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Cerebrovascular diseases are one of the leading causes of death worldwide, however,
little progress has been made in preventing or treating these diseases to date.
The transforming growth factor-β (TGF-β) signaling pathway plays crucial and highly
complicated roles in cerebrovascular development and homeostasis, and dysregulated
TGF-β signaling contributes to cerebrovascular diseases. In this review, we provide an
updated overview of the functional role of TGF-β signaling in the cerebrovascular system
under physiological and pathological conditions. We discuss the current understanding
of TGF-β signaling in cerebral angiogenesis and the maintenance of brain vessel
homeostasis. We also review the mechanisms by which disruption of TGF-β signaling
triggers or promotes the progression of cerebrovascular diseases. Finally, we briefly
discuss the potential of targeting TGF-β signaling to treat cerebrovascular diseases.

Keywords: cerebral cavernous malformation, hereditary hemorrhagic telangiectasia, cerebrovascular disease,
endothelial-to-mesenchymal transition, cerebral angiogenesis, TGF-β signaling

INTRODUCTION

According to the latest Global Burden of Disease Study, cerebrovascular disease is the second
leading cause of mortality worldwide (Naghavi et al., 2017). Emerging clinical research data show
that cerebrovascular disease is also the cause of many central nervous system diseases (Turner et al.,
2016; Iadecola and Gottesman, 2018; Kummer et al., 2019). However, due to the lack of techniques
to study cerebrovascular development and its regulatory mechanisms at the whole-animal level,
our understanding of cerebrovascular diseases is still very limited. Emerging studies have begun to
uncover the molecular mechanisms of cerebrovascular development and homeostasis, providing
new basis and treatment strategies for the prevention and treatment of cerebrovascular and central
nervous system diseases (Vanlandewijck et al., 2018; Munji et al., 2019).

Blood vessels of the brain form a highly specialized vascular network, which have complex
interactions with the central nervous system, and has important physiological functions in the
development and maintenance of the central nervous system (Zhao et al., 2015; Iadecola, 2017;
Paredes et al., 2018). The development of cerebrovasculature begins with the angiogenic sprouting
of perineural vascular plexus (PNVP) blood vessels, which forms a delicate hierarchical vascular
structure through continued sprouting and remodeling (Tata et al., 2015). Blood vessels of the
brain are mainly composed of highly specialized vascular endothelial cells (ECs), which have
an arteriovenous differentiation pattern similar to that of peripheral vascular ECs. Brain ECs
have obvious heterogeneity, complex tight junctions, more pericyte coverage, and form the
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neurovascular unit (NVU) together with pericytes, smooth
muscle cells (SMCs), astrocytes, and neurons. The brain
ECs, pericytes and the endfeet of astrocytes together form
the unique blood–brain barrier (BBB) to restrict potentially
harmful substances and molecules from entering the brain. The
nutrients, energy metabolites, metabolic waste and other essential
molecules cross the brain endothelium via various substrate-
specific transporters to ensure physiological functioning of the
brain. The primitive BBB is formed at embryonic day 15 (E15) in
mice and varies in other species (Zhao et al., 2015). BBB continues
to mature under the influence of neural environment over a brief
period after birth.

Cerebrovascular development is a highly conserved and
complex process involving multiple signaling pathways. Using
various model organisms, researchers have successively identified
many genes and signaling pathways that regulate the formation
and homeostasis of blood vessels of the brain, including vascular
endothelial growth factor (VEGF), sonic hedgehog/Patched
(Shh/PTC-1), platelet-derived growth factor B/platelet-derived
growth factor receptor β (PDGFB/PDGFRβ), Wnt/β-catenin,
orphan G protein coupled receptor 124 (GPR124), as well as
transforming growth factor β/SMAD (TGF-β/SMAD) signaling
(Stenman et al., 2008; Ferrari et al., 2009; James et al., 2009;
Alvarez et al., 2011; Cullen et al., 2011; Posokhova et al., 2015;
Sweeney et al., 2016). As one of the most important and complex
signaling pathways in vascular development, TGF-β/SMAD
signaling plays diverse functions during the development and
homeostasis of the brain vessel, and dysfunction in this signaling
pathway has been linked to various cerebrovascular diseases
(Park et al., 2009; Nguyen et al., 2011; Maddaluno et al., 2013).
In this review, we discuss the latest research progress on the
physiological function of TGF-β signaling in cerebrovascular
development, and the mechanisms by which disruption of TGF-β
signaling causes cerebrovascular diseases.

TGF-β SIGNALING IN THE
DEVELOPMENT AND HOMEOSTASIS OF
CEREBROVASCULATURE

The TGF-β Signaling Pathway
The TGF-β signaling pathway is highly conserved in evolution,
and plays multiple and complex physiological functions in the
regulation of embryonic development and tissue homeostasis in a
highly context-dependent manner (Morikawa et al., 2016; David
and Massague, 2018; Zinski et al., 2018).

