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Heparanase is a prognostic biomarker 
independent of tumor purity and hypoxia based 
on bioinformatics and immunohistochemistry 
analysis of esophageal squamous cell carcinoma
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Abstract 

Background:  Esophageal squamous cell carcinoma (ESCC) is a common malignant tumor of the digestive tract with 
a poor prognosis. The tumor microenvironment (TME) is mainly composed of tumor cells, stromal cells, and immune 
cells and plays an important role in ESCC development. There are substantial differences in tumor purity among differ-
ent parts of ESCC tissues, consisting of distinct immune and stromal cells and variations in the status of hypoxia. Thus, 
prognostic models of ESCC based on bioinformatic analysis of tumor tissues are unreliable.

Method:  Differentially expressed genes (DEGs) independent of tumor purity and hypoxia were screened by Spear-
man correlation analysis of public ESCC cohorts. Subsequently, the DEGs were subjected to Cox regression analysis. 
Then, we constructed a protein–protein interaction (PPI) network of the DEGs using Cytoscape. Intersection analysis 
of the univariate Cox and PPI results indicated that heparanase (HPSE), an endo-β-D-glucuronidase capable of cleav-
ing heparan sulfate side chains, was a predictive factor. Gene set enrichment analysis (GSEA) was used to reveal the 
potential function of HPSE, and single-cell sequencing data were analyzed to evaluate the distribution of HPSE in 
immune cells. Furthermore, a human ESCC tissue microarray was used to validate the expression and prognostic value 
of HPSE.

Result:  We found that HPSE was downregulated in ESCC tissues and was not correlated with tumor purity or hypoxia 
status. HPSE is involved in multiple biological processes. ESCC patients with low HPSE expression in cancerous tissues 
exhibited poor prognosis.

Conclusions:  These results indicate that low HPSE expression in cancerous tissues correlates with poor prognosis in 
patients with ESCC. HPSE is a novel prognostic biomarker independent of tumor purity and hypoxia status in ESCC.
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Background
Esophageal carcinoma is one of the most common 
malignant tumors and has high morbidity and 
mortality rates in China and worldwide [1]. According 
to histological classification, esophageal carcinoma is 
divided into esophageal squamous cell carcinoma (ESCC) 
and esophageal adenocarcinoma (EAC) [2]. ESCC is the 
predominant histopathologic subtype and accounts for 
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approximately 90% of esophageal cancer cases in China 
[3]. Despite recent advances in esophageal carcinoma 
treatment, the prognosis of ESCC remains poor. Several 
genes have been reported as prognostic factors in 
patients with esophageal carcinoma [4]. However, these 
genes are not sufficient for the clinical diagnosis and 
prognostic evaluation of esophageal carcinoma.

In recent years, the tumor microenvironment (TME) 
has been revealed to play an important role in tumor 
development. The TME is mainly composed of tumor 
cells, stromal cells, and immune cells [5, 6]. Because 
different tumor tissues contain distinct immune cells and 
stromal cells, there are substantial differences in tumor 
purity in different parts of tumor tissues. Thus, gene 
expression analysis based on tumor tissue is unreliable. 
There is still a challenge in performing precise genetic 
analysis that indicates the dynamic modulation of the 
immune and stromal components in the TME.

Hypoxia is a typical characteristic of the TME, which 
is markedly different from the environment of normal 
tissues [7, 8]. The TME can become hypoxic. Previous 
studies have shown that the degree of tumor hypoxia is 
closely associated with tumor development, proliferation, 
metastasis, and treatment responses [9]. There is, 
however, a clear difference in gene expression profiles 
and tumor hypoxia statuses in different parts of tumor 
tissues.

Given these differences in tumor purity and hypoxia 
status, the screening of prognostic biomarkers based 
on gene expression in tumor tissues is unreliable. In 
the present study, we identified a novel prognostic 
biomarker independent of tumor purity and hypoxia 
based on bioinformatics analysis in ESCC. We found 
that the expression of HPSE was downregulated and not 
influenced by tumor purity or hypoxia in ESCC tissues. 
HPSE might be a potential prognostic indicator in ESCC. 
Our study will be helpful in the diagnosis of ESCC and 
has great clinical value.

