FOV, the full range of a 100 µm piezo collar was 
used to scan the objective lens (Olympus XLUMPlanFLN 20× ,  1.0 NA  with  2 mm  working distance) in 
the z- axis. We could achieve a frame rate of approximately  16 Hz  by sampling 736 × 480 pixel (x- and 
z- axes, respectively) images and by enabling bidirectional scanning, with only one fly- back frame.

Neural recordings
Descending neuron population recordings
Flies were dissected to obtain optical access to the thoracic cervical connective, as described in Chen 
et al., 2018. Briefly, we opened the cuticle using a syringe and waited for the flight muscles to degrade 
before resecting trachea, the proventriculus, and the salivary glands. After removing these tissues 
covering the VNC, an implant (Hermans et al., 2021) was inserted into the thoracic cavity to prevent 
inflation of the trachea and ensure a clear view of the cervical connective for extended periods of 
time. Flies were then given several minutes to adapt to positioning over a spherical treadmill in the 
two- photon microscope system. During this adaptation period, the nozzle of the olfactometer was 
positioned approximately  2 mm  in front of the fly’s head. As well, the thoracic cervical connective was 
brought into the imaging FOV. Following alignment, their position was further adjusted to maximize 
fluorescence signal and minimize the possibility of neurites leaving the imaging FOV. For each fly, a 
minimum of five  9 min  trials were recorded using a laser power of  9.25 mW  at  930 nm .

Sparse DNx01 recordings
Recordings of DNx01s in the R65D11- GAL4 driver line were performed as described in Chen, 2022. 
This differed only slightly from DN population recordings in the following ways. First, flies were not 
starved. Second, the Gal4 drove expression of OpGCaMP6f rather than GCaMP6s. Third, a thoracic 
implant was not used. Fourth, instead of being presented with a constant flow of air and odors, 
animals were stimulated with CO2 puffs of alternating length ( 0.5 s ,  2 s ) spaced  40 s  apart. A higher 
pixel dwell time was used to achieve acceptably high imaging signal- to- noise. This resulted in a 
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slower two- photon image acquisition rate ( 4.3 fps ), which was matched by a slower behavior recording 
frequency ( 30 Hz ). For additional details and a description of the stimulation system, see Chen, 2022. 
Note that images of the connective in Figure 5a and e appear to have different heights due to a 
difference in z- step size during image acquisition.

Postprocessing of two-photon imaging data
Descending neuron population recordings
Binary output files from ThorImage (Thorlabs, ThorImage 3.2, USA) were converted into separate tiff 
files for each channel using custom Python code (https://doi.org/10.5281/zenodo.5501119). Images 
acquired from the red channel were then denoised (Krull et al., 2019) and two- way alignment offset 
was corrected (https://doi.org/10.5281/zenodo.6475468) based on denoised images. We then used 
optic flow estimation to correct image translations and deformations based on the denoised red 
channel images (https://doi.org/10.5281/zenodo.6475525). The green channel was then corrected 
based on the motion field estimated from the red channel. Finally, we trained a DeepInterpolation 
network (Lecoq et al., 2021) for each fly using the first 500 motion- corrected green channel images 
from each experimental trial (batch size = 20; epochs = 20; pre- post frames = 30). The first and the last 
trials were used as validation datasets. The trained network was then used to denoise green channel 
images.

Baseline fluorescence was then determined on a fly- wise and pixel- wise basis across all trials. The 
baseline of a pixel was defined as the minimum ‘mean of 15 consecutive values’ across all experi-
mental trials. Motion correction introduces zeroes to two- photon images in background regions that 
were out of the FOV prior to warping. Therefore, values close to zero (floating point inaccuracy) were 
set to the maximum of the datatype of the array. This means essentially ignoring these pixels and 
their immediate surroundings for baseline computations. We used the baseline image F0 to calculate 

 %
F−F0

F0   images. These images were only used for visualization. To identify ROIs/neurons, we created a 
maximum intensity projection of  %

F−F0
F0   images and manually annotated ROIs. The  %

F−F0
F0   of each ROI 

was computed by first spatially averaging its raw pixel values. We then calculated the baseline of this 
average as described for a single pixel above. For brevity and readability, we refer to  %

F−F0
F0   as  %∆F/F  

throughout the article.

