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Abstract: In this review, we provide a brief overview of the contribution that computational studies
can offer to the elucidation of the electronic mechanisms responsible for the electrochromism phe-
nomenon, through the use of the density functional theory (DFT) and its time-dependent formulation
(TDDFT). Although computational studies on electrochromic systems are not as numerous as those
for other physico-chemical processes, we will show their reliability and ability to predict structures,
excitation energies, and redox potentials. The results confirm that these methods not only help in the
interpretation of experimental data but can also be used for the rational design of molecules with
interesting electrochromic properties to be initiated for synthesis and experimental characterization.
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1. Introduction

Electrochromism refers to the phenomenon in which a chemical system changes color
following the application of an electric field of suitable value, returning to the original
color once the applied field is eliminated. The change in the absorption band is due to the
triggering of a redox reaction induced by the electric field. Compounds possessing more
than two redox states are subject to different color changes as the applied electric field
reaches the given redox potential. The whole process is described in Scheme 1.
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1. Introduction 
Electrochromism refers to the phenomenon in which a chemical system changes 

color following the application of an electric field of suitable value, returning to the 
original color once the applied field is eliminated. The change in the absorption band is 
due to the triggering of a redox reaction induced by the electric field. Compounds 
possessing more than two redox states are subject to different color changes as the 
applied electric field reaches the given redox potential. The whole process is described 
in Scheme 1. 

 
Scheme 1. Schematic representation of a generic electrochromic process. 
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Scheme 1. Schematic representation of a generic electrochromic process.

Although the term electrochromic originally referred to a color change from a trans-
parent (absorption in the UV region) to a colored species, today it is extended to all shifts
of the absorption band in the entire electromagnetic spectrum caused by the application of
an electric field.

Since Platt’s pioneering work in 1961 [1], electrochromism has been the subject of a
large number of studies for its potential applications in different fields of modern technolo-
gies [2–7]. To date, electrochromic materials are mainly used for the manufacture of smart
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and intelligent windows that allow one to control the flow of heat and light [8–10], but show
promising applications in glare reduction [11], mirroring [12], low-consumption display
panels [13,14], transistors and diodes [15–17], catalysts [18], solar cells [19,20], camouflage
materials [21], memory [22,23] and energy storage [24,25] devices, molecular machines [26],
electrodes for batteries and supercapacitors [27–31], and antibacterial agents [32–34].

The most-studied systems are the viologen (1,1′-disubstituted-4,4′-bipyridinium salts)
and its derivatives, for which many experimental studies have shown intrinsic properties
that make them excellent candidates for a series of technological applications [35–40].

In recent years, however, the investigation has expanded to other promising or-
ganic and inorganic systems including those containing boron [41–43], quinodimethane
derivatives [44,45], metal-phtalocyanine [46], metal oxides-based film [7,47,48], oligoani-
line [49], antracenes [50,51], azacenes [52], polymethine and polyimides [53,54], and some
organometallic complexes [55,56].

From a theoretical point of view, the studies are scarcer and have concerned some
viologen-like [57], dithiolodithiole and thiophene [58], thiophene−pyrrole-containing
rings [59], borepins [60], poly-dioxythiophene [61], and methyl ketone [62] systems. It
is also worth mentioning certain investigations in which experimental data are coupled
to theoretical data, demonstrating how the two approaches can be combined to provide
useful insights on these interesting processes [36,39,53,56,63–71].

Despite this amount of work, accurate information at the atomistic level of elec-
trochromic processes is somehow lacking, and modern theoretical methods can help to
shed light on these aspects. Among these, those based on the Density Functional Theory
(DFT) have proved to be very useful since they are able to provide accurate results even for
medium to large systems.

In this short review, we summarize the contribution of DFT methods in improving the
current knowledge of the electrochromism phenomenon at the atomistic level. Particular
emphasis will be devoted to those studies in which they computed and analyzed properties
often difficult to obtain experimentally. Moreover, the outcomes of such investigations
are not only useful to explain the material properties but also to build a rational design
strategy to synthesize new molecules with given properties.