Materials and methods
Data processing and the identification of DEGs
Microarray data were downloaded from the Gene 
Expression Omnibus (GEO) database (http://​www.​
ncbi.​nlm.​nih.​gov/​geo/). The GSE44021 [10], GSE67269 
[10], GSE38129 [11], and GSE53625 [12] datasets 
were downloaded for our study. GSE53625 contained 
179 paired ESCC and noncancerous tissues with 
clinicopathological parameters. GSE44021, GSE67269, 
and GSE38129 contained 287 paired ESCC and adjacent 
normal tissues. These four gene sets were used to analyze 
the differentially expressed genes between tumoral and 
nontumoral tissues. The “limma” R package was used 
to identify the differentially expressed genes (DEGs) 

between tumor tissues and adjacent nontumorous 
tissues. Adjusted p value < 0.05 and |log2| fold change 
(FC)| > 1 were regarded as the screening conditions for 
DEGs.

Analysis of the correlation between tumor purity and gene 
expression
To evaluate the tumor stromal and immune signatures, 
we applied the R package “estimate” to calculate the 
immune/stromal scores of the ESCC samples for tumor 
purity prediction. The correlations between tumor purity 
and gene expression levels were analyzed by Spearman’s 
test. |Spearman correlation coefficient| ≥ 0.4 and a p 
value ≤ 0.001 were considered to indicate significance.

Definition of hypoxia‑related genes
To determine the effects of hypoxia, we collected 
hypoxia-related genes from the Molecular Signatures 
Database V7.2 (https://​www.​gsea-​msigdb.​org/​gsea/​
msigdb, Hypoxia M10508). The hypoxia gene sets were 
scored with the gene set variation analysis (GSVA) 
method. We then performed a coexpression analysis of 
the DEGs and hypoxia-related genes in each gene set 
based on the Spearman correlation analysis. The genes 
with a |Spearman correlation coefficient| ≥ 0.4 and 
a p value ≤ 0.001 in each gene set were confirmed as 
hypoxia-related genes.

Gene ontology (GO) and Kyoto encyclopedia of genes 
and genomes (KEGG) enrichment analysis and gene set 
enrichment analysis
GO and KEGG enrichment analyses were used to identify 
the biological functions and related regulatory pathways 
of the candidate gene set. The “clusterProfiler” R package 
was used for GO and KEGG enrichment analyses of the 
DEGs, and terms with p value of <0.05 were considered 
significantly enriched. Gene set enrichment analysis 
(GSEA) (version 4.0.1, http://​www.​broad​insti​tute.​org/​
gsea) was also performed to assess the differences in 
the enriched gene sets between the low- and high-risk 
groups. Gene set permutations were performed 1000 
times for each analysis. The whole transcriptome of all 
tumor samples was used for GSEA, and only gene sets 
with NOM p < 0.05 were considered significant. The 
Reactome database was used to explore the steps of 
HPSE biological pathways.

PPI network construction and cox regression analysis
PPI network establishment Search Tool for the 
Retrieval of Interacting Genes/Proteins (STRING) 
(https://​www.​string-​db.​org/) [13] was designed to 
evaluate protein–protein interaction (PPI) network 
information. Then, we used Cytoscape software 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
http://www.broadinstitute.org/gsea
http://www.broadinstitute.org/gsea
https://www.string-db.org/


Page 3 of 13Wang et al. World Journal of Surgical Oncology          (2022) 20:236 	

(version 3.6.1) for PPI network visualization, and nodes 
with interaction confidence values larger than 0.90 
were used for building the network. Furthermore, the 
survival package in R software was used to construct a 
Cox regression model.

Single‑cell sequencing data analysis
Single-cell sequencing data were obtained from dataset 
GSE160269 in the GEO database. Bioinformatics data 
were processed using Seurat (version 3.1.2). The Seurat 
package was used for quality control, and the remaining 
70,556 cells were normalized. Principal component 
analysis (PCA) was completed for preliminary dimension 
reduction. Unsupervised clustering analysis using Seurat 
identified 8 distinct immune cell clusters. The Uniform 
manifold approximation and projection (UMAP) 
technique was employed for visualization. Expression 
levels of HPSE marker genes across 70,556 cells were 
shown as UMAP plots.

Tissue microarray and immunohistochemistry (IHC) 
analysis
All paraffin-embedded ESCC specimens were obtained 
from the Biobank of the National Engineering Center 
for Biochip in Shanghai. All detected specimens were 
derived from ESCC tissues acquired via surgical resection 
or biopsy. This study was approved by the Ethics 
Committees of National Engineering Center for Biochip 
in Shanghai (the National Human Genetic Resources 
Sharing Service Platform, No. 2005DKA21300). Informed 
consent was obtained from all individual participants 
included in the study.

