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Neural processing is hypothesized to apply the same mathemat-
ical operations in a variety of contexts, implementing so-called
canonical neural computations. Divisive normalization (DN) is con-
sidered a prime candidate for a canonical computation. Here, we
propose a population receptive field (pRF) model based on DN
and evaluate it using ultra-high-field functional MRI (fMRI). The
DN model parsimoniously captures seemingly disparate response
signatures with a single computation, superseding existing pRF
models in both performance and biological plausibility. We ob-
serve systematic variations in specific DN model parameters across
the visual hierarchy and show how they relate to differences in
response modulation and visuospatial information integration.
The DN model delivers a unifying framework for visuospatial
responses throughout the human visual hierarchy and provides
insights into its underlying information-encoding computations.
These findings extend the role of DN as a canonical computation
to neuronal populations throughout the human visual hierarchy.

population receptive fields | divisive normalization | human visual cortex |
information-encoding models | ultra-high-field fMRI

The principal aim of computational neuroscience is to eluci-
date the theoretical principles underlying brain function. A

particularly fruitful approach has been the search for canonical
neural computations: the idea that the same mathematical op-
erations may underlie a multitude of seemingly distinct neural,
perceptual, and cognitive phenomena. Identifying these biologi-
cal information-processing algorithms would allow a description
of many brain functions in terms of explicit, yet parsimonious,
mathematical models (1, 2).

Divisive normalization (DN) was first proposed to overcome
the inability of linear receptive field models to capture nonlinear
phenomena, such as contrast saturation and surround suppres-
sion, observed in primary visual cortex (V1) (3, 4). Over the past
decades, DN has been used to explain many neurophysiological
and behavioral observations in different sensory modalities (5–
7), multisensory integration (8, 9), and cognitive domains (10,
11). DN also presents significant computational advantages for
neural information processing by reducing redundancy and in-
creasing sensitivity (12). Hence, it is now considered a prime
candidate for a canonical neural computation (13).

The fundamental notion underlying DN is that the output of
neuronal computations generally does not only depend on the
stimulus-driven input to the local neuronal population. Rather,
responses also depend on the contextual activity of many other
neurons. Models based on DN describe neuronal responses as
the ratio of these two components: a direct input term in the
numerator (activation) and a separate neuronal pool in the de-
nominator (normalization). The divisive interaction of these two
populations allows the model to describe a variety of nonlinear,
contextual interactions.

Evidence for the biological plausibility of DN comes from
its ability to explain many aspects of neuronal responses, from
single-neuron contrast-response functions and size tuning (14) to
attention (10) and cross-orientation suppression (15). Prominent
models of neural circuits have shown that biologically realistic

substrates can implement DN computations (16–19). Combining
direct input and contextual activity of other neurons, which is
mathematically formalized by DN, appears to be an important
property for healthy brain function (20, 21). Indeed, certain
psychiatric disorders have been characterized as disorders of DN;
i.e., they may stem from impaired ability to suitably weigh and
combine direct input with contextual evidence (22–25).

Here, we investigate the canonical nature of DN by extend-
ing the principle to the level of neuronal population responses
throughout the human visual hierarchy. In vision, the population
receptive field (pRF) is the region of visual space that elicits a
response from a population of neurons, which may be recorded
by using functional MRI (fMRI) or electrodes (26–30). fMRI
measurements at ultra-high-field enable the investigation of po-
tential canonical neural computations, such as DN, with high
sensitivity and specificity (31, 32).

We propose a pRF model based on DN and use fMRI at 7 T
to ask whether it can 1) unify existing models; and 2) provide
insights into visuo-cortical computations. We show that the DN
model unifies and outperforms existing pRF models (27, 33, 34)
and uniquely captures a variety of response signatures through-
out the human visual cortex, with a single computation. We find
systematic variations in both modulatory and spatial parameters
of the DN model along the visual hierarchy, and we show how
these variations underlie the different properties of responses
observed. These findings provide direct evidence for DN as a
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canonical computation in neuronal populations throughout the
human visual hierarchy.

Results
DN Model Outperforms Existing Models by Capturing Surround Sup-
pression, Nonlinear Compression, and their Combination. We com-
pare three existing pRF models—i.e., Gaussian (Gauss) (27),
Difference of Gaussians (DoG) (33), and Compressive Spatial
Summation (CSS) (34)—with the pRF model based on DN. The
respective formulations are given in Fig. 1. The DoG model uses
center-surround configurations to capture “suppression”: the
negative deflections observed in blood-oxygen-level-dependent
(BOLD) time courses when stimuli pass beyond the flanks of
the Gauss pRF, particularly in early visual cortex (33). Unlike
responses in early visual cortex, responses in late visual cortex
do not display prominent suppression, yet are increasingly in-
variant to stimulus size. That is, large stimuli elicit much smaller
responses than the sum of their components. The CSS model,
incorporating a static nonlinearity, was proposed to explain these
sublinear, or “compressed,” responses (34).