Sparse DNx01 descending neuron recordings
ROIs were detected using AxoID. Raw, non- denoised traces were used for analysis. For more details 
concerning data postprocessing, see Chen, 2022.

Behavior classification and quantification
Behavior measurement system
The behavior of tethered animals was recorded using a previously described (Günel et al., 2019) 
7- camera (Basler, acA1920- 150um, Germany) system. Animals were illuminated using an infrared 
( 850 nm ) ring light (CSS, LDR2- 74IR2- 850- LA, Japan). To track the joint positions of each leg, six 
cameras were equipped with  94 mm  focal length 1.00× InfiniStix lenses (Infinity, 94 mm/1.00×, USA). 
All cameras recorded data at 100 fps and were synchronized using a hardware trigger. For more 
details, see Günel et al., 2019.

Inferring fictive locomotor trajectories
Video data from the front camera were processed using FicTrac (Moore et al., 2014) to track ball 
movements. This camera was outfitted with a lens allowing adjustable focus and zoom (Computar, 
MLM3X- MP, 0.3X- 1X, 1:4.5, Japan). To improve tracking accuracy, the quality factor of FicTrac was set 
to 40. The circumference of the ball was detected automatically using a Hough circle transform on the 
mean projection of all images for a given experimental trial. To determine the vertical angular FOV,  α , 
the value given in the specifications of the Computar lens (8.74°) had to be adjusted, accommodating 
a smaller sensor size. We first determined the focal length to be  43.18 mm  using Equation 1, where  H   
is the height of the sensor. This was set to  6.6 mm  for a 2/3″ sensor.

https://doi.org/10.7554/eLife.81527
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f = H

2tan( α2 )  (1)

The ROI of the Basler camera was set to 960 × 480 pixels, reducing the effective sensor height 
from  5.8 mm  to  2.32 mm . Rearranging Equation 1 and plugging in  f   and  H   yields a vertical angular 
FOV of 3.05°. Since the camera was already aligned with the animal, the camera- to- animal trans-
form was set to zero. To obtain the fly’s trajectory, we developed custom code that integrates rota-
tional velocities (https://github.com/NeLy-EPFL/utils_ballrot; Aymanns, 2022; copy archived at 
swh:1:rev:7247f448be62f349bb528ad70633b4b41be5bbaf).

Postprocessing of 3D pose estimates
Outliers in 3D pose data were corrected as described in Chen, 2022. Briefly, we detected outliers 
based on changes in leg segment length and chose the pair of cameras with minimal reprojection 
error for triangulation. After outlier correction, the data were aligned and joint angles were computed 
using published code (Lobato- Rios et al., 2022): https://github.com/NeLy-EPFL/df3dPostProcessing/ 
tree/outlier_correction.

Classification of behaviors
Behaviors were classified based on limb joint angles using the approach described in Whiteway 
et  al., 2021. Briefly, a network was trained using 1 min of annotations for each fly and heuristic 
labels. Motion energy, ball rotations, and joint positions were used to generate the heuristic labels. 
To compute the motion energy, each joint position was convolved with the finite difference coef-
ficients of length nine, estimating the first derivative. After computing the  L1 - norm, the signal was 
filtered with a tenth- order low- pass Butterworth filter of critical frequency  4 Hz . The total, front, and 
hind motion energy were computed by summing over all joints, all front leg joints, and all hindleg 
joints, respectively. Forward ball rotation speeds were processed using the same Butterworth filter 
described above. First, we assigned heuristic labels for walking by thresholding the filtered forward 
walking velocity at  0.5 mm s−1 . The remaining frames with a motion energy smaller than 0.3 were then 
classified as resting. Next, heuristic labels for front movements (front motion energy > 0.2 and hind 
motion energy < 0.2) and posterior movements (front motion energy < 0.2 and hind motion energy 
> 0.2) were assigned to all remaining frames. The front movement labels were further split into head 
grooming and front leg rubbing by thresholding the height of the front leg tarsi (the average between 
left and the right tarsi) at 0.05. After each step, a hysteresis filter was applied. This filter only changes 
state when at least 50 consecutive frames are in a new state. Based on a hyperparameter search using 
‘leave one fly out’ cross- validation on the hand labels (Figure 1—figure supplement 1g), we selected 
the weights of  λpred = 0  and  λweak = 1  for the loss.