According to the provider’s instructions, the tissue 
microarray was assembled using a commercially avail-
able manual tissue punch. The clinical tissue microar-
ray contained relevant clinical information, such as sex, 
age, tumor–node–metastasis (TNM) stage, survival time, 
and programmed death ligand-1 (PD-L1) expression. 
The tissue microarray slide was stained with anti-HPSE 
antibody and anti-CD45 antibody. The expression lev-
els of CD45 and PD-L1 were scored using a semiquan-
titative immunoreactivity scoring (IRS) system by three 
independent pathologists [14]. The percentage of posi-
tive cells was stratified using a system of six scores: 0 (no 
positive cells), 1 (<20% positive cells), 2 (21–40% positive 
cells), 3 (41–60% positive cells), 4 (61–80% positive cells), 
and 5 (>80% positive cells). The expression level of HPSE 
protein was quantified by using Image-Pro Plus 6.0 image 
analysis software. The “survival” package was used to per-
form Kaplan–Meier survival analysis with the log-rank 

test. The optimal cutoff value was ascertained by the 
surv_cutpoint function of the survminer R package.

Statistical analyses
The statistical analyses were performed via R software 
(v 4.0.2) and GraphPad Prism 7.0 (San Diego, CA). 
Kaplan–Meier curves and log-rank tests were utilized to 
evaluate the survival data. A Spearman rank correlation 
was performed to evaluate the correlation between HPSE 
expression and clinicopathologic characteristics. The 
Wilcoxon test was mainly utilized for comparing two 
groups, and the Kruskal–Wallis test was used for two or 
more groups. A p value < 0.05 was considered to indicate 
statistical significance.

Results
Identification of DEGs between cancerous 
and adjacent esophageal tissues
To compare gene expression between tumor and adja-
cent normal tissues in ESCC, we first converted GEO 
data probe matrixes into gene matrixes with R software. 
An overview of this study is shown in Fig. 1. Gene differ-
ence analysis revealed 628 DEGs in GSE67269, 736 DEGs 
in GSE38129, 771 DEGs in GSE44021, and 2118 DEGs 
in GSE53625. Volcano plots were used to depict the sig-
nificant DEGs identified from the four GEO datasets 
(tumor versus normal tissues) (Fig. 2A, Fig. S1A-C). We 
further identified common differentially expressed genes 
(co-DEGs) in ESCC among the four microarray datasets 
(Fig.  2B); as shown in the Venn diagram, 357 common 
DEGs were identified from the four datasets. In ensuring 
analysis, we focused on the molecular functions of the 
357 common significant DEGs. The results from Gene 
Ontology (GO) enrichment analysis indicated that these 
DEGs are related to collagen-containing extracellular 
matrix, extracellular structure organization, and enzyme 
inhibitor activity (Fig. 2C). Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analysis indicated 
enrichment of the cell cycle pathway (Fig. 2D). Thus, we 
considered that these DEGs may be related to the metab-
olism of cellular components. We then analyzed these 
DEGs.

Analysis of DEGs with expression not affected by tumor 
purity and hypoxia
Due to tumor heterogeneity and the complex tumor 
microenvironment, we tended to use tumor purity as a 
TME indicator. Given the complexity of the TME, prog-
nostic genes unrelated to tumor purity and hypoxia were 
screened in our study. According to a previous analysis 
of the TME, we applied ESTIMATE algorithms to quan-
tify the enrichment levels of immune and stromal cells in 
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ESCC tumor tissues, and the tumor purity was calculated 
by this algorithm. The proportion of the main immune 
cells correlated inversely with tumor purity (Fig. S3A). As 
expected, tumor purity varied among the tumor samples 
(Fig. 3A, Fig. S2 A-C). To investigate the relationship of 
the tumor purity signature with expression of genes in 
each database, Spearman correlation was used to ana-
lyze the correlations. A total of 596 genes were associ-
ated with tumor purity in GSE53625 (Fig. 3B, Fig. S3B-D, 
|Spearman correlation coefficient| ≥0.4). By following 
the same method, the correlations of the other three 
groups were also calculate using the Spearman method. 
To mitigate the effect of tumor purity on tumor analy-
sis, we selected genes unrelated to tumor purity from the 
four gene sets, which showed 5945 genes. (Fig. 3C). These 
genes were considered candidate genes for subsequent 
study.