The computed properties we are interested in include structural determination, ab-
sorption behaviors and their origins, redox potentials, and electronic features.

The structures of the considered systems are reported in Scheme 2.
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Scheme 2. Structures of the considered systems. 1: Quadruply benzannulated nonplanar
borepin; 2: 4-(6-(4-Metylphenyl)-[1,2]dithiolo[4,3-c][1,2]dithiol-3-yl)benzonitrile; 3: Metylviologen;
4: Squaraine; 5: 5mesityl-5H-diacetonafto[5,6-bc:5′, 6′ef]borpin; 6: dibenzo[b]thiophene-fused bore-
pin; 7: 3,7-diazabenzophosphole.
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2. Results and Discussion
2.1. Structural Determination

In order to show the accuracy of DFT methods in determining geometric param-
eters with accuracy, we report the calculated structures for quadruply benzannulated
nonplanar borepin (1) [60] and for 4-(6-(4-Metylphenyl)-[1,2]dithiolo[4,3-c][1,2]dithiol-3-
yl)benzonitrile (2) [58], using three different exchange and correlation functionals (see
Scheme 2 and Table 1).

Table 1. (a) Main geometrical parameters for molecules 1 and 2, computed by using differ-
ent exchange-correlation functionals by using the 6- 31+G* basis sets. The optimizations have
been performed employing the Polarizable Continuum Model considering the chloroform and
dichloromethane solvent for 1 and 2, respectively. (b) Numeration of the considered parameters.

a) X-Ray B3LYP M06 PBE0

1

B-C1 1.563 1.564 1.559 1.560

B-C19 1.595 1.595 1.585 1.590

C9-C10 1.502 1.497 1.490 1.490

C1BC18 127.3 127.1 127.3 127.3

C1BC19 116.4 116.4 116.3 116.3

C8C9C10C11 38.9 39.2 39.2 39.0

2

C1-C2 1.365 1.365 1.361 1.363

C2-C3 1.444 1.447 1.441 1.441

C2-S3 1.757 1.783 1.771 1.764

S3-S4 2.084 2.128 2.119 2.099

C1-C2-S3 126.5 125.7 126.0 126.3

C3-C2-S3 113.4 113.4 113.6 113.5

C2-S3-S4 95.8 95.1 95.1 95.4

C2-C3-C4 120.1 120.7 120.4 120.1

ϕ1 154.6 140.6 142.2 142.9

ϕ2 26.1 −34.7 −33.6 −32.7
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The values of the main geometrical parameters reported in Table 1 clearly show very
good agreement with the previously reported X-ray crystallographic data [71].

In particular, for diphenyl- [1,2] dithiol [4,3-c] [1,2] we obtain C-C, C-S, and S-S bond
length values that are very similar for the three functionals used and in the range of the
experimental errors. The same agreement is found for the C-C-C, C-C-S, and C-S-S valence
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angles for which the error, with respect to the experimental counterpart [71], is about
one degree.

Concerning the dihedral angles ϕ1 and ϕ2, a higher deviation from the experiment is
noted for all the employed functionals. This can be explained by considering that, in the
solid phase, the value of this parameter is influenced by the other molecules present in the
crystalline structure, while our result is related to a single molecule.

For borepin molecules, we note that the maximum deviation from the experimental
B-C and C-C bond lengths [41] is found in the case of the M06 functional, which does,
however, provide values in the range of experimental error (Table 1).

Theoretical values obtained for the C-B-C valence angles and the C-C-C-C torsional an-
gle obtained, using the three functionals, are in excellent agreement with the experimental
X-ray results [41].

As previously mentioned, the experimental structures relative to the species with
different oxidation states obtained upon the application of the electric field are often
missing and difficult to measure. The use of calculations based on quantum mechanics can
be useful to overcome this lack of information. In Figure 1, we report the main geometrical
parameters obtained for viologen 3 as a function of the oxidation state.
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Figure 1. B3LYP/6–31+G* bond length variations during the oxidation process of 3.