Biomechanical simulation and antennal collision detection
To infer limb- antennal collisions, we performed kinematic replay using the NeuroMechFly physics 
simulation framework as described in Lobato- Rios et al., 2022. We used joint angles to replay real 
limb movements in the simulation. To avoid model explosion and accumulating errors over long simu-
lation times, we ran kinematic replay on time segments shorter than the full experimental trials. These 
segments consisted of individual head grooming and front leg rubbing events. The default head angle 
was fixed to 20°. The aristae yaw values were set to –32° and 32° and pedicel yaw values were set to 
–33° and 33° for the left and right sides, respectively. To speed up the simulation, we only detected 
collisions between the front legs and head segments.

Confocal imaging of the brain and ventral nerve cord
Confocal images were acquired using a Zeiss LSM700 microscope. These images were then registered 
to a brain and VNC template described in Chen, 2022 using the method from Jefferis et al., 2007. 
Brain and VNC sample preparation was performed as described in Chen, 2022. Both primary and 
secondary antibodies were applied for 24 hr and the sample was rinsed 2–3 times after each step. 
Antibodies and concentrations used for staining are indicated in Key Resources Table.

https://doi.org/10.7554/eLife.81527
https://github.com/NeLy-EPFL/utils_ballrot
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https://github.com/NeLy-EPFL/df3dPostProcessing/tree/outlier_correction
https://github.com/NeLy-EPFL/df3dPostProcessing/tree/outlier_correction
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Electron microscopy identification and tracing
Within an electron microscopy dataset of the VNC and neck connective (Phelps et al., 2021), we 
identified the pair of DNx01s based on their large- caliber axons in the cervical connective positioned 
ventral to the giant fiber neurons axons (Figure 5l). We then manually reconstructed all branches of 
one DNx01 neuron using CATMAID (Saalfeld et al., 2009; Schneider- Mizell et al., 2016) as described 
in Phelps et al., 2021. The reconstructed neuron was then registered to the female VNC standard 
template (Bogovic et al., 2020) using an elastix- based atlas registration as described in Phelps et al., 
2021.

Data analysis
Animals were excluded from analysis if they produced irregular behavior or fewer than 75 neuronal 
ROIs could be manually identified in two- photon imaging data.

Linear regression modeling
We relied primarily on regression techniques to link behavioral and neural data. Here, we first describe 
the general approaches used and then discuss the details and modifications for individual figure 
panels. To evaluate the success of regression models, we calculated explained variance in the form of 
the coefficient of determination ( R2 ) and unique explained variance (UEV) (Musall et al., 2019). The 
explained variance is a measure of how much additional variance is explained by the model compared 
to an intercept- only model (i.e., approximating the data by taking the mean). A definition of the coeffi-
cient of determination can be found in Equation 2, where SSE is the sum of squares of the error, SST is 
the total sum of squares, yi is a data point,  ̂yi  is the prediction of yi, and  ̄y  is the mean of all data points.

 
R2 = 1 − SSE

SST = 1 −
∑

i(yi−ŷi)2
∑

i(yi−ȳ)2   
(2)

Note that  R2  becomes negative when SSE is larger than SST. This is the case when the model predic-
tion introduces additional variance due to overfitting. UEV is a measure for the importance of indi-
vidual or a subset of regressors. It is computed as the reduction in  R2  when a particular subset of 
regressors is randomly shuffled (Equation 3).

 UEV = R2
intact − R2

shuffled  (3)

We performed fivefold cross- validation for all of our regression results to ensure good generalization. 
Nonregularized linear regression sometimes led to overfitting and negative  R2  values. Therefore, we 
used ridge regression. The ridge coefficient was determined using fivefold nested cross- validation on 
the training data set. In some cases, we still observed small negative  R2  values after applying ridge 
regularization. These were set to zero, in particular to avoid problems when computing UEVs. To 
account for the long decay dynamics of our calcium indicator, we convolved behavior variables with 
an approximation of the crf (Equation 4).

 crf(t) = −e−at + e−bt
  (4)