In agreement with previous studies, we observe a range of qual-
itatively different BOLD time courses across the visual cortex in
response to spatial visual stimuli (Fig. 2), showing suppression
(Fig. 2 A, C, and D, gray regions), compression (Fig. 2 B–D), and
combinations of the two in the same single time course (Fig. 2
C and D). The improvement brought about by the DN model is
particularly evident in comparison with the linear models (Gauss
and DoG), where nonlinear summation is present (Fig. 2 B–D).
The improvement of the DN model is also evident in comparison
with the models without center-surround configurations (Gauss
and CSS) in time courses where suppression is present (Fig. 2 A,
C, and D). Furthermore, going beyond existing models, the DN
model is uniquely able to describe both phenomena with a single
computation, whereas the other extant models can only capture
one aspect at best. Hence, it is the only model capable of aptly
capturing time courses showing combinations of compression
and suppression (Fig. 2 C and D). Overall, these results show
that the DN model is able to outperform all existing pRF models
at the level of single BOLD time courses, by capturing response
patterns showing compression, suppression, and combinations
thereof.

Next, we directly compare the four models’ performance
across nine visual regions spanning the hierarchy of human visual
cortex (V1, secondary visual cortex [V2], third visual cortex [V3],
visual area 3AB [V3AB], human visual area V4 [hV4], lateral
occipital [LO], temporal occipital [TO], ventral occipital [VO],
and intraparietal sulcus [IPS]) (35, 36). Fig. 2E shows the best
model at each cortical location for two participants. Fig. 2F shows
model performance and statistical significance of the difference
between DN and other models (if present), with the DN

model generally outperforming all others throughout the visual
hierarchy. Fig. 2G shows the performance difference compared
to the standard Gauss model and statistical significance of
the difference between Gauss and other models. Combined,
these quantifications show that the DN model significantly and
systematically outperforms all other models across the visual
hierarchy.

To verify that these findings are not unique to a specific
stimulation protocol, we devised four additional experimental
conditions, in which we varied the width and speed of the
visual stimulus to elicit potentially different response signa-
tures. The DN model also systematically outperforms existing
models throughout these additional experimental conditions
(SI Appendix, Fig. S1).

DN Model Constants Modulate Suppression and Compression. Next,
we sought to disentangle how the DN model can capture patterns
of suppression, compression, and their combination. To this end,
we simulated the DN model pRF profile (a one-dimensional
slice of the pRF shape in visual space) and the one-dimensional
response function (the model response to the fraction of ac-
tivation and normalization pRFs being stimulated). Simulating
pRF profiles allows us to investigate how parameters modu-
late the spatial aspect of DN model behavior, while response
functions allow us to investigate which parameters modulate
the (non)linearity of DN model responses. Note that both pRF
profiles and response functions are simplifications of the full
model. Specifically, the pRF profiles do not take into account
the nonlinearity of model responses, while the response functions
disregard the effect of potentially different sizes σ1 and σ2 of the
activation and normalization pRFs. The combination of these
aspects is discussed separately in Size Ratio of Normalization
and Activation pRFs Controls Spatial Oversaturation, through the
analysis of size–response curves.

Simulations of DN pRF profiles show that a nonzero value of
the activation constant (b) is necessary for the model to create
suppressive center-surround configurations (Fig. 3A), which gen-
erate below-baseline time-course deflections (e.g., Fig. 2 A and
C). Increasing the value of the activation constant generates pro-
gressively more pronounced signatures of suppression (Fig. 3A).
On the other hand, simulations of the model response function
show that the normalization constant (d) inversely modulates the
strength of compression in the model response (Fig. 3B). That is,
higher values of the normalization constant will generate a more
linear response, while lower values generate responses showing
stronger signatures of CSS. Hence, these simulations indicate
that the activation constant b might play a key role in modulating
the strength of suppression and that the normalization constant
d may be the key modulator of compression in DN model re-
sponses.
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Fig. 1. Existing pRF models and proposed DN model. (A) Gauss. (B) DoG. (C) CSS. (D) The DN pRF model. The DN model summarizes activation and
normalization pRFs as isotropic, two-dimensional Gaussians, G1 and G2, centered on the same position (x0, y0) in visual space (x, y), but with different
sizes, σ1 and σ2, and different amplitudes, a and c, respectively. Activation and normalization also have constant “baselines”—that is, an activation constant
b and a normalization constant d.
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Fig. 2. PRF model based on DN outperforms existing models in single time courses and visual regions throughout the human visual cortex. (A–D) Example
time course showing suppression (A), compression (B), and combinations of the two (C and D). The DN model supersedes existing models by simultaneously
capturing both with a single computation. A–D, Insets on each time course show the pRF spatial profile. (E) We evaluate model performance based on
the cross-validated variance explained (cvR2), where we fit model parameters on one-half of the data and evaluated model predictions with the other,
independent half of the data. The model with highest cvR2 is shown across the cortical surfaces of two participants. (F) cvR2 distribution. Black and
white horizontal lines within each violin plot are the mean and median of the distribution, respectively. Asterisks represent statistical significance of the
performance difference between the DN model and the other models; the color and number of the asterisks represent which model performed better and
statistical significance of the difference (Fisher’s permutation test. *P < 10−2; **P < 10−4; ***P < 10−6. No asterisks indicates no significant difference in
either direction. (G) Mean cvR2 difference of DoG, CSS, and DN models relative to the original Gauss model. Asterisks represent statistical significance of the
cvR2 difference between Gauss and other models (same significance as in F).