The bond between the carbon atom of the CH3 group and the nitrogen of the pyridine
ring (C1-N) undergoes a decrease, going from +2 to +1 radical to neutral charge states
while the N-C2 increases following the consecutive addition of electrons. The C2-C3 and
C4-C5 bond lengths involved in the conjugation of the ring decrease.

A more significant structural change is evidenced by analyzing the inter-ring dihedral
angle that assumes a value of 39◦ in the case of the more-stable 32+ oxidation state but
becomes planar in the case of 3+1 (0.13◦) and 3 (0.02◦) states.

These two examples account well for the importance of determining the structural vari-
ations induced by the change in the oxidation state on electrochromic systems, achievable
by using reliable theoretical tools.

2.2. Excitation Energies

To assess the performance of DFT-based methods, we report the computed excitation
energies for 3 [57] and squaraine 4 [70] in their different oxidation states by using the B3LYP,
M06, and wB97XD exchange correlation functionals. The range-separated hybrid wB97XD
functional has been chosen since it also takes into account weak interactions. The results
are reported in Table 2 together with the corresponding experimental UV-Vis values [70,72].
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Table 2. Excitation energies (nm) and oscillator strength of three and four molecules in different oxidation states computed
in dichlorometane solvent by using different exchange-correlation potentials and the 6–31+G* basis set. The % of the
transition is that obtained at the B3LYP level. Experimental data are taken from refs [70,72].

System B3LYP M06 wB97XD Transition (%) λexp

32+ 368 (0.23) 366 (0.24) 313 (0.30) H→L (70) 337 [72]

3+
399 (0.10)
433 (0.15)

1152 (0.11)

399 (0.13)
440 (0.12)

1169 (0.12)

355 (0.16)
403 (0.15)

1213 (0.15)

βH-1→L (84)
βH→L (75)
H→L (99)

400 [72], 447 [72]
1050–1100 [72]

3 553 (0.1)
721 (0.2)

557 (0.1)
698 (0.2)

455 (0.0)
599 (0.3)

H→L+3 (57)
H→L (68) 558 [72], 712 [72]

42+ 513 (1.39) 504 (1.49) 450 (1.74) H→L (69) 450 [70]

4+ 575 (1.61)
842 (0.00)

581 (1.62)
825 (0.00)

565 (1.64)
733 (0.05)

βH→L (71)
αH→L (74)

570 [70]
840 [70]

4 572 (1.67) 575 (1.64) 585 (1.70) H→L (71) 660 [70]

4− 494 (1.30)
709 (0.07)

487 (1.12)
690 (0.08)

444 (1.22)
643 (0.14)

αH→L (83)
βH→L (84) 660 [70]

For system 3, the maximum deviation with respect to the experiment [72] (113 nm) is
found in the case of the wB97XD functional that also shows an average error of about 57 nm
considering all the oxidation states. The other two functionals used give similar results
with average errors of 24 and 20 nm for M06 and B3LYP, respectively. The higher average
error was obtained with the functional WB97XD, although it falls within an acceptable
error range (0.1–0.3 eV), which could be due to the fact that at short range, it contains 22%
of Hartree-Fock exchange and in the intermediate region is smoothly described by an error
function parameter of 0.2.

In discussing the spectral behavior following the increase of the applied electric field,
we note that they are in close agreement with the experiment. In fact, the dication 32+

species has a measured maximum absorption band of 337 that is well reproduced by all
the employed functionals.

The addition of an electron generating the 3+ cation radical slightly red-shifts this
band and two new bands in the Vis/NIR region appear (447 and 1100 nm). Both M06 and
B3LYP functionals reproduce these spectral changes well. A further injection of an electron
causes the 3 species to change the spectral feature that now presents two bands at 558 and
712 nm. Again, the obtained excitation energies for this oxidation state give results very
close to the experimental counterparts. The analysis of the excitation behavior allows one
to individuate the origin of the transitions. Table 2 shows the absorption at 368 nm (B3LYP)
is mainly HOMO-LUMO (H→L) in nature (70 %), while it becomes βHOMO-1→LUMO in
the radical cation. The other two peaks present in the Vis/NIR spectrum are due to the
βH→L and αH→L transitions, respectively. Likewise, the computed excitation energies for
the 3 neutral molecule allows one to assign the two recorded absorptions to the transitions
HOMO→ LUMO + 3 and H→L, respectively (see Table 2).

