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Background and Purpose: Cholesterol is an essential lipid and its homeostasis is a major 
factor for many diseases, such as hyperlipidemia, atherosclerosis, diabetes, and obesity. 
Sodium-glucose cotransporter 2 (SGLT2) inhibitor canagliflozin (Cana) is a new kind of 
hypoglycemic agent, which decreases urinary glucose reabsorption and reduces hyperglyce
mia. Cana has been shown to regulate serum lipid, decrease serum triglyceride and increase 
serum high-density lipoprotein-cholesterol (HDL-C), and improve cardiovascular outcomes. 
But evidence of how Cana impacted the cholesterol metabolism remains elusive.
Methods: We treated Cana on mice with chow diet or western diet and then detected 
cholesterol metabolism in the liver and intestine. To explore the mechanism, we also treated 
hepG2 cells and Caco2 cells with different concentrations of Cana.
Results: In this study, we showed that Cana facilitated hepatic and intestinal cholesterol 
efflux. Mechanically, Cana via activating adenosine monophosphate-activated protein kinase 
(AMPK) increased the expression of ATP-binding cassette (ABC) transporters ABCG5 and 
ABCG8 in liver and intestine, increased biliary and fecal cholesterol excretion.
Conclusion: This research confirms that Cana regulates cholesterol efflux and improves 
blood and hepatic lipid; this may be a partial reason for improving cardiovascular disease.
Keywords: canagliflozin, ATP-binding cassette (ABC) transporters G5/8, cholesterol efflux, 
AMPK

Introduction
Cholesterol, as an important biologically active substance, plays a significant role in 
maintaining membrane structure, biosynthesis of bile acid and steroid hormones.1 

Cholesterol homeostasis dysregulated is also involved in the pathophysiology of 
various diseases, such as hyperlipidemia, cardiovascular disease,2 obesity3 and 
diabetes.4

Cholesterol homeostasis mainly involves absorption of cholesterol in the 
intestine or biosynthesis in the liver, reverse cholesterol transport, converse 
into bile acid, and biliary and fecal excretion. Intestinal absorption is mainly 
mediated by Niemann-Pick C1-Like 1(Npc1l1).5 3-hydroxy-3-methylglutaryl- 
CoA reductase (Hmgcr) is a rate-limiting enzyme for sterol biosynthesis. 
Cholesterol mainly reverses transport into the liver by high-density lipoprotein 
(HDL); then, a third of them are converted into bile acid through the classical 
pathway (mainly by Cyp7a1 and Cyp8b1) or alternative pathways (mainly by 
Cyp27a1 and Cyp7b1).6 Cholesterol transport is mediated by many membrane 
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transporters, including ATP-binding cassette (ABC) 
transporters Abca1 and Abcg1. Abca1 promotes choles
terol export to Apo A-I, and Abcg1 plays a role in 
cholesterol export to HDL.1 In the liver and intestine, 
Abcg5/8 promotes secretion of cholesterol into bile or 
gut lumen. It has been reported that increased choles
terol excretion but not absorption can improve cardio
vascular diseases.7 The liver X receptor (LXR) is an 
important regulator of cholesterol homeostasis.8 LXR 
regulated expression of the ABC transporters Abca1, 
Abag1 and Abcg5/8 is critical in enhancing cholesterol 
efflux.9

AMPK is an important cellular energy sensor; 
a number of recent studies have shown that AMPK has 
a wide range of biological roles, involving mitochondrial 
oxidative respiration, energy homeostasis and autophagy.10 

And it has the potential to affect many human diseases, 
such as cancer, type 2 diabetes and atherosclerosis.10,11 

A number of drugs, like salicylate12 and Pueraria,13 acti
vating AMPK, have been reported to stimulate cholesterol 
efflux from macrophage and decrease cellular lipid accu
mulation via AMPK-Abca1 axis. Activation of AMPK 
increased the expression of Abca1 and its transcriptional 
activator LXRα in macrophages.14 And metformin, 
a classical AMPK activating drug, increases Abcg5 and 
Abcg8 expression in the liver via regulating the stability of 
Period 2 which is a repressor of transcription on the Abcg8 
promoter.15 Thus, AMPK plays an important role in cho
lesterol homeostasis.