Together with the finding that eccentricity-size relationships
are broadly similar across models (SI Appendix, Fig. S2), these
theoretical considerations suggest that qualitatively different re-
sponse signatures, previously described by separate models and
thought to represent different computations, may arise from
a single canonical computation (DN) with locally varying pa-
rameters. In other words, Gauss, DoG, and CSS models may
capture specific subregions of the DN model’s b–d parameter
space (Fig. 3C). Previous studies found that suppressive center-
surround configurations are more prominent in early, rather than
late, visual cortex (33). Conversely, CSS is more prominent in
late, rather than early, visual cortex (34). If DN model activation
and normalization constants are indeed indices of suppression
and compression, we expect their values to change systematically
from early to late visual cortex and correlate with relevant prop-
erties of the DoG and CSS models.

Indeed, we find that the DN model activation and normal-
ization constants b and d show systematic variations across the

visual hierarchy, consistent with their hypothesized roles of sup-
pression and compression modulators (Fig. 3 D and G and
SI Appendix, Fig. S3). The activation constant (b) positively cor-
relates with the strength of suppression in the DoG model, as
indexed by the ratio of DoG model time-course prediction area
below and above baseline (Fig. 3E). The normalization constant
(d) positively correlates with compression in the CSS model,
as indexed by the CSS model’s exponent parameter (Fig. 3H).
Furthermore, the constants also correlate with the R2 improve-
ment brought about by the DoG and CSS models over the Gauss
model, respectively (Fig. 3 F and I). Hence, variations of activa-
tion and normalization constants in the DN model recapitulate
the contributions of center-surround configurations and CSS
captured separately by the CSS and DoG models. We also note
that variations in baseline constants do not appear to be related
to variations in pRF sizes and amplitudes (SI Appendix, Fig. S4).
In sum, simulations, empirically observed systematic variations,
and correlations with independent properties of existing models
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Fig. 3. Activation and normalization constants b and d modulate suppression and compression in the DN model. (A) The activation constant b modulates
the strength of center-surround configurations in simulated DN pRF profiles. (B) The normalization constant d modulates the strength of nonlinear
compression in simulated DN model response functions. (C) Low compression–low suppression (Gauss-like), high compression–low suppression (CSS-like),
and low compression–high suppression (DoG-like) configurations may be captured as special cases of the (b, d) parameter space. In addition, the DN model
can also capture high suppression–high compression configurations. (D–F) The activation constant b decreases systematically along the visual hierarchy (D),
correlates with the strength of suppression in the DoG model (E), and with the performance improvement brought about by the DoG model over Gauss
(F). This provides empirical evidence for the role of the activation constant b as modulator of suppression. (G–I) The normalization constant d decreases
systematically along the visual hierarchy (G), correlates with the exponent of the CSS model (H), and with the performance improvement brought about by
the CSS model over Gauss (I). This provides empirical evidence for the role of the normalization constant d as modulator of compression. Bar heights in D and
G show the R2-weighted mean across participants, per visual region; data points show the R2-weighted mean for each participant’s visual region; error bars
are SEM, corrected for volume-to-surface upsampling. Data points in E, F, H, and I represent the R2-weighted mean for eight sorted bins, each containing
approximately equal numbers of vertices, pooled across participants, per visual region; error bars are SEM within each bin, corrected for volume-to-surface
upsampling. Solid lines show best-fit linear regression; shaded areas represent CIs on the regression line obtained by bootstrapping.

provide converging evidence that the DN model captures sup-
pression and compression through local variations in its activa-
tion and normalization constants.

Size Ratio of Normalization and Activation pRFs Controls Spatial Over-
saturation. In the previous sections, we have provided evidence

that the DN model captures suppressive and compressive re-
sponse signatures through local variations in activation and nor-
malization constants. In addition, the DN model also allows us to
probe the visuospatial information-integration properties of neu-
ronal populations at different stages of the visual hierarchy. To do
this, we simulate and empirically estimate stimulus size–response
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curves and attempt to identify relevant DN model parameters
controlling different properties of the curves. In particular, we
show that the ratio of normalization and activation pRF sizes (σ2

and σ1) is directly responsible for the presence (or absence) of
spatial oversaturation.

Single-cell and imaging recordings in early visual cortex have
investigated responses to stimuli of increasing size, presented at
the center of the receptive field (34, 37–39). Responses generally
initially increase with increasing stimulus size, reach a maximum,
and finally decrease (or plateau). Hence, in size–response curves,
there are two potential nonlinearities to take into account: a
first nonlinearity describing the initial rise of the curve and a
second nonlinearity in the decrease or plateau of the response
after the peak has been reached. The first nonlinearity reflects
nonlinear spatial summation; the second nonlinearity reflects
“spatial oversaturation.” Linear models, such as Gauss and DoG,
cannot capture the first nonlinearity, since they lack the flexibility
to nonlinearly sum inputs (33). Conversely, models without a
surround, such as CSS and Gauss, are unable to capture the sec-
ond nonlinearity: Their responses increase monotonically with
stimulus size (34). Unlike other models, the DN model possesses
both of these characteristics. Hence, we reasoned that it should
be the most suitable model for capturing both nonlinearities in
stimulus size–response curves.