The squaraines containing thiophene 4 are interesting since their structures contain
donor–acceptor–donor moieties, which make them useful for a variety of applications.
Molecule 4 is also important because it also has, in addition to the neutral one, positive (+1,
+2) and negative (−1) oxidation states that are generated in Vis/NIR spectroelectrochem-
istry experiments. Table 2 shows how for these systems, the excitation energies obtained are
also close to the experimental counterparts especially when the M06 and B3LYP functionals
are used. A major deviation is found in the neutral species, but it is due to the possible
intermolecular aggregation as demonstrated recently [70]. The average error obtained
with these methods (about 25 nm) confirms their reliability in the treatment of electronic
properties of complex systems. The analysis of the HOMO and LUMO orbitals involved in
the transitions (Figure S1) allows one to establish that the band in the 450–500 nm range
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can be attributed to a charge-transfer between olate donors to the carbon atoms of the
central cyclobutenediylium fragment and the thienyl moiety, for the 42+ species [70], while
the main transition computed for molecule 4 is a π−π* band, as also demonstrated by the
computed density difference plot with the first excited state considered (Figure S2).

2.3. Redox Potentials

The possibility to obtain reliable redox potentials at the theoretical level allows one
to examine the energetics of the redox processes of a chemical species. Furthermore, it is
useful to set up the spectroelectrochemical and cyclovoltametric experiments as we have
indications on the potentials of the electric fields to apply.

Theoretically, the redox potentials can be obtained following the Nernst equation

E = −∆(∆Gs)redox/nF (1)

where the Faraday constant (F) and the number of electrons transferred in the process
(n) are present. The free energy change, ∆(∆Gs)redox, is computed on the basis of the
Born–Haber thermodynamic cycle [73]. For a given system (A), the ∆(∆Gs)redox can be
obtained by computing the solvation energies (∆ Gs) for the neutral and cationic state by
using the following equation:

∆(∆Gsolv)redox = ∆Ggredox + ∆Gs(Red) − ∆Gs(Ox) (2)

where ∆Ggredox, ∆Gs(Red), and ∆Gs(Ox) are the change of standard Gibbs free energy for
the gas phase reaction and solvation energies of reduced and oxidized species, respectively.

In order to compare the results with the experimental data, the computed redox
potentials are provided relative to that of ferrocene (E(Fc+/Fc).

In Table 3, we report the computed reduction potentials (V) for a series of elec-
trochromic materials obtained by using the M06 exchange correlation potential, that in
our experience is the most suitable for these determinations [57,60]. Comparison with the
relative experimental data [41,43,72,74,75] is, generally, quite good.

Table 3. Reduction potentials (V) for studied compounds computed by using the M06/6–31+G* level
of theory. The used theoretical and experimental solvents are 5 and 6 in tetrahydrofuran; 3 and 7 in
dichloromethane. a from refs [41,72,74,75].

Molecule Potential Theory (M06) Experimental a ∆theo-exp

5 EI
red −1.60 −1.49 0.11

EII
red −2.00 −1.84 0.16

6 EI
red −2.24 −2.14 0.10

3 EI
red −1.18 −1.09 0.09

EII
red −1.42 −1.52 0.00

7 EI
red −0.74 −0.51 0.23

EII
red −1.23 −1.00 0.23

A more detailed comparison between computed and experimental data reveals that
the difference varies from 0 to 0.43 and the average error turns out to be 0.15 and 0.7 V for
the first and second reduction potentials, respectively.

2.4. Electronic Properties

During the redox process, radical species can be obtained. As an example, in viologen-
like systems, starting from the 32+, after the first reduction step, the 3+ radical species
is formed. It is well known that the stability of the radicals strongly depends on their
capability to delocalize the unpaired electron: Higher delocalization means great stability.
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Theoretical methods allow one to compute the spin distribution over the entire set of
molecules as reported in Figure 2 for the 3+ radical.
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Figure 2. Electron spin distribution of 3+ computed at the B3LYP/6–31+G* level of theory.