Canagliflozin (Cana), one of the sodium glucose 
cotransporters (SGLT) inhibitors, inhibits the reabsorption 
of glucose in the proximal glomerular tubules. Except 
reducing hyperglycemia, clinical trials and experience in 
mice have confirmed that Cana reduces body weight,16,17 

lowers blood lipid,18 and reduces the risk of cardiovascular 
events.19–21 However, there is still a lack of evidence as to 
how Cana impacted the cholesterol metabolism.

In this study, we showed that Cana can facilitate the 
cholesterol efflux into bile and feces through upregulating 
Abcg5 and Abcg8 expression in the liver and ileum. In 
vitro, we found that Cana could directly activate AMPK 
pathway and upregulate the expression of Abcg5 and 
Abcg8. Inhibition of AMPK pathway abolished the effect 
of Cana on the regulation of Abcg5/8. Our study provides 
a plausible explanation of Cana’s effect on cholesterol 
metabolism.

Materials and Methods
Animal Model and Treatment
C57BL/6J male mice (8 weeks old) were divided into four 
groups (n=8) and, respectively, fed with chow diet or 
western diet (42% of kcal from fat, 0.5% cholesterol, 
Medicinence, Cat, #TD88137A) for 12 weeks. 
Canagliflozin (MB1516, Meilunbio®, Dalian, China) 
(Supplementary Figure 1) was mixed with chow diet or 
western diet at 0.03% (w/w).22 Fecal samples and urine 
were collected for three consecutive days using metabolic 
cages before being killed. Mice were killed through CO2 

after fasted overnight. Blood, liver, duodenum, jejunum 
and ileum were collected and stored in −80°C. All mice 
were housed in the institutional animal care of West China 
Hospital of Sichuan University with 24°C-indoor tempera
ture, 55±15% relative humidity, and a 12-hour light/dark 
cycle. Mice were bred in standard cage with ad libitum 
feeding. All animal experiments in this research were 
carried out in accordance with the relevant regulations of 
the Sichuan University Laboratory Animal Ethics commit
tee and approved by the Institutional Review Board (or 
Ethics Committee) of the Sichuan University 
Laboratory Animal Ethics committee (2020061A).

Histological Staining
Mouse livers were fixed and embedded in paraffin, sec
tioned at 4μm, and stained with hematoxylin and eosin 
(H&E). Oil-Red-O staining was performed by 10μm fro
zen sections. The samples were examined under a light 
microscope (Nikon, Tokyo, Japan), at 200X or 400X 
magnification.

Serum Alanine Transaminase (ALT), 
Aspartate Aminotransferase (AST) Assays
Blood was held at 4°C for 2 hours, then centrifuged at 
6000 rpm for 10 minutes, and supernatant removed. The 
serum was stored at −80°C. Serum ALT (100,020,000, 
Biosino Bio) and AST (100,020,010, Biosino Bio) levels 
were measured using appropriate enzymatic kits.

Cholesterol, Triglycerides, Glucose and 
Bile Acid Assays
Mice feces of 24 hours were collected for three consecu
tive days. Then dried and ground the feces, extracted with 
75% ethanol at 55 degrees Celsius for 2 hours, centrifuged 
at 1500 rpm, 10 min and took the supernatant for 
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detection. Liver lipids were extracted with chloroform and 
dissolved with 1% triton ethanol. Serum, hepatic and fecal 
lipids were detected by the enzymatic kits (Biosino, 
Beijing, China). Urine was diluted 100 times with PBS, 
then detected glucose with an assay kit (100,020,100, 
Biosino, Beijing, China). Blood glucose was measured 
using a glucometer (Roche, Basel, Switzerland).