The TGF-β signaling pathway comprises of more than 30
kinds of ligands, mainly divided into subfamilies such as TGF-βs,
bone morphogenetic proteins (BMPs), activins, inhibin, Nodal,
anti-Müllerian hormone, and growth and differentiation factors
(GDFs) (Figure 1). Most TGF-β ligands function as paracrine
factors on adjacent cells. The TGF-β ligands are expressed in
latent forms with latency-associated peptide (LAP) shadowing
the active domains of TGF-βs in the latent complex, and mature
TGF-β ligands are activated through cleavage by extracellular
protease from the LAP or physical tension by integrins. Several

milieu molecules interact specifically with latent TGF-β and are
essential for the bioavailability of TGF-β ligands. It is widely
accepted that αVβ6 and αVβ8 integrins convert the cytoskeletal
tension into a mechanical force to dissociate LAP from the TGF-
β active domain, thereby releasing the activated TGF-β molecule
and initiating the signaling cascade (Aluwihare et al., 2009). Very
recently, researchers used cryo-electron microscopy to analyze
the intermediate conformation of the interaction between αVβ8
integrin and latent TGF-β, and found that latent TGF-β binding
with αVβ8 can expose the active domain and directly activate
the TGF-β signaling pathway without release of the mature
conformation (Campbell et al., 2020).

Activated TGF-β ligands, which are usually disulfide-linked
homodimers, directly bind to the serine/threonine protein kinase
type II receptors on the cell membrane surface, sometimes with
the assistance of co-receptors such as endoglin and β-glycan
(Goumans and Ten Dijke, 2018). Various proteins including
noggin, chordin, follistatin, gremlin, coco, and cerberus act as
ligand-traps to prevent TGF-β ligands from binding to receptors
(David and Massague, 2018). Regulatory molecules such as
FKBP12 and BAMBI inhibit the signaling pathway by docking at
the cytoplasmic domain of TGF-β type I receptors (Wang et al.,
1996; Onichtchouk et al., 1999).

The type II receptors phosphorylate the type I receptors to
form a receptor complex, which then phosphorylates the receptor
regulated SMADs (R-SMADs) intracellularly. Type I receptors
for the TGFβ subfamily (ALK4, ALK5, and ALK7) mainly
phosphorylate SMAD2 and SMAD3, whereas type I receptors
for the BMP subfamily (ALK1, ALK2, ALK3, and ALK6) mainly
phosphorylate SMAD1, SMAD5, and SMAD8. The activated
R-SMADs form a complex with the central mediator SMAD4
and translocate into the nucleus, where it binds to specific
gene loci under the guidance of signal-driven transcription
factors (SDTFs) and lineage-determined transcription factors
(LDTFs) as well as tripartite motif 33 (TRIM33) to regulate
chromatin accessibility and gene transcription (Xi et al., 2011;
David and Massague, 2018). A negative feedback loop of TGF-
β signaling is mediated by the inhibitory SMADs: SMAD6
and SMAD7. SMAD7 can recruit E3 ubiquitin protein ligase
SMURF2 to degrade the TGF-β receptor (Kavsak et al., 2000).
SMAD6 not only interferes with the activation of SMAD2
phosphorylation by the receptor, but binds to R-SMAD and
inhibits its binding to SMAD4 (Imamura et al., 1997; Hata
et al., 1998). The TGF-β ligands can also signal through SMAD-
independent pathways including the mitogen-activated protein
kinase (MAPK) and phosphoinositide 3-kinase (PI3K) pathways
(Derynck and Zhang, 2003; Figure 1).

It is intriguing that this seemingly simple “two-step” signal
transduction of the TGF-β pathway has various and even opposite
biological effects on a wide range of physiological processes,
thereby reflecting the high spatiotemporal specificity of TGF-
β signaling. The complexity of TGF-β signaling is manifested
in the abundance and different combinations of its ligands,
receptors and intracellular co-factors collaborating with SMADs.
A single ligand can trigger multiple receptors [one of the 5
type II receptors (TGFBR2, BMPR2, ACVR2, ACVR2B, and
AMHR2) in combination with one of the 7 type I receptors
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FIGURE 1 | TGF-β signaling pathway. Activated TGF-β ligands with or without αVβ8 integrins bind at serine/threonine protein kinase type II receptors, sometimes
with the assistance of the co-receptors such as endoglin. The type II receptors subsequently phosphorylate type I receptors to form a tetrameric receptor complex,
which subsequently phosphorylates the SMAD2, SMAD3 or SMAD1, SMAD5, and SMAD8 to form a trimeric complex with SMAD4 in cytoplasm. The SMAD
complex then translocates into nucleus and binds at special loci under the guidance of the SDTFs and LDTFs to initiate the transcriptional response. Besides,
TRIM33, a modulator of TGF-β signaling, is able to regulate chromatin accessibility and remodeling. In addition to the canonical TGF-β signaling, there are
SMAD-independent pathways, such as PI3K/Akt, MEK/ERK and MKK/JNK/MAPK downstream of the TGF-β receptors. TGF-β signaling is negatively regulated at
multiple levels. Various ligand traps (noggin, chordin, follistatin, gremlin, coco, and cerberus) can prevent TGF-β ligands from binding to receptors, while FKBP12 and
BAMBI can dock at cytoplasmic domain of TGF-β type I receptors to inhibit TGF-β signaling. In addition, inhibitory SMADs including SMAD6 and SMAD7 play a
critical function in suppressing the SMAD-mediated signaling.