Regional tumor hypoxia is one of the foremost 
features of solid tumors, including ESCC. To confirm 
the correlations between the DEGs and hypoxia-related 
genes, we first obtained 81 hypoxia-related genes as the 
hypoxia gene set from Molecular Signatures Database 
V7.2 and coexpression analysis was performed to 
confirm the hypoxia-related genes in each dataset via 
the gene set variation analysis (GSVA) method [15, 16] 
(Fig.  3D, Fig. S3E-G) |Spearman correlation coefficient| 
≥0.4). We screened 6043 genes independent of hypoxia 
from the four gene datasets (Fig. 3E). Then, intersection 
analysis displayed by a Venn diagram showed 90 DEGs 
not influenced by tumor purity or hypoxia status 

(Fig. 3F). We further subjected these genes to functional 
enrichment analysis and GO and KEGG enrichment 
analyses indicated that most enriched pathways were 
related to epidermal development and cell cycle (Fig. 
S3H). These genes were used as a starting point for 
subsequent analysis.

Intersection analysis of the PPI network and univariate cox 
regression
To investigate the expression of these genes at the protein 
level, we constructed a PPI network utilizing Cytoscape 
software based on the STRING database, and the net-
work included 33 nodes and 84 edges (Fig. 4A). We next 
sorted the top 30 DEGs in bar plots according to the 
number of nodes (Fig. 4B). To identify DEGs associated 
with patient survival in ESCC, the clinicopathological 
characteristics of the 179 patients from the GSE53625 
dataset were analyzed. Univariate Cox regression analy-
sis of the DEGs was performed. The results revealed that 
7 DEGs had prognostic value in ESCC (Fig.  4C). Then, 
we performed an intersection analysis of the top 30 core 
nodes in the PPI network and 7 significant factors in the 
Cox regression analysis (Fig.  4D). The only factor that 
overlapped was HPSE. Moreover, we investigated HPSE 
expression in 466 ESCC tissues and paired adjacent nor-
mal tissues from 4 cohorts and found it to be significantly 
lower in these cancer tissues than in the paired adjacent 
normal tissues (Fig. S4A-D). Thus, we found that low 
HPSE expression may be associated with a poor progno-
sis in ESCC patients.

Fig. 1  The flow chart of this study
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Based on bioinformatics analysis, HPSE expression 
was not related to tumor purity or hypoxia. Thus, we 
used CD45 as a marker of immune cells and quantified 
the expression of CD45. At the gene expression level, 
no correlation was found between the expression of 
CD45 and HPSE (Fig.  4E). We performed IHC to fur-
ther analyze the relationship between HPSE expression 
and CD45, which also showed no correlation (Fig.  4F, 
G). Hence, the expression observed at the protein level 
was consistent with that at the gene level. Then, we ana-
lyzed programmed death ligand-1 (PD-L1) expression 
in paraffin-embedded tumor tissue sections and found 
that it also did not correlate with HPSE expression in 
cancerous tissues (Fig. 4H). The conclusions above also 
reflected that the expression of HPSE was not influ-
enced by tumor purity.

HPSE is involved in multiple biological processes 
within ESCC tissues
Given the above results, we sought to examine the 
potential biological processes of HPSE expression 
in ESCC. Gene set enrichment analysis (GSEA) was 
applied to compare high-expression and low-expres-
sion groups separated according to the median level of 
HPSE expression. The results showed that the enriched 
GO terms in the high HPSE group were mainly related 
to oxidoreductase activity acting on metal ions, pep-
tide cross linking, and nucleotide sugar biosynthetic 
processes (Fig.  5A). For the HPSE low-expression 
group, biological processes, including atrial septum 
development, protein acetyltransferase complex, and 
regulation of RNA splicing, were enriched (Fig.  5B). 
Enrichment analysis of KEGG pathways was also con-
ducted and indicated that high HPSE expression was 
related to cytokine–cytokine receptor interactions, the 
Jak-STAT signaling pathway, and retinol metabolism 
(Fig.  5C). We further observed significant enrichment 
of the lysine degradation pathway (Fig.  5D). On the 
other hand, the Reactome database was used to under-
stand the steps of HPSE biological pathways [17]. The 
results indicated that HPSE enriched in many Reac-
tome signaling pathways, which mainly were involved 
in HS-GAG degradation and heparan sulfate/heparin 
(HS-GAG) metabolism (Table S1). Additionally, we 
further explored differential expression of the HPSE 
functional partners predicted by the STRING database 

(https://​www.​string-​db.​org/) between ESCC tissues 
and para-carcinoma tissues (Fig. S5A) [13]. Glypican 
proteoglycan (GPC1 and GPC6), core membrane-
anchored heparan sulfate proteoglycans, were upregu-
lated in ESCC tissues compared with para-carcinoma 
tissues, whereas syndecan proteoglycans (SDC1, SDC2, 
and SDC4), transmembrane heparan sulfate proteo-
glycans, were downregulated (Fig. S5B). These results 
indicated that HPSE was involved in regulating the 
multi-step reaction of heparan sulfate glycosaminogly-
cans and proteoglycans, leading to extracellular matrix 
remodeling in ESCC. Taken together, these results sug-
gest that HPSE is involved in multiple biological pro-
cesses in ESCC.