Confirming its role of compression modulator observed in
the DN response function (Fig. 3B), we found that the normal-
ization constant d controls the first nonlinearity in theoretical
size–response curves (Fig. 4 A and C). Concerning the second
nonlinearity, we found the ratio of normalization and activation
pRF sizes φ= σ2/σ1 to be the crucial parameter. φ= 1 implies
no spatial oversaturation: After reaching the maximal possible
value, response remains constant despite increasing stimulus
sizes; φ > 1 implies that responses will oversaturate, with larger
values of φ generating stronger spatial oversaturation (Fig. 4B).
Hence, we found that the combined variation of d and φ allows
the DN model to describe both nonlinearities in size–response
curves (Fig. 4C).

Verifying these theoretical results empirically, we found that
the size ratio φ systematically decreases along the visual hier-
archy, indicating stronger spatial oversaturation in early visual
cortex (Fig. 4D and SI Appendix, Fig. S3). Note that we did not
constrain the size of the normalization pRF to be larger than the
activation pRF; in principle, it could have been of equal size or
smaller. Hence, the consistently larger size of the normalization
pRF is an empirical finding, not an assumption built in the model.
The variation in size ratio suggests that early visual cortex popu-
lations have a more marked size difference between activation
and normalization pRFs, leading to oversaturating responses
to larger stimuli, whereas in late visual cortex populations, the
tuning of activation and normalization pRFs is relatively similar,
producing a more invariant response to stimuli beyond the opti-
mal size.

We then computed size–response curves for each of the
nine visual regions under investigation, based on the mean
parameters in each region. We found that the shape of the curves
varies systematically and robustly across the visual hierarchy,
consistent with the hypothesized roles of d and φ (Fig. 4E and
SI Appendix, Fig. S5). Importantly, size–response curves take
into account all the model parameters simultaneously: pRF
sizes, amplitudes, and baselines. If the variations observed in
DN model parameters were due to some spurious collective
rescaling, rather than to meaningful changes in responses, we
would expect the size–response curves of different visual regions
to collapse on each other. However, we did not find this to be
the case. Hence, the analysis of size–response curves confirms
that the DN model parameters capture specific, systematic
variations in visuospatial response signatures along the visual

hierarchy, with the size ratio being the key modulator of spatial
oversaturation.

In sum, we show that the DN model is the most suitable to
capture the full range of both nonlinearities (nonlinear spatial
summation and spatial oversaturation) present in size–response
curves. We found that the model is able to capture these non-
linearities through variations in the normalization constant (d)
and the size ratio of normalization and activation pRFs (φ),
respectively. In particular, this identifies the size ratio, φ, as
the parameter of interest for the investigation of visuospatial
information integration in neuronal populations.

Discussion
Here, we introduce a pRF model based on DN. The model
provides a single coherent explanation of a highly diverse set of
response signatures, which previously required a similarly diverse
multitude of pRF models (27, 33, 34). The DN model supersedes
these existing models by unifying them in a biologically realistic
and interpretable framework, in which modulatory and spatial
integration processes capture separate aspects of visuospatial
responses.

Visuospatial responses vary systematically across the visual
hierarchy. Specifically, at the population level, and in line with
previous observations, suppression is more prominent in early,
rather than late, visual cortex (33), while compression is more
prominent in late, rather than early, visual cortex (34). The DN
model captures these patterns across the visual hierarchy through
variations in its activation and normalization constants b and
d (Fig. 3). Importantly, the joint variation of these parameters
allows DN to explain time courses that simultaneously exhibit
both compression and suppression. The models geared toward
explaining either compression or suppression are incapable of
this. Thus, the activation and normalization constants provide a
general mechanism for modulation of the DN computation, al-
lowing it to capture a variety of visuospatial response signatures.

Previous studies employing electrophysiological recordings in
humans and animals have shown specific neural correlates of
pRF suppression and compression (30, 40, 41). Hence, it seems to
us at least plausible that the modulatory action of activation and
normalization constants could reflect not only a computational,
but also a biological, property of brain responses. Application
of the DN model to these recordings could further clarify the
biological interpretation of the model parameters. We speculate
that modulatory constants b and d may be related to the baseline
firing rates of activation and normalization pools and, hence,
may serve as a proxy of the excitation–inhibition balance, which
is known to be important for visuospatial computations (42–
44). In line with this speculation, recent work has shown that
several modulatory neural properties, such as receptor density
profiles, specificity of responses, and excitability, all covary along
a principal gradient from early sensory to late sensory to asso-
ciative cortex (45), as does resting-state functional connectivity
(46). The variations and the hypothesized computational roles of
the modulatory constants b and d along the visual hierarchy are
highly reminiscent of these gradients. Thus, the DN pRF model
may offer a bridge between computation and biology.