Cell Culture and Treatments
All cell lines were cultured under standard conditions at 
37°C, 5% CO2 in a humidified incubator. HepG2 cells 
(ATCC, HB8065) and Caco2 cells (ATCC, CRL-2102) 
were maintained in a medium (DMEM, supplemented 
with 10% fetal bovine serum). Cells were cultured in a 12- 
well, and were pretreated with 10µM Compound 
C (Merck, 866,405–64-3) for 1 h, then were treated with 
10µM or 30µM Cana for 2 h to detect the expression of 
AMPK expression, or 24 h to detect the expression of 
ABCG5/8.

Western Blotting Analysis
The total protein was extracted by loading buffer and used 
BCA method to ensure protein concentration. Primary 
antibodies and fluorescence secondary antibodies were 
listed in Supplementary Table 1. The signal was visualized 
using LI-COR System (Lincoln, NE). Quantitative deter
mination of band intensity was analyzed using Image 
Studio (Li-COR).

Total RNA Extraction and Real-Time PCR 
Analysis
The total RNA of the tissues was extracted with trizol 
reagent (135,306, Life Technologies). The cDNA synthe
sized from RNA by reverse transcription kit (RR037A; 
TaKaRa, Kyoto, Japan) and cDNA samples were quanti
fied by CFX96 Real-time RT-PCR System (Hercules, CA) 
with SYBR Green PCR Master Mix (Takara, Tokyo, 
Japan). The Primers are listed in Supplementary Table 2.

Statistical Analysis
Data were shown as mean ± SEM. Student’s t-test or one- 
way ANOVA Tukey's test was used for data analysis. In 
animal experiments, there are 8 mice in each group; and in 
the cell experiments, there are three duplicate holes in each 
group. P < 0.05 was considered statistically significant.

Results
Cana Improved Serum Lipid Profiles and 
Hepatic Lipid Metabolism
It has been reported that Cana can improve lipid 
metabolism.19 In western diet-fed mice, Cana treatment 
significantly decreased western diet increased the body 
weight (35.41±1.244 to 30.47±0.5775g, p=0.0026) 
(Supplementary Figure 2A and Supplementary Table 3). 
Compared with control, Cana slightly increased the food 
intake, but did not reach statistical difference 
(Supplementary Figure 2B, Supplementary Table 3). As 
expected, Cana decreased the blood glucose under both 
chow diet and western diet (186.1±5.516 to 136.6±4.
569 mg/dl, p<0.0001) (Supplementary Figure 2C, 
Supplementary Table 3). The glucose level in urine was 
significantly increased by 6000–8000 times in Cana trea
ted mice (Supplementary Figure 2D, Supplementary 
Table 3).

We then evaluated the effect of Cana on the lipid 
metabolism in mice fed with chow and western diet. 
Serum cholesterol level was significantly decreased from 
280.5±15.92 mg/dl to 217.1±20.98 mg/dl (p= 0.0275) in 
Cana treated mice (Figure 1A). Further analysis revealed 
that the lower serum LDL-C could account for the 
decreased serum cholesterol seen in Cana treated mice 
(Figure 1B). Unexpectedly, Cana increased the HDL-C 
under both chow diet and western diet (Figure 1C). The 
serum level of triglyceride was also lowered from in Cana 
treated mice after western diet (Figure 1D). We went on to 
evaluate the effect of Cana on hepatic lipid metabolism. 
H&E staining and Oil red O staining indicated that hepatic 
lipid was less in Cana treated mice (Figure 1E and F). 
Lipid quantification revealed that the levels of cholesterol 
and triglyceride were significantly lower in Cana treated 
mice under western diet (Figure 1G and H).