Single‑cell RNA sequencing to explore HPSE expression 
in immune cells
To validate the HPSE expression distribution in the 
tumor immune microenvironment, we further gener-
ated a transcriptional map of immune cells in human 
ESCC. Single-cell transcriptome data were obtained 
from dataset GSE160269 [18] in the GEO database. The 
raw sequencing data were filtered by removing data for 
low-quality cells. In total, 70,556 cells were identified 
from 7 tumor samples for further analysis (Fig. 6A). We 
next performed unsupervised clustering on all sam-
ples to identify distinguishable populations. Clustering 
and visualization were performed in R using the Seurat 
package. Based on the annotations of cells, we found the 
major types of tumor-infiltrating immune cells, includ-
ing B cells, T cells, CD4+ T cells, CD8+ T cells, den-
dritic cells, NK cells, monocytes, and progenitors, to be 
present in ESCC (Fig.  6B), with HPSE predominantly 
located on monocytes (Fig.  6C). The results indicate 
that HPSE is likely to be mainly expressed on tumor 
cells and monocytes in the immune microenvironment.

Low HPSE expression in ESCC tumor tissues is associated 
with poor prognosis
Next, we applied immunohistochemistry analysis to 
validate the relative HPSE expression between ESCC 
tissues and paired adjacent normal tissues from 
66 ESCC patients. HPSE expression was lower in 
ESCC tissues than para-carcinoma tissues, consist-
ent with our genetic analysis (Fig.  7A). Subsequently, 
we further evaluated the relationship between HPSE 

(See figure on next page.)
Fig. 2  Identification of DEGs between cancerous and adjacent esophageal tissues. A Volcano map for the distribution of differentially expressed 
genes between tumor tissues and adjacent noncancerous tissues in esophageal squamous cell carcinoma samples. B Venn diagram showing 
the overlap between the four groups of differentially expressed genes. C GO analysis and D KEGG pathway enrichment analysis of differentially 
expressed genes

https://www.string-db.org/
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Fig. 2  (See legend on previous page.)
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Fig. 3  Analysis of DEGs with expression not affected by tumor purity and hypoxia. A Densogram representing the variance in tumor purity among 
tumor samples in GSE53625. B The network diagram presents correlations of gene expression and tumor purity, which were calculated using 
Spearman’s correlation analysis (|Spearman correlation coefficient| ≥ 0.4, p value ≤ 0.001). C The Venn diagram shows the overlapping genes among 
four groups of genes independent of tumor purity. D Genes correlated with hypoxia were identified in GSE53625 (|Spearman correlation coefficient| 
≥ 0.4, p value ≤ 0.001). E The Venn diagram shows overlapping genes among four groups of genes independent of hypoxia. F DEGs independent of 
tumor purity and hypoxia in the three overlapping groups

Fig. 4  Intersection analysis of the PPI network and univariate Cox regression analysis. A An interaction network was built with nodes with 
interaction confidence values >0.90. B Genes are ordered by the number of nodes. C Univariate Cox regression analysis was performed on selected 
survival-related genes with a p value < 0.05. D Venn diagram displaying the intersection of the top 30 nodes in the PPI and the most significant 
factors in univariate Cox regression. E Relationship between the gene expression levels of CD45 and HPSE. F The expression patterns of HPSE and 
CD45 in ESCC tissues were assessed using immunohistochemistry. G The correlation between HPSE and CD45 in ESCC tissues was evaluated with 
Spearman rank correlation (p value = 0.1782). H The correlation between HPSE and PD-L1 in ESCC tissues was evaluated with a Spearman rank 
correlation (p value = 0.8454)
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Fig. 5  HPSE was involved in multiple biological processes in ESCC tissues. A The results of GSEA (GO terms) showed that the high HPSE expression 
group was enriched in oxidoreductase activity acting on metal ions, peptide cross linking, and the nucleotide sugar biosynthetic process. B The 
enriched GO pathways in samples with low HPSE expression. C The GSEA results (KEGG pathways) showed that samples with high HPSE expression 
were significantly enriched in cytokine–cytokine receptor interactions, the Jak-STAT signaling pathway, and retinol metabolism. D Enriched KEGG 
pathways in the low HPSE expression group
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expression and patient survival. The corresponding 
clinical data is listed in Supplemental Table S2. Analy-
sis of ESCC tissues with complete clinicopathologic 
information consistently indicated that the expression 
of HPSE in cancerous tissues correlated negatively 
with clinicopathologic classifications N stage (P = 
0.013, Table 1) and clinical stage (P = 0.024, Table 1). 
We divided patients into low- and high-expression 
HPSE groups by selecting optimal cutoff values with 
the survival R package. Kaplan–Meier curves showed 
that the overall survival time of patients with low 
HPSE expression in esophageal cancer tissues was 
shorter than that of those with high HPSE expression 
(log-rank test, p = 0.047) (Fig. 7B, C). Together, these 
results suggest that HPSE may be a potential prognos-
tic marker for ESCC.