We show that the DN model is uniquely able to describe stimu-
lus size–response curves with a wide range of properties (Fig. 4).
In particular, the size ratio of normalization and activation pRFs
(φ= σ2/σ1) controls spatial oversaturation, the second nonlin-
earity in size–response curves. As φ describes the spatial extent
of the overlap and, hence, the amount of interaction between
activation and normalization components, it provides a proxy
for visuospatial integration properties of neuronal populations.
We speculate that variations in size ratio φ across the visual
hierarchy may reflect a systematic variation in the extent of
feedback and lateral connectivities, which are thought to underlie
cortical mechanisms of spatial oversaturation (37, 47–50).
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Fig. 4. The size ratio of activation and normalization pRF sizes provides an index of spatial oversaturation. (A) Simulations indicate that the normalization
constant d (inversely) controls the strength of compression, i.e., the first nonlinearity, in size–response curves. This effects cannot be captured by Gauss
and DoG models, since they do not include nonlinear spatial summation mechanisms. (B) The size ratio of normalization and activation pRFs, φ = σ2/σ1,
controls the strength of spatial oversaturation, i.e., the “second nonlinearity.” Higher values of φ > 1 generate stronger oversaturation. This effect cannot
be captured by CSS and Gauss models, since they do not include surround mechanisms. (C) The combined effect of d and φ produces a range of size–response
curves. (D) The size ratio decreases systematically along the visual hierarchy, suggesting larger size differences between activation and normalization pRFs
and, hence, stronger oversaturation in early visual cortex. (E) DN model size–response curves for each of the visual regions under examination, showing a
gradual, systematic variation across the visual hierarchy. This is consistent with the hypothesized roles and observed variations of DN model parameters.
Only the DN model can capture the different properties of observed size–response curves, indicative of different information-integration strategies, with a
single computation. Bar heights in D show the R2-weighted mean across participants, per visual region; data points show the R2-weighted mean for each
participant’s visual region; error bars are SEM, corrected for volume-to-surface upsampling. Size–response curves in E are based the R2-weighted mean of
DN model parameters, per visual region, across participants; shaded regions represent SEM across participants.

A variety of different DN formulations have been proposed
in the literature. For example, some models include distinct
exponentiations of activation and normalization responses or an
additional activation term in the denominator (7). In choosing
a specific formulation for the DN pRF model, largely following
ref. 1, our goal was to maximize parsimony, while still allowing
the model sufficient flexibility to capture the disparate response
signatures observed throughout the visual hierarchy. In our view,
a formulation consisting of a Gaussian pRF in the numerator
and one in the denominator, with respective sizes, amplitudes,
and baselines, was the most intuitive DN formulation to achieve
this goal. Within this formulation, multiple lines of evidence
suggest that spatial suppression, compression, and oversatura-
tion may be conceptualized as modulations of an underlying

DN computation exerted by locally varying baseline constants
and size ratio. We believe that our formulation has significant
merits in terms of parsimony, flexibility, and interpretability.
However, we would not claim that this is the only possible way to
conceptualize these phenomena, that ours is the only potentially
suitable formulation of a DN pRF model, or that it is necessarily
the most parsimonious possible formulation. It is possible that,
with additional or fewer computations and/or model parameters,
phenomena may be conceptualized in different ways, leading to
different interpretations. In particular, exponentiation may be a
useful computational component to build back in the model if
attempting to capture richer datasets. With regard to the ongoing
debate concerning the isotropy of pRF shapes (51–56), we note
that the shape of the activation and normalization pRFs could
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be adjusted. Although we support the evidence that visual pRFs
are nearly Gaussian, the model could be easily extended to
incorporate spatially skewed pRFs.

Modeling brain responses to naturalistic stimuli is a crucial
goal of computational neuroscience (57) and is likely to involve
DN computations (58). Some authors have already proposed
models that effectively capture BOLD responses to naturalistic
visual stimuli (58, 59). These models are more complex than
purely spatial pRF models, because they incorporate additional
dimensions of feature tuning, such as spatial frequency and ori-
entation. Nevertheless, the topographic representation of visual
space has been shown to structure activations throughout the
visual system (60, 61), and there are significant benefits to em-
ploying artificial stimuli varying only in some specific dimensions
(62). In such a simplified context, it becomes significantly easier
to interpret results and to more explicitly probe which computa-
tions are crucial for the neural representation. In other words,
we argue that our singular focus on the visuospatial dimension
allows DN’s canonical role to unequivocally manifest.

Beyond the visuospatial application presented here, the model
may also be applied in other sensory and cognitive domains.
For instance, in numerosity and audition, pRFs have been suc-
cessfully characterized with log-Gaussian shapes (40, 63, 64).
Based on these findings, it seems plausible that DN pRF models
in these domains would also be better characterized by log-
Gaussian, rather than Gaussian, activation and normalization
pRFs. Further domain-specific considerations may also be nec-
essary: The normalization pRF may not simply be a tuning curve
with a different size and the same position with respect to the
activation pRF; it could, for example, have a different shape,
be centered at a different position, or even exist in a different
stimulus dimension.