(ALK1-7)], and single receptor can interact with different ligands
as well. The diversity of TGF-β ligand-receptor combinations
leads to superimposed, synergistic or antagonistic effects on
cells harboring different transcription factors and co-factors
interacting with SMADs, resulting in complex biological effects
(Massague, 2012).

TGF-β Signaling in Cerebral
Angiogenesis
The cerebrovascular network is developed via sprouting
angiogenesis. The primary vessels of PNVP penetrate the CNS
parenchyma and undergo remodeling to form a hierarchical
vascular system composing of branched arteries and veins as well
as capillaries, which is regulated by various signaling pathways
including TGF-β signaling (Paredes et al., 2018).

Endothelial TGF-β-ALK5 Signaling in Sprouting
Angiogenesis
Endothelial TGF-β signaling has been shown to be essential
for cerebral angiogenesis, since Tgfbr2 or Alk5 gene knockout
blood vessels fail to invade into the neuroepithelial layers
and exhibit intracerebral hemorrhage (Nguyen et al., 2011).
Genetic disruption of Smad4 in brain ECs leads to increased

EC proliferation, impaired endothelial-pericyte interaction and
intracerebral hemorrhage, providing a strong evidence that brain
endothelial canonical TGF-β signaling plays essential roles in
regulating brain angiogenesis and maintaining cerebrovascular
integrity (Li et al., 2011).

A previous study has revealed the anti-angiogenic effect
of TGF-β signaling in CNS vascular development (Arnold
et al., 2014). Activated TGF-β signaling, by αVβ8 integrin,
distributes as highest concentration in ventral brain regions and
decreases in a gradient toward the dorsal brain regions, which
is accompanied with stabilized vessels in ventral brain regions
and greater vascular density, branch points and filopodia in
dorsal brain region, suggesting that TGF-β signaling may play
an anti-angiogenic role in cerebral angiogenesis. Consistently,
loss of β8 integrin (Itgb8) or TGF-β1 or knockout of Alk5 or
Tgfbr2 in ECs causes excessive vascular sprouting, branching
and proliferation, which eventually leads to vascular dysplasia
and cerebral hemorrhage (Arnold et al., 2014; Hirota et al.,
2015). It has been further verified that neuroepithelial Itgb8 and
endothelial neuropilin 1 (Nrp1) cooperatively promote cerebral
angiogenesis by balancing TGF-β signaling. Endothelial Nrp1
inhibits β8 integrin activated TGF-β signaling to promote brain
sprouting angiogenesis, and EC specific ablation of Nrp1 leads
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to increased levels of phosphorylated SMADs and embryonic
lethality associated with defective sprouting angiogenesis and
cerebral hemorrhage (Hirota et al., 2015).

Transforming growth factor-β signaling has also been shown
to promote angiogenesis. TGF-β1 derived from radial glial cells
promotes murine microcapillary brain EC migration and tube
formation in vitro and stimulates cerebrovascular branching
angiogenesis in the cerebral cortex, and this effect may be
mediated by the balanced expression of pro-angiogenic gene
GPR124 or anti-angiogenic gene, brain-specific angiogenesis
inhibitor-1 (BAI-1) (Siqueira et al., 2018).

Endothelial BMP-ALK1 Signaling in the Stabilization
of Brain Vessels
Bone morphogenetic protein-ALK1 signaling has been shown
to limit EC number and maintain the quiescence of nascent
vessels. BMP9 and BMP10 are physiological ligands of ALK1
during vascular development (Chen et al., 2013). In zebrafish,
ALK1 functions in transducing hemodynamic forces into a
biochemical signal which limits nascent vessel caliber (Corti
et al., 2011). In mouse, ALK1 has been shown to mediate fluid
shear stress by inducing BMP9 to inhibit endothelial proliferation
and promote the recruitment of mural cells, thus maintaining
vascular quiescence (Baeyens et al., 2016). Circulating BMP10
acts through endothelial ALK1 to activate pSMAD1/5/8 which
decreases pro-angiogenic chemokine receptor cxcr4a expression
and induces vasoconstrictive peptide endothelin 1 (Edn1),
thereby limiting EC number and stabilizing nascent arterial
caliber (Laux et al., 2013).