Analysis of the effect of HPSE and clinical factors 
on the prognosis of ESCC
Previous data demonstrated a worse prognosis with a 
lower expression level of HPSE. To determine whether 
HPSE is a risk factor for prognosis in ESCC patients, we 
analyzed its expression and clinical significance in ESCC 
based on Kaplan–Meier and Cox proportional hazards 
regression models. By univariate Cox regression analy-
sis, we found that low levels of HPSE expression in tumor 
tissues correlated with a significantly increased risk of 
cancer-related death in patients with ESCC (Table  2). 
Similarly, the univariate analysis showed sex, clinical 
stage, classification T, and classification N to be associ-
ated with prognosis (Table  2). However, age subgroup 
did not correlate with poor prognosis (Table  2). Subse-
quently, we performed multivariate Cox regression analy-
sis of the five aforementioned factors. Clinical stage and 

Fig. 6  Single-cell RNA sequencing to explore HPSE expression in immune cells. A UMAP showed the visualization of 70,556 immune cell 
distributions in 7 esophageal squamous cancer tissues. B Based on the expression of known marker genes, the major types of tumor-infiltrating 
immune cells were identified, including B cells, T cells, CD4+ T cells, CD8+ T cells, dendritic cells, NK cells, monocytes, and progenitors. C Expression 
level of HPSE in each cluster

Fig. 7  HPSE expression in ESCC tumor tissues is associated with a poor prognosis. A A paired t test was used to compare the differences in HPSE 
protein levels between ESCC and matched para-carcinoma tissues. B Representative IHC images for high and low HPSE expression. The expression 
level of HPSE protein was quantified by using Image-Pro Plus 6.0 image analysis software. C Kaplan–Meier curves showed that patients with low 
HPSE levels in cancerous gastric tissues had poor overall survival
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sex remained poor prognostic factors in the multivariate 
Cox regression analysis of overall survival (Table  3). In 
particular, we found that compared with female patients, 
male patients had worse overall survival. Together, these 
data suggest that HPSE expression in ESCC tissues is 
associated with a poor prognosis and could serve as a risk 
factor to predict poor survival.

Discussion
Esophageal carcinoma is a common malignant tumor 
of the digestive tract with a poor prognosis [19]. ESCC 
is a common subtype in China that is characterized by 
unsatisfactory therapeutic efficacy as well as a poor prog-
nosis [20]. Although TNM staging is widely used as the 
risk stratification system for ESCC patients [21], it is 
insufficient for predicting prognosis for some patients. 
In recent years, with the development of molecular biol-
ogy and further understanding of the TME, several genes 
have been reported as prognostic factors in patients with 
ESCC [4, 22]. However, the TME is rather complex and 
significantly distinct in different tumor tissues [23, 24]. 

Thus, we applied tumor purity as the assessment crite-
rion of the TME. Due to the differences in tumor purity 
and hypoxia across different tumor tissues, the replicabil-
ity of previously established prognostic models based on 
bioinformatic analysis in ESCC is poor. It is also unclear 
how to use gene expression signatures to achieve better 
prognostic prediction in ESCC.