Our findings reinforce the notion of DN as a canonical neural
computation (1, 13). We provide evidence that DN represents a
canonical information-processing algorithm in neuronal popula-
tions throughout the entire human visual hierarchy, far beyond
single neurons in V1. The applicability of the DN pRF model
is not limited to sensory processing, but may also be extended
toward cognitive and clinical directions (28–30, 65). For exam-
ple, DN has been employed to describe effects of attention on
single neurons (10). Electrophysiological studies (66, 67) and
fMRI retinotopic mapping (68, 69) have shown that attention
also modulates responses at the level of neuronal populations.
These modulations have been modeled in the pRF framework
(70–74). Hence, the DN pRF model may be instrumental in
the effort to investigate attentional modulations of population
responses. We remark that because of the complexity of fMRI
analysis, careful evaluations, simulations, and validations of past
and future studies are required to ensure that conclusions are
not contaminated by statistical artifacts (75–77). As a clinical
example, Northoff and Mushiake (24) have recently proposed
that certain psychiatric disorders, i.e., schizophrenia and major
depressive disorder, may be interpreted as dysfunctions of DN. In
line with this proposal, pRFs have also shown to be systematically
altered in autism and schizophrenia (28, 78, 79). Investigating
alterations of DN pRF model parameters in clinical conditions
may then shed new light on the underlying computational mech-
anisms and their disorders. Thus, beyond sensory processing, the
canonical nature of the DN pRF model appears to be a promising
avenue for cognitive and clinical neuroscience.

In sum, in this work, we present a pRF model based on DN.
The combination of pRFs, DN, and fMRI uniquely allows us to
probe both modulatory aspects and visuospatial information inte-
gration in neuronal population responses. We show that the DN
model outperforms and supersedes existing models by providing
a unified, interpretable, and biologically plausible explanation of
phenomena that were previously thought to be unrelated. DN
is, hence, revealed to underlie visuospatial neuronal population

responses as their properties vary over large scales. Our findings
consolidate the notion of DN as a canonical neural computation
throughout the human brain.

Materials and Methods
Stimulus Description. The visual stimuli were generated by using the Python
PsychoPy package (80). Stimuli were displayed on an MRI-compatible
screen located outside the bore (Cambridge Research Systems 32-inch LCD
widescreen, 1,920 × 1,080 resolution, 120-Hz refresh rate). The participants
viewed the screen by mirrors placed on top of the scanner head coil. We
used a bar-shaped stimulus with a checkerboard pattern (100% Michelson
contrast) vignetted by a circular aperture (27). The stimulus aperture
diameter subtended ∼10◦ of visual angle. The checkerboard pattern inside
the bar moved parallel to the bar orientation, and the bar itself stepped
in the perpendicular direction at every repetition time (TR). Four bar
orientations (0◦, 45◦, 90◦, and 135◦) and two different motion directions
were used, giving a total of eight different bar configurations in each
condition. We varied the width and speed of the bar stimulus, obtaining five
different experimental conditions (Fig. 5). The width of the bar subtended
2.5◦, 1.25◦, or 0.625◦, depending on the condition (four units, two units,
or one unit); the bar swept across the stimulus aperture in TR-locked steps
of 0.3125◦, 0.625◦, or 1.25◦, depending on the condition (Slow, Regular,
or Fast). A period of 15 s of mean luminance (0% contrast) was presented
every two bar passes. Additionally, mean luminance periods of 15 s and 30 s
were presented at the beginning and end of each scan, giving a total of
five blocks of mean luminance during each scan, presented at evenly spaced
intervals. To ensure that participants fixated at the center of the screen, a
small fixation dot (0.1◦) was presented in the middle of the stimulus. This
fixation dot changed color (red to green) at semirandom time intervals,
and participants were instructed to report this change of color. Responses
were recorded with an air-pressure button and monitored in real time to
guarantee that participants maintained responsiveness throughout each
scan and served as a proxy for fixation.

1R

1S

2R

4F

4R

0.3125°/TR (Slow, S)

0.625°/TR (Regular, R)

1.25°/TR (Fast, F)

4 units (2.5°)

2 units (1.25°)

1 units (0.625°)

Bar passes:

Stimulus duration:

S 570s

F 210s

R 330s

Fig. 5. PRF mapping stimuli in different experimental conditions. Schematic
representations of the five experimental conditions are shown. High-
contrast checkerboard bars of varying speed and size sweep the screen in
TR-locked steps (here, 1 TR = 1.5 s).
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pRF Models. We extended the method first described for the original Gaus-
sian pRF model in ref. 27. Here, we fit and compared three existing pRF
models—Gauss, DoG (33), and CSS (34)—and a pRF model based on DN.
Model predictions were generated according to the respective formulation
and parameters, convolved with a standard hemodynamic response func-
tion. For the Gauss, CSS, and DoG models, the predicted neural response
to an arbitrary time-dependent, two-dimensional, contrast-defined visual
stimulus S(x, y, t) at time t is:

pGauss(t) = a G1 · S, [1a]

pDoG(t) = a1 G1 · S − a2 G2 · S, [1b]

pCSS(t) = (a G1 · S)n. [1c]