Cana Upregulated Hepatic Cholesterol 
Transport
To understand the cause of Cana regulated lipid metabo
lism, we measured the mRNA expression of genes 
involved in cholesterol metabolism. We first detected the 
gene expression in cholesterol biosynthesis. Cana had 
little effect on the expression of Hmgcr, and slightly 
decreased the expression Hmgcs in the liver of mice fed 
with chow diet (Supplementary Figure 3A). However, the 
expressions of these two genes were significantly 
decreased in Cana treated mice (Figure 2A). Once 
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synthesized, cholesterol can be converted into bile acid, or 
transported into bile by its transporters.6 The conversion 
of cholesterol into bile acid is controlled through the 
classical pathway (main enzyme are Cyp7a1 and 
Cyp8b1) and alternative pathway (main enzyme are 
Cyp27a1 and Cyp7b1).6 The mRNA expressions of 
these bile acid synthetic genes were significantly 
increased by 1.5–2.5 times in Cana treated mice upon 
western diet (Figure 2B). On chow diet, the 
expressions of Cyp7a1 and Cyp27a1 were also increased 

(Supplementary Figure 3B). Cholesterol can be trans
ported into plasma by Abca1 and Abcg1, or into bile by 
Abcg5 and Abcg8.23 The mRNA expression of these 
transporters was upregulated about 1.5 times by Cana on 
both chow diet and western diet (Figure 2C and 
Supplementary Figure 3C). Consistently, the protein 
levels of Abcg5 and Abcg8 were increased by 1.5–2 
times in Cana treated mice (Figure 2D and E). 
Consequently, the biliary concentration of cholesterol 
and bile acid was higher in Cana treated mice 

Figure 1 Serum parameters and hepatic lipid profile in Cana treated mice. 8 weeks old C57BL/6J mice were fed with chow diet or western diet (n=8) for 12 weeks (0.03% 
w/w Cana was mixed with diet). Serum levels of (A) total cholesterol, (B) LDL-C, (C) HDL-C and (D) TG in mice were shown. (E) H&E staining (X 400) and (F) Oil Red 
O staining (X 400) of liver tissues were shown. Hepatic (G) cholesterol and (H) triglyceride levels were also represented. Data was shown with mean ± SEM. *P<0.05, 
**P<0.01 compared with control. 
Abbreviations: HDL-C, HDL-cholesterol; LDL-C, LDL-cholesterol; TG, triglyceride.
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Figure 2 Cana upregulated hepatic cholesterol transport. 8 weeks old C57BL/6J mice were fed with western diet for 12 weeks. (A) Real-time PCR analysis of hepatic 
mRNA levels of cholesterol biosynthesis, (B) bile acid synthesis from cholesterol and (C) cholesterol efflux (n=6–8) in western diet fed mice. (D) Western blot analysis 
hepatic protein expression of ABCG5 and ABCG8. (E) Quantification of ABCG5/8 protein were shown. Biliary concentrations of (F) cholesterol and (G) bile acid in chow 
diet and Western diet fed mice were measured (n=5–7). (H) The mRNA levels of LXRα was detected (n=8). HepG2 cells were treated with Cana 10µM or 30µM for 24h, 
the mRNA expression of (I) ABCG5 and (J) ABCG8 were detected by real-time PCR (n=3), (K) the protein expression of ABCG5/8 were measured by Western Blot. (L) The 
mRNA expression of LXRα was analyzed in hepG2 cells (n=3). The data was shown with mean ± SEM. *P<0.05, **P<0.01 compared with control or DMSO group.
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(Figure 2F and G). In the liver, LXR is involved in 
transcriptional control of Cyp7A1, as well as induction 
of Abca1 and Abcg5/8 expression, and thus accelerates 
biliary cholesterol disposal.24 The mRNA expression of 
LXR in liver is increased by Cana on chow diet 
(Supplementary Figure 3D) and western diet 
(Figure 2H). To test whether Cana could directly regulate 
the expression of Abcg5 and Abcg8, we treated HepG2 
cells with different concentrations of Cana. We found that 
Cana could increase the mRNA expression of Abcg5 and 
Abcg8 more than 2 times (Figure 2I and J). The protein 
levels of Abcg5 and Abcg8 were also upregulated about 
1.5 times by Cana (Figure 2K and Supplementary Figure 
3E and F). The mRNA expression of LXR in hepG2 cells 
also increased about 1.5 times by treatment with low dose 
of Cana and more than 2 times by high dose of Cana 
(Figure 2L).