The examination of this figure indicates that the unpaired electron is not only localized
on the electron-rich nitrogen, but it is distributed on all the conjugated pyridine rings and
on the C-C connecting bond with resulting system stabilization.

Furthermore, the computation of the molecular electrostatic potential allows one to
follow the charge flow during the reduction steps. The visualization of what happens after
the electron addition for the 32+ + e→3+. + e→3 reduction behavior is given in Figure 3.
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Figure 3. B3LYP/6–31+G* molecular electrostatic potential for the different oxidation states of
3 species.

The analysis indicates how the positive charge, although reduced, continues to be
distributed over the entire molecular surface upon the first reduction step. The second
reduction process is characterized by different charge distribution with negative charges
concentrated in the aromatic rings and between them.

The knowledge of the frontier molecular orbitals and their composition can give
further information on the electronic changes occurring during the redox processes. In
Figure 4, we report the HOMO–LUMO energies and the orbital composition for the three
oxidation states of 3. It is interesting to note that both HOMO and LUMO orbitals are
significantly destabilized in going from the +2 to 0 oxidation states. The HOMO–LUMO
energy gap changes during the reduction process, assuming the highest value in 32+

(5.27 eV) and the lowest in the neutral (3) oxidation state. The changes in the molecular
orbital composition evidence the effect of the addition of electrons in going from 32+ to 3,
especially for the HOMO orbital.
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3. Materials and Methods

Full geometry optimizations in solvent media have been performed using the 6–31G*
basis set in conjunction with the hybrid B3LYP [76,77], meta-hybrid M06 [78], and the range-
separated hybrid wB97XD [79,80] exchange-correlation functionals. After the geometry
optimization step, frequency calculations have been performed, at the same level of theory,
to verify if the obtained structures are real minima. The unrestricted Kohn–Sham formalism
has been used in the case of radical species. On these species, the analysis of the 〈S2〉 value
(in all cases, reported at about 0.77) ensures the lack of spin contamination. The time-
dependent density functional linear response theory (TDDFT) has been used to obtain
the excitation energies starting from the previous optimization structures and employing
the 6–31+G* basis set. Solvent effects have been taken into account by using the non-
equilibrium polarizable continuum model [81]. All the computations have been performed
with the Gaussian 09 code [82].

4. Conclusions

In this contribution, we have summarized the great potential of density functional
theory in explaining the atomistic processes involved in the electrochromism of some impor-
tant molecular materials. The main benefits of the theoretical computational investigation
can be briefly summarized:

− A reliable prediction of the molecular structures with errors comparable to that
coming from solid-state X-ray measurements. In addition, DFT computations allow
one to determine the structures of systems with unstable oxidation states that are,
consequently, difficult to measure experimentally in laboratory conditions;

− The reproduction of the excitation energies in all the molecular oxidation states
is close to the experimental counterparts, with an error of about 0.2–0.3 eV. It is
possible to assign the transitions and analyze the orbital origin and possible charge
transfer processes;

− The redox potentials can be easily obtained with results very close to the experimen-
tal data;

− Spin charge distribution, molecular electrostatic potentials, charge distribution, and
orbital picture substantially contribute to the interpretation of experimental data and
shed light on their atomistic mechanisms.

We believe that the performances highlighted herein are sufficiently positive to encour-
age future theoretical studies with the aim of deepening knowledge on electrochromism
in organometallic systems with multiple oxidation states, ionic materials, and molecules
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inserted in a polymeric or liquid crystal matrix, and at the same time, to rationally design
new molecules with particular electrochromic and chemical properties to be suggested for
syntheses and future applications.

Supplementary Materials: The following are available online, Figure S1: Plots of the molecular
orbitals involved in the transitions for 4 and 42+, Figure S2: Computed density difference plot for
molecule 4 with the first excited state considered.
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