In the DN model, both the activation and normalization pRFs are isotropic,
two-dimensional Gaussian functions of space, G1 and G2, centered on the
same position (x0, y0) in visual space (x, y), but with different sizes, σ1 and
σ2, and different amplitudes, a and c, respectively. The inclusion of variable
amplitudes for both activation and normalization pRFs ensures that a larger
pRF will not necessarily generate a larger response to a stimulus of the same
relative size and accounts for different choices of integral or of pRF volume
normalization, without loss of generality. Activation and normalization
components also have “baseline” constants—that is, an activation constant
b and a normalization constant d, respectively. Hence, the model’s predicted
neural response pDN(t) is:

pDN(t) =
a G1 · S + b

c G2 · S + d
−

b

d
. [2]

In the above equations, the spatial dependence of pRFs G ≡ G(x, y) and the
spatiotemporal dependence of stimuli S ≡ S(x, y, t) are omitted for brevity,
and we denote:

G∗ = exp

(
−

(x − x0)
2 + (y − y0)

2

2σ2
∗

)
, G∗ · S ≡

∑
x,y

(G∗ ◦ S),

with ◦ representing element-wise product.

Fitting. PRF modeling was carried out with a dedicated Python package,
prfpy. At every cortical location, the parameters of each model were op-
timized by minimizing the residual sum of squares between the model
prediction and the measured BOLD signal. Similarly to ref. 33, we estimated
the baseline of the BOLD signal at each cortical location using the mean-
luminance blocks. During model fitting, the BOLD baseline was set to the
value estimated from data for all models. Fitting began with a grid search
for the best Gauss model parameters (pRF position and size) and an iterative
optimization. The optimal position and size parameters of the Gauss models
were used as starting values for iterative optimizations of all other models.
For the DN model, we also carried out an intermediate grid search for its
additional parameters, before the same iterative optimization routine used
for the CSS and DoG models. This is because the parameter space of the DN
model is of higher dimensionality and far less smooth than that of other
models. This additional grid stage does not confer benefits when applied to
the simpler models. The subtraction of the constant ratio b/d in Eq. 2 was
applied so that the DN model predicted zero response in the absence of a
stimulus, since the BOLD baseline value does not carry any intrinsic physical
interpretation. For non-fMRI data, where the neural baseline activity may
be directly measured and contain useful information, the subtraction could
be removed. In that case, the baseline firing rate (model prediction in
the absence of a stimulus) would be equal to the ratio of activation and
normalization constants (b/d).

Performance. We compared model performance in terms of cross-validated
variance explained (cvR2) on a 50–50 even–odd-scans data split for the par-
ticipants where the higher number of scans provided higher signal reliability
(two participants, six repeated scans per condition). Statistical significance of
performance differences was evaluated with a permutation test, corrected
for the volume-to-surface upsampling of time courses. For each visual re-
gion, we selected 10,000 randomized subsamples of vertices, with the same
proportion as the volume-to-surface upsampling. For each subsample, the
mean cvR2 difference between pairs of models was compared with the mean
of a null distribution obtained by randomizing the model label of vertices in
the subsample. A statistically significant difference in the direction of either
model in the pair was confirmed if the proportion of times the mean of
the subsample was greater or smaller, respectively, than the mean of the
randomized null-distribution was smaller than 10−2 across all subsamples.
Evaluating model statistical significance with other common nonparametric
tests (Kolmogorov–Smirnov statistics or Wilcoxon signed-rank test) did not
result in any major differences in the statistical significance.

Parameter Analysis. Bar heights in parameter plots represent the R2-
weighted mean of parameters in each visual region across participants; data
points represent the R2-weighted mean of parameters in each participant’s
visual region; error bars on data points represent SEM within each
participant’s visual region, corrected for volume-to-surface upsampling.
Data points in scatter plots represent the R2-weighted mean of data, split in
eight bins containing approximately equal numbers of vertices; error bars
represent SEM within each bin, corrected for volume-to-surface upsampling.
Solid lines show best-fit linear regression; shaded areas represent CIs on the
regression line obtained by bootstrapping. Only vertices where the model
had R2 > 0.3 and eccentricity within 0◦and 4.5◦ are used. Data from all five
experimental conditions are included. Cortical surface visualizations were
obtained with the dedicated software package pycortex (81).

PRF Profiles and Response Function. We simulated the DN pRF profile P(x)
(Fig. 3A), a one-dimensional slice of the pRF shape in visual space, and the
response function r(s) (Fig. 3B), the model response to the fraction s of
activation and normalization pRFs being stimulated:

P(x) =
aG1(x) + b

cG2(x) + d
−

b

d
, and r(s) =

as + b

cs + d
−

b

d
, [3]

where G1 and G2 are Gaussians. Note that both the DN pRF profile P(x) and
the response function r(s) are simplifications of the full model behavior. In
particular, P(x) does not take into account the nonlinear behavior of the
model; r(s) does not take into account the potentially different sizes of
activation and normalization pRFs.