Cana Augment the Intestinal Abcg5/8 
Expression
Intestinal cholesterol absorption and transport also play 
a vital role in cholesterol homeostasis.25 On the apical, cho
lesterol is transported into the enterocytes by Npc1l1.5 Cana 
treatment had little effect on the expression of Npc1l1 
(Figure 3A). Cholesterol in the enterocytes either transports 
back into the intestinal lumen by abcg5/8 or transports into 
basolateral by Abca1 and Abcg1.26 The expression of 
Abcg5/8 was upregulated 2–3 times than that in the Cana 
treated duodenum and jejunum (Figure 3A), suggesting 
higher efflux of cholesterol back to the lumen. The 
expressions of Abca1 and Abcg1 were also higher 1.5–2 
times in the duodenum and jejunum (Figure 3B). Apo 
A-I (apolipoprotein A-I) receives cholesterol efflux from 
Abca1, then participates in new HDLs synthesis.27 The 
expression of Apo A-I was consistently increased in the 
duodenum and jejunum of Cana treatment western diet fed 
mice (Figure 3B). As a result of elevated efflux of choles
terol, the fecal cholesterol was consistently higher in Cana 
treated mice (Figure 3C). LXR agonist upregulates Abca1, 
Abag1 and Abcg5/8 expression, and accelerates biliary and 
fecal cholesterol disposal.24,28 The mRNA expression of 
LXR was also upregulated in intestine (Figure 3D). We 
also tested the effect of Cana in human colon adenocarci
noma cell line, Caco2 cells. In Caco2 cells, both mRNA and 
protein expression of Abcg5 and Abcg8 were higher about 
1.5–2 times after Cana treatment (Figure 3F–H, 
Supplementary Figure 4A and B). And the LXR expression 

was also significantly increased by about 2.5 times by Cana 
(Figure 3E).

Cana Increased Abcg5 and Abcg8 
Expression via Active AMPK
To understand the mechanism of Cana regulated Abcg5 
and Abcg8 expression, we explored the signaling path
way. Cana has been reported to activate AMPK in several 
cell lines.29,30 Western blot result showed that Cana could 
active AMPK in liver tissue (Figure 4A) and duodenum 
and jejunum (Supplementary Figure 5). In hepG2 cells, 
Cana could directly activate AMPK and its downstream 
phosphorylation of ACC (Figure 4B). In Caco2 cells, 
AMPK was also activated by Cana treatment (Figure 
4C). To confirm whether Cana regulated Abcg5 and 
Abcg8 was AMPK dependent, we treated hepG2 and 
Caco2 cells with compound C, a pharmacological inhibi
tor of AMPK. Inhibition of AMPK pathway abolished 
Cana increased expression of Abcg5 and Abcg8 in both 
hepG2 and Caco2 cells (Figure 5A–F, Supplementary 
Figure 6A–F). Cana upregulated expressions of LXR in 
both hepG2 and Caco2 cells were also inhibited by 
Compound C (Supplementary Figure 6G and H). Taken 
together, Cana increased Abcg5 and Abcg8 expression 
via activating AMPK pathway.