In our study, we attempted to explore a new gene sig-
nature closely related to the prognosis of ESCC through 
a series of bioinformatics analyses. The TME is important 
for tumor pathogenesis and can change the gene expres-
sion levels in tumor cells. Due to heterogeneity in gene 
expression, it is not convincing to identify cancer prog-
nostic markers by analyzing the overall tumor tissues. 
On the other hand, hypoxia in the cancer microenviron-
ment is a common feature of most malignant tumors 
and exerts an adverse effect in terms of tumor aggres-
siveness and patient prognosis [9, 25]. Correspondingly, 
hypoxia has a strong influence on gene expression in 
tumor tissues. Therefore, if genes selected are influenced 
by tumor purity, hypoxia, and other physical or biologi-
cal influences, a prognostic model might have low valid-
ity. Thus, we screened new gene markers independent 
of tumor purity and hypoxia to construct a prognostic 
model in ESCC. By bioinformatics analysis, heparanase 
(HPSE) was identified as a prognostic biomarker in ESCC 

Table 1  Correlation between HPSE expression in cancerous 
tissues and clinicopathologic characteristics

*p < 0.05

Patient characteristic N Spearman R p value

Gender 112 0.013 0.889

  Male 83

  Female 29

Age (years) 111 −0.041 0.673

  ≤67 57

  >67 54

T classification 106 −0.132 0.177

  T1 4

  T2 18

  T3 83

  T4 1

N classification 112 −0.235 0.013*

  N0 52

  N1 36

  N2 19

  N3 5

Clinical stage 107 −0.218 0.024*

  I 4

  II 48

  III 55

  IV 0

Survival status 112 −0.120 0.208

  Alive 21

  Death 91

Table 2  Univariate Cox regression analysis of potential 
prognostic factors for esophageal squamous cancer patients in 
the tissue microarray

RR relative risk, CI confidence interval

*p < 0.05, **p < 0.01, ***p < 0.001

Patient characteristic N RR (95% CI) p value

Gender 112

  Male 83 1

  Female 29 0.439 (0.258–0.747) 0.002**

Age (years) 111

  ≤66 57 1

  >66 54 1.052 (0.695–1.593) 0.811

T classification 106

  T1+T2 22 1

  T3+T4 84 2.710 (1.490–4.931) 0.001**

N classification 112

  N0+N1 88 1

  N2+N3 24 2.749 (1.680–4.498) 0.000***

Clinical stage 107

  I–II 52 1

  III–IV 55 3.127 (1.970–4.961) 0.000***

HPSE expression 112

  Low 93 1

  High 19 0.525 (0.286–0.965) 0.038*
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independent of tumor purity and hypoxia, a finding that 
was verified by IHC.

We performed a transcriptomic analysis of ESCC data 
in the GEO database. The ESTIMATE algorithm was used 
to calculate tumor purity according to immune and stro-
mal scores. From the correlation analysis, we selected a 
group of genes that had no correlation with tumor purity. 
Next, we constructed a gene set related to hypoxia based 
on pathway analysis by GSVA. We focused on the inter-
section of gene sets, which included DEGs not influenced 
by tumor purity and hypoxia. By means of gene enrich-
ment analysis, we explored the biological processes of 
the co-expressed genes. Interestingly, functional analysis 
revealed that the intersecting genes were associated with 
epidermal development and the cell cycle. Subsequently, 
we constructed a PPI network and performed univariate 
Cox regression analysis. The results indicated that HPSE 
may predict the prognosis of ESCC independent of the 
TME and tumor purity. We explored the biological func-
tion of HPSE, and GSEA results showed that HPSE cor-
related with oxidoreductase activity acting on metal ions, 
septum development, growth and signal transduction, 
and lysine degradation pathways. These results indicate 
that HPSE is involved in multiple biological processes 
in ESCC. However, the pathways enriched in samples 
with high HPSE expression were not associated with 
tumor purity or hypoxia. We also used the Reactome 
database [17] and PPI network to understand the steps 
of HPSE biological pathways. The results indicated that 
HPSE is involved in regulating the multi-step reaction of 

heparan sulfate glycosaminoglycans and proteoglycans, 
leading to extracellular matrix remodeling in ESCC. We 
also analyzed the expression of HPSE in immune cells by 
single-cell sequencing and observed HPSE expression in 
both tumor tissues and para-cancerous tissue-resident 
immune cells.