Size–Response Curves. Size–response curves (Fig. 4) were computed as the
model’s predicted response to a circular stimulus presented at the center
of the pRF. Size–response curves take into account all model parameters:
amplitudes, sizes, and baseline constants. Hence, they account for both the
potentially different sizes and amplitudes of activation and normalization
pRFs, as well as nonlinearities in the response. The size–response curve of
each visual region is based on the R2-weighted mean of DN model parame-
ters; shaded regions represent SEM across participants. Size–response curves
for individual participants are shown in SI Appendix, Fig. S5. Only vertices
where the model had R2 > 0.3 and eccentricity within 0◦ and 4.5◦ were
used. Data from all five experimental conditions are included.

Participants. Seven participants (ages 25 to 41 y, two female) participated
in this study. All participants had normal or corrected-to-normal visual
acuity. All studies were performed with the informed written consent of the
participants and were approved by the Human Ethics Committee of Vrije
Universiteit Amsterdam.

Anatomical Scans. T1-weighted and T2-weighted structural MRI data were
acquired by using a Philips Achieva 7-T scanner with a 32-channel Nova
Medical head coil, at a resolution of 0.7-mm isotropic. Freesurfer 7.1 recon-
all was used to obtain native cortical surface reconstructions for each partic-
ipant. The software makes use of the T2w image to refine the segmentation
obtained by T1w alone, particularly in the exclusion of sinus and at the pial
surface border.

Functional Scans. fMRI data were acquired by using a Philips Achieva 7-T
scanner with an 32-channel Nova Medical head coil. The participants were
scanned with a two-dimensional EPI sequence with 60 slices. The following
parameters were used: TR = 1,500 ms, echo time (TE) = 23 ms, and flip angle
= 65◦. The functional resolution was 1.7 mm isotropic, with a field of view of
216 × 216 mm. The first 10 s of recorded data at the beginning of each scan
were automatically discarded to avoid start-up magnetization transients.
The scan durations were 570 s, 330 s, or 210 s, depending on the condition
(Slow, Regular, or Fast). For five participants, two scans per condition were
collected, over separate sessions, giving a total of 10 scans per participant.
For 2 participants, 6 scans were collected for each of the 5 conditions, during
multiple sessions, giving a total of 30 scans per participant. Repeated scans of
the same experimental condition were averaged to obtain a high signal-to-
noise ratio. Foam padding, or custom head-casts in the case of subject (sub)-
006 and sub-007, were used to minimize head movement. At the end of each
experimental scan, a top-up scan with opposing phase-encoding directions
was recorded, in order to perform susceptibility distortion correction.

Preprocessing. “For each of the BOLD scans found per participant, the
following preprocessing was performed. First, a reference volume and its
skull-stripped version were generated by using a custom methodology of
fMRIPrep. Head-motion parameters with respect to the BOLD reference
(transformation matrices and six corresponding rotation and translation
parameters) were estimated before any spatiotemporal filtering by using
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mcflirt (ref. 82; FSL 5.0.9). BOLD runs were slice-time-corrected by us-
ing 3dTshift from AFNI 20160207 (ref. 83; Research Resource Identifier
[RRID]: SCR_005927). A B0-nonuniformity map (or fieldmap) was estimated
based on two (or more) echo-planar imaging (EPI) references with oppos-
ing phase-encoding directions, with 3dQwarp from AFNI 20160207 (ref.
83; RRID:SCR_005927). Based on the estimated susceptibility distortion, a
corrected EPI reference was calculated for a more accurate coregistration
with the anatomical reference. The BOLD reference was then coregistered
to the T1w reference by using bbregister (FreeSurfer), which imple-
mented boundary-based registration (84). Coregistration was configured
with six degrees of freedom. The BOLD time series were resampled onto
the following surfaces (FreeSurfer reconstruction nomenclature): fsnative.
The BOLD time series (including slice-timing correction when applied)
were resampled onto their original, native space by applying a single,
composite transform to correct for head-motion and susceptibility dis-
tortions. All resamplings can be performed with a single interpolation
step by composing all the pertinent transformations (i.e., head-motion
transform matrices, susceptibility distortion correction when available, and
coregistrations to anatomical and output spaces). Surface resamplings were
performed byusing mri_vol2surf (FreeSurfer). Many internal operations

of fMRIPrep use Nilearn 0.6.2 (ref. 85; RRID:SCR_001362), mostly within
the functional processing workflow. For more details of the pipeline,
see the section corresponding to workflows in fMRIPrep’s documentation
(https://fmriprep.org/en/latest/workflows.html).” The preprocessed BOLD
time courses in fsnative space output by fMRIPrep were converted to percent
signal change. Part of the above text was automatically generated by
fMRIPrep with the express intention that users should copy and paste this
text into their manuscripts unchanged. It is released under the CC0 license.

Visual Regions. Visual regions (V1, V2, V3, V3AB, hV4, LO, TO, VO, and IPS)
were defined for each participant on the basis of individual polar angle and
eccentricity maps, following refs. 35 and 36.

Data Availability. Some study data are available. Code data have been
deposited in GitHub https://github.com/VU-Cog-Sci/prfpy and https://github.
com/VU-Cog-Sci/prfpy_tools.
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