Discussion and Conclusion
Cana, the first SGLT2 inhibitor, was approved as 
a hypoglycemic drug by the FDA in 2013.18 It increases 
urinary sugars excretion by inhibiting glucose reabsorption 
in proximal glomerular tubules. Cana has been reported to 
regulate cholesterol metabolism. Our study reported that 
Cana upregulated HDL-C, and downregulated the level of 
cholesterol and triglyceride in serum. This result that Cana 
downregulated cholesterol and triglyceride was also shown 
in APOE-/- mice with high cholesterol feeding.31 Yu et al 
study showed that Cana decreased cholesterol in serum but 
had little effect on triglyceride in C57Bl/6NTac mice fed 
with a high-fat diet and injected with streptozotocin.32 

Basu et al also analyzed the lipid profile in serum of 
diabetic CETP-Apolipoprotein B100 transgenic mice, and 
their results showed that Cana increased LDL-C and HDL- 
C and reduced TG in serum.33 The different effect of Cana 
is likely a result of different backgrounds of mice and diet 
feeding.

Cholesterol homeostasis in the body is mainly involved 
in de novo synthesis, intestinal absorption, and biliary and 
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Figure 3 Cana increases expression of intestinal Abcg5 and Abcg8. 8 weeks old C57BL/6J mice were fed with western diet for 12 weeks. (A) Real-time PCR analysis of 
cholesterol absorption and efflux in duodenum, jejunum and ileum, (B) and mRNA expression of HDL-cholesterol transports (n=5–8). (C) Fecal cholesterol of chow diet 
and Western diet fed mice were measured (n=6–8). (D) The mRNA expression of LXRα in duodenum and jejunum was detected with real-time PCR. Caco2 cells were 
treated with canagliflozin 10µM or 30µM for 24h. The mRNA levels of (E) LXRα, (F) ABCG5 and (G) ABCG8 were measured (n=3). (H) Western blot analyzed the ABCG5 
and ABCG8 protein level of Caco2. The data was shown with mean ± SEM. *P<0.05, **P<0.01 compared with control or DMSO group.
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Figure 4 Cana activated AMPK in vivo and vitro. (A) Hepatic protein expression of p-AMPK and AMPK in Western diet fed mice were measured and the p-AMPK/AMPK 
ratio was shown. HepG2 cells and Caco2 cells were treated with Cana (10µM or 30µM) for 2h (n=3). P-AMPK and p-ACC of (B) hepG2 and (C) Caco2 cells were analyzed. 
And the quantification of p-AMPK/AMPK were revealed. The data was shown with mean ± SEM. *P<0.05, **P<0.01 compared with control or DMSO group. 
Abbreviations: AMPK, adenosine monophosphate activated protein kinase; p-AMPK, phosphorylation-AMPK; p-ACC, phosphorylation-acetyl-coenzyme A carboxylase.
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Figure 5 Cana increased ABCG5/8 expression via activating AMPK pathway. HepG2 and Caco2 cells were treated with Cana (10µM or 30µM) for 24h. To inhibit AMPK 
signaling cells were pretreated with 10µM compound C for 1h. The protein expression of (A) hepG2 and (D) caco2 was measured by Western blot. Real-time PCR analyzed 
(B) ABCG5 and (C) ABCG8 expression in hepG2 cells, and (E) ABCG5 and (F) ABCG8 expression in caco2 cells. The data was shown with mean ± SEM. *P<0.05, **P<0.01 
compared with DMSO groups, and #P<0.05, ##P<0.01 CANA10µM+Compound C compared with CANA10µM group. 
Abbreviation: CC, compound C.
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fecal excretion. Cana has been reported that inactive 
Hmgcr, a key rate-limiting enzyme in de novo synthesis 
of cholesterol.34 In our study, we also found Hmgcr and 
Hmgcs were decreased in Cana treatment mice. Abcg5 and 
Abcg8 form heterodimers acting as biliary and intestinal 
efflux pumps for dietary sterols and cholesterol on the 
apical side.35 Our study showed that Cana increased 
Abcg5 and Abcg8 expression in the liver and ileum facili
tated cholesterol biliary and fecal excretion. Npc1l1 is the 
most important cholesterol absorption protein in the intest
inal brush border membrane.5 Only increased Abcg5 and 
Abcg8, but not Npc1l1 can reduce atherosclerosis and 
improve cholesterol metabolism.7,36 Our study firstly 
reported that Cana could facilitate biliary and fecal cho
lesterol excretion but not change intestinal cholesterol 
absorption.