We used  a = 7.4  and  b = 0.3  to approximate the rise and decay times, respectively, as reported 
in Chen et al., 2013. We also normalized the function to integrate to one on the interval  030 s  In 
Figure 2 and Figure 2—figure supplement 2, we predicted behavior from neural activity. To accom-
plish this, we trained models for all pairs of behaviors and neurons (e.g., walking and ROI 41 for the 
upper plot of Figure 2a). The target variable is a binary variable indicating whether the fly is walking 
or not. This was convolved with the crf (black line in Figure 2a). The single regressor besides the 
intercept in the model is the  ∆F/F   of a single neuron. Figure 2b and Figure 2—figure supplement 
2c show the  R2  values for all models. Each neuron was then assigned to be encoding the behavior 
with the maximum  R2 . For neurons with maxima smaller than 5%, no behavior was assigned. In 
Figure 2—figure supplement 1, using the approach described in the previous section, we observed 
that some neurons appear to predict both walking and posterior movements, while others predict 
both head grooming and front leg rubbing. Because fluorescence decays slowly following the cessa-
tion of neural activity, this may be caused by the frequent sequential occurrence of two behaviors. 
For instance, if front leg rubbing often occurs after head grooming, the  ∆F/F   of a head groom 
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encoding neuron may still be elevated during front leg rubbing. This can lead to false positives in 
our analysis. To address this potential artifact, we predicted neural activity from multiple behavior 
regressors (i.e., binary behavior indicators convolved with the crf). We then calculated the UEV for 
each behavior regressor. For example, when the front leg rubbing regressor is shuffled the  R2  will 
not decrease by much because the head grooming regressor includes the expected decay through 
convolution with a crf. The model of Figure  1—figure supplement 1a includes a walking and a 
posterior movements regressor. For Figure 2—figure supplement 1b, the model includes a head 
grooming and a front leg rubbing regressor. No other regressors were included in these models 
and for a given model, only data during one of these two behaviors were used. In Figure 3 and 
Figure 3—figure supplement 2, for Figure 3a, we used all behavior regressors and the  ∆F/F   of all 
neurons to predict ball rotation speeds convolved with a crf. We then temporally shuffled each of the 
neural regressors to calculate their UEVs. Since knowing whether the fly is walking or not provides 
some information about forward speed, the  R

2
intact  did not decrease to zero in the speed prediction 

(Figure 3a, second row). We address this issue in Figure 3b by only including walking frames but 
otherwise using the same approach as in Figure 3a. To pinpoint the encoding of ball rotations to 
individual neurons (Figure 3c), we made two changes to our approach. First, instead of predicting 
turning in general, we split the turning velocity into right and left turning. Second, we only included 
the  ∆F/F   of a single neuron in the model rather than the data from all neurons. As before, the target 
variables were spherical treadmill rotation speeds—right turning, left turning, and forward walking—
convolved with the crf. In Figure 4 and Figure 4—figure supplement 1, to model odor encoding, we 
predicted the activity of a single neuron using behavior regressors, including crf- convolved spherical 
treadmill rotation speeds, and odor regressors constructed by convolving the crf with a binary vari-
able indicating whether a given odor was present or not. To determine how much neural variance can 
be explained by the behavior regressors in our model, we shuffled both odor regressors (Figure 4b, 
top row). We then calculated the UEV for each odor by first computing the  R2  of the model with all 
regressors intact, and then subtracting the  R2  of the model after shuffling the odor regressor in ques-
tion (Figure 4b, bottom). In Figure 4c and d, the intact model’s prediction (blue) and the shuffled 
model’s prediction (red) are shown. In Figure 4—figure supplement 2, to see whether a neuron’s 
behavior encoding could change depending on the context of which odor is present, we only exam-
ined the most commonly encoded behaviors: walking and head grooming. Each row is equivalent 
to the walking or head grooming rows in Figure 2—figure supplement 2b. However, here we only 
used subsets of the data to train and validate our models. Each row only uses data when one odor (or 
humidified air) is present. If there is no context dependence, each of the three rows should look iden-
tical. However, we note that due to the significant reduction in the amount of data for each model, 
noise can introduce variation across conditions. Humidified air data was subsampled to match the 
amount of data available for the odors MSC and ACV. To test whether the encoding was significantly 
different across contexts, we used a two- sided Mann–Whitney U- test. The data points are individual 
cross- validation folds from each trial. Elsewhere in this study we report cross- validation means. In 
Figure 5b, we perform a regression to predict one neuron’s activity using the intercept as well as a 
crf- convolved antennal collision regressor derived from data in Figure 5d.