HPSE is an endo-β-D-glucuronidase capable of cleav-
ing heparan sulfate side chains that are liberating such 
heparan sulfate binding proteins, as well as potentially 
contributing to extracellular matrix (ECM) degradation 
[26, 27]. As a degrading enzyme, HPSE is involved in 
biological and pathological processes, including tissue 
repair, inflammation, tumor angiogenesis, invasion, and 
metastasis [28]. Some studies have reported that upreg-
ulated HPSE correlates with poor prognosis in mye-
loma, colon, breast, and prostate carcinoma [29, 30]. 
However, conflicting results were reported in gastric 
carcinomas, head and neck carcinomas [31], and lung 
cancers [32]. It has been reported that HPSE expression 
is notably reduced in hepatocellular carcinoma (HCC) 
tissues compared with non-tumor liver tissues and is 
significantly associated with poor outcomes [33]. In our 
research, we found that HPSE expression was down-
regulated in ESCC tissues and was associated with poor 
prognosis and lower rates of survival. The inconsistent 
conclusions from different reports on HPSE in different 
types of tumors might result from the different protein 
subcellular locations, expression levels, and activities 
of HPSE. In addition, the heparan sulfate (HS) side 
chains of heparan sulfate proteoglycans (HSPGs) can 
bind multiple growth factors, chemokines, cytokines, 
and enzymes in the ECM and cell surface [34–36]. 
HPSE release HS-bound growth factors, such as basic 
fibroblast growth factor (bFGF), by cleaving HSPG 
side chains in hepatocellular carcinoma (HCC) [37, 
38]. bFGF may promote tumor progression by enhanc-
ing endothelial cell and tumor cell proliferation [39]. 
HS-bound growth factors exhibited inhibitory effects 
on proliferation and signaling activation of tumor cells, 
such as melanoma and HCC. Thus, low HPSE expres-
sion might enhance the ability of growth factors to bind 
to esophageal tumor cells and confer worse prognosis. 
Regardless, the detailed mechanism of its regulation 
requires further study.

To verify these results of bioinformatic analysis, we fur-
ther analyzed the expression in ESCC samples of a tissue 
microarray. As expected, we found that the expression of 
HPSE was lower in these cancer tissues than in the paired 
adjacent normal tissues and was significantly associated 
with survival. We also analyzed the correlation between 
CD45 and PD-L1 immune indexes and HPSE expression 
and found that HPSE expression was not correlated with 
that of PD-L1. The conclusions also reflected that the 

Table 3  Multivariate Cox regression analysis of potential 
prognostic factors for esophageal squamous cancer patients in 
the tissue microarray

RR relative risk, CI confidence interval

*p < 0.05, **p < 0.01, ***p < 0.001

Patient characteristic N RR (95% CI) p value

Gender 106

  Male 79 1

  Female 27 0.543 (0.309–0.956) 0.034*

T classification 106

  T1+T2 22 1

  T3+T4 84 1.817 (0.937–3.525) 0.077

N classification 106

  N0+N1 83 1

  N2+N3 23 1.492 (0.850–2.618) 0.163

Clinical stage 106

  I–II 52 1

  III–IV 54 1.915 (1.088–3.370) 0.024*

HPSE expression 106

  Low 88 1

  High 18 0.727 (0.375–1.412) 0.347
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expression of HPSE was not influenced by tumor purity. 
Moreover, we used univariate Cox proportional hazard 
analysis to evaluate risk factors for clinical prognosis, 
and the results indicated that clinical stage, T classifica-
tion, and M classification were associated with prognosis. 
It was also shown that HPSE expression was correlated 
with metastasis in ESCC. We also found that sex was a 
risk factor for ESCC, with patients having worse overall 
survival [40]. As previously reported, female patients had 
better survival outcomes than male patients in ESCC, 
consistent with our results [41, 42]. Preclinical studies 
have demonstrated that estrogens may inhibit growth of 
squamous tumor cells. Thus, the relatively better survival 
in female compared with male patients with ESCC may 
be at least partly explained by the influence of sex hor-
mones. However, efforts should be made to investigate 
the underlying biological mechanism. Based on multi-
variate Cox regression analysis, the current study showed 
that HPSE expression correlated significantly with clini-
cal stage and sex in patients with ESCC. Although HPSE 
has been proposed as a prognostic marker in ESCC, 
it is unclear whether and how it plays a role in tumor 
metastasis.

In summary, HPSE is a potential prognostic marker 
independent of tumor purity and hypoxia influences. Our 
findings suggest that HPSE is a novel prognostic marker 
for patients with ESCC. Nevertheless, the mechanisms 
by which HPSE regulates ESCC carcinogenesis and 
metastasis have not yet been elucidated and warrant 
further investigation.

Conclusion
In conclusion, the purpose of the current study was 
to determine a better way to predict the prognosis 
of ESCC. We identified and verified that the expres-
sion of HPSE was independent of tumor purity and 
hypoxia and clearly correlated with the metastasis and 
prognosis of ESCC. Thus, our study will be helpful in 
ESCC patient evaluation and has significant clinical 
relevance.
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