AMPK, an important energy sensor in cell growth, 
inhibits anabolic processes and promotes catabolism. 
Activating AMPK can inactivate Hmgcr, key enzyme of 
cholesterol synthesis.37 Fleur Lien reported that activation 
of AMPK can inhibit farnesoid X receptor (FXR) tran
scriptional activity,38 which is important in negative- 
feedback regulatory bile acid synthesis. Except Matthew, 
M. Molusky study found that AMPK through phosphor
ylate regulates Cry-1 and Per2 binding, which promotes 
ABCG5/8 expression.15 LXR is also an important choles
terol regulator. In macrophages, LXR agonist upregulates 
Abca1 and Abag1 expression, and facilitates cholesterol 
conversion to HDL.39 In the liver and intestine, LXR is 
involved in the transcriptional control of Cyp7A1, as well 
as induction of ABCA1, ABCG5, and ABCG8 expression, 
thus accelerating biliary and fecal cholesterol disposal.24,28 

And AMPK can also activate LXR and downstream pro
teins, upregulate cholesterol reverse transport.14 These 
results are coincident with our findings that Cana inhibits 
cholesterol synthesis, stimulates bile acid biosynthesis and 
facilities cholesterol efflux.

Cana has been certified to upregulate the ratio of AMP/ 
ADP, indirectly activating AMPK at lower dose and they 
confirmed that in mice 100mg/kg Cana activated liver 
AMPK in 4h.29 In adipocyte, Cana promotes mitochon
drial remodeling via AMPK-Sirt1-Pgc1α pathway and 
stimulates energy metabolism.30 In vascular endothelial 
cells, Cana inhibits interleukin-1β-stimulated secretion of 
IL-6 and monocyte chemoattractant protein-1.40 However, 
there is no report about whether Cana activates AMPK in 
the intestinal segment. Therefore, we detected protein 
expression of AMPK and p-AMPK in duodenum, 

jejunum, and ileum. In the liver and intestine, Cana dis
tinctly increased p-AMPK expression. ACC, a main major 
substrate of AMPK, can be phosphorylated and inhibited 
by AMPK.41 The phosphorylation of AMPK and its 
downstream protein ACC was enhanced by Cana. Thus, 
we used Compound C, a pharmacological AMPK inhibi
tor, to inhibit AMPK in hepG2 cells and Caco2 cells. The 
expressions of Abcg5 and Abcg8 and LXR were also 
inhibited and Cana stimulating could not increase their 
expression. Therefore, AMPK activated by Cana is at 
least a reason for its effect on reverse cholesterol 
transport.

We have recognized the limitation of our study. AMPK 
activation can increase the expression of cholesterol efflux 
genes, imply antioxidant and anti-inflammatory capacities, 
thus been thought of as a therapeutic candidate for the 
treatment of cardiovascular disease.11,42 We found that 
inhibition of AMPK could abolish the effect of Cana 
which increased the expression of Abcg5/8. The genetic 
inhibition of AMPK in the liver or intestine could be used 
to further validate this effect. Cholesterol metabolism in 
macrophages is also an important part of reverse choles
terol transport.43 AMPK can also enhance the anti- 
atherogenic properties of HDL.42 Cana’s effect on macro
phages can be studied further, and it may also be a reason 
of Cana improving cardiovascular outcomes.

In conclusion, we have shown the effect of Cana on 
blood lipid and hepatic cholesterol metabolism. 
Mechanically, we demonstrated that Cana activated LXR 
and increased Abcg5 and Abcg8 expression in liver and 
intestine via activating AMPK. Our results provide further 
evidence for clinical use of the drug in diabetic patients 
with high serum cholesterol or poor diet control.
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