Kernel density estimation
We performed 2D kernel density estimation (Figure 2h and i) using SciPy’s gaussian_kde (Virtanen 
et al., 2020). We performed 1D kernel density estimation (Figure 3h and j, Figure 3—figure supple-
ment 2d and f) using sklearn (Pedregosa, 2011). We normalized kernel density estimates to correct 
for the variable density of neurons across the connective. The normalization factor was computed as 
a kernel density estimate of all annotated neuron locations. The kernel bandwidth was determined 
using leave- one- out cross- validation. This maximizes the log- likelihood of each sample under the 
model. Data from all flies were used to determine the bandwidth.

Principal component analysis
We performed PCA on DN population data. First, as in Kato et al., 2015, we observed that PCs from 
time derivatives of fluorescence traces produce more organized state space trajectories. Therefore, 
we calculated the derivative of the  ∆F/F  traces for each neuron (extracted from nondenoised imaging 
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data) using total variation regularization (Chartrand, 2011). Empirically, we found that a regulariza-
tion parameter of 5000 strikes a good balance between bias and variance in the derivatives. We then 
performed PCA on the derivatives of all neural data during walking only. This allowed us to specifi-
cally ask whether, during walking, neural activity largely remained constant or diverged as a function 
of specific locomotor features. We then embedded walking and resting neural data epochs into the 
same PC space (i.e., we did not refit the PCs for resting). We visualized the loadings of individual ROIs/
neurons using vectors to illustrate how these neurons influence the position in PC space. For clarity, 
we only show vectors for whom  w

2
pc1 + w2

pc2 > 0.1 , where  wpc1  and  wpc2  are the loadings of the first and 
second principal components.

Linear discriminant analysis
We trained linear discriminant models to distinguish between ACV and humidified air, as well as MSC 
and humidified air (Figure 4a). To evaluate classification accuracy, the classification score was cross- 
validated. Input data to the model were either behavior regressors or neural residuals. The residuals 
were computed using ridge regression (as described above) with behavior regressors as input. In both 
cases, the behavior regressors were convolved with the crf.

Event-triggered averaging
Here, ‘events’ describe individual epochs of a particular behavior. To perform event- triggered aver-
aging of images/videos (Videos 2–4), we first identified all events that had no similar event in the 
previous 1 s. Raw microscope recordings were then chopped into blocks starting  1 s  prior to event 
onset and lasting  4 s  after event onset or until the end of the event, whichever was shorter. Each 
block was then converted into  ∆F/F   using the mean of the first five frames as a baseline. All blocks 
were then temporally aligned and averaged frame- by- frame. We discarded behavior videos with 
fewer than 50 events  1 s  after event onset. Event- triggered averaging of neural traces (Figure 5g 
and h) was performed in a similar fashion. However, instead of using raw images,  ∆F/F   traces were 
used and no block- wise  ∆F/F   was computed. The values were then averaged one time point at a 
time.

Correlation coefficients
We calculated the Pearson’s correlation coefficient for each trial between the raw  ∆F/F  trace and a 
time- shifted  ∆F/F  trace calculated using denoised images (Figure 1—figure supplement 1b). We 
then either grouped the values by time lag and averaged each group (bottom), or we found the 
time shift with maximal cross- correlation. In Figure 3d and Figure 3—figure supplement 2b, we 
perform several types of correlation analyses. First, the larger matrices show the correlation between 
neurons. This is computed as the Pearson’s correlation coefficient between the  ∆F/F  values of a pair 
of neurons. Correlations between neural activity and turning or walking speed were calculated as the 
Pearson’s correlation coefficient between the  ∆F/F  values of a neuron and corresponding spherical 
treadmill rotations using only data when the fly was classified as walking. All of the above calculations 
were performed on individual trials and then averaged across all trials.

Hierarchical clustering
We used Ward’s method (Ward, 1963) to hierarchically cluster and sort neurons based on their 
correlation (Figure 3d). The distance between pairs of neurons was set to  1 − r , where  r  is the Pear-
son’s correlation coefficient for the two neurons.
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