The mechanisms by which BMP-ALK1 regulates
cerebrovascular development are quite limited; therefore,
certain studies on the developmental mechanisms of mouse
retinal vasculature can help us understand the related processes.
The study using heterozygous Acvrl1+/- mice revealed that
BMP9-ALK1 signaling inhibits EC proliferation and migration
by activating PTEN to inhibit PI3K/Akt and MEK/ERK cascades,
thereby maintaining retinal vascular quiescence (Alsina-Sanchis
et al., 2018). Consistently, simultaneously silencing Bmp10 and
Bmp9 in developing mice increases the retinal vascular density
by promoting angiogenesis (Ricard et al., 2012).

TGF-β Signaling in the Formation and Maturation of
BBB
Transforming growth factor-β signaling has been implicated in
BBB formation and permeability by regulating tight and adherens
junctions. The BBB is mainly composed of ECs which are
characterized by the presence of tight and adherens junctions,
and pericytes play an important role in the formation and
maintenance of the BBB (Armulik et al., 2010; Bell et al.,
2010; Daneman et al., 2010; Li et al., 2011). Endothelial
TGF-β/SMAD4 signaling upregulates the adhesion molecule
N-cadherin to facilitate the EC-pericyte interaction and BBB
formation, in collaboration with Notch signal transduction (Li
et al., 2011). Knockout of Smad4 in the brain ECs causes
decreased expression of N-cadherin and pericyte detachment,
leading to intraventricular hemorrhage and BBB breakdown
during the perinatal period (Li et al., 2011). Besides, TGF-β1

derived from pericytes upregulates the expression of claudin-5
and promotes BBB maturation via decreasing endothelial CD146
expression (Chen et al., 2017).

Bone morphogenetic protein signaling has also been
demonstrated to participate in the maintenance of BBB function.
In zebrafish, BMP3 has been shown to regulate BBB integrity
by promoting pericyte coverage (Lei et al., 2017). In rat cerebral
vessel, BMP9/ALK1 signaling increases expression of endothelial
transporters such as organic anion transporting polypeptide 1a4
at the BBB (Abdullahi et al., 2017). And BMP9/Alk1 is required
for BBB stability, since ALK1 haploinsufficiency worsens
the vascular leakage in diabetic mice. Mechanistically, ALK1
signaling inhibits VEGF-induced VE-cadherin phosphorylation
and induces occludin expression, thereby enhancing the BBB
function (Akla et al., 2018).

Non-endothelial TGF-β Signaling in Cerebral
Angiogenesis
Cerebral angiogenesis is not only programmed in ECs, but
also orchestrated by dynamic TGF-β signaling in other
cell types within or outside the NVU, including pericytes,
astrocytes, oligodendrocyte precursor cells, neural progenitors,
preosteoblasts and periosteal dura cells.

Brain pericytes have been shown to induce and upregulate
the functions of BBB through continuous TGF-β production
(Dohgu et al., 2005). Pericyte ALK5 upregulates tissue inhibitor
of matrix metalloproteinase 3 (TIMP3) to control endothelial
morphogenesis in the germinal matrix. Specific knockout of
Alk5 in embryonic mouse pericytes causes degradation of the
basement membrane by upregulated matrix metalloproteinases
(MMPs), resulting in severe germinal matrix hemorrhage-
intraventricular hemorrhage (GMH-IVH) (Dave et al., 2018).

Astrocytes, whose endfeet interact with ECs of the neural
capillaries, play a critical role in cerebral angiogenesis and
BBB formation though BMP signaling. Targeted disruption of
BMP type IA receptor (BMPR1A) in telencephalic neural
stem cells leads to upregulated expression of VEGF in
mutant astrocytes, impaired EC-astrocyte interaction, and
cerebrovascular malformation, demonstrating that BMP
signaling in astrocytes is essential for a functional BBB (Araya
et al., 2008). A very recent study showed that BBB breakdown in
aging humans and rodents is associated with hyperactivation of
TGF-β signaling in astrocytes. Conditional genetic knockdown
of astrocytic TGF-β receptor-coding genes or pharmacological
inhibition of TGF-β signaling rescues the phenotypes in aged
mice (Senatorov et al., 2019).

Oligodendrocyte precursor cells have also been shown to
maintain BBB integrity through TGF-β signaling. TGF-β1
derived from oligodendrocyte progenitor cells can activate the
MEK/ERK signaling pathway in ECs to promote tight junction
protein expression and improve BBB integrity, and knockout
of Tgfbr1 in oligodendrocyte progenitor cells leads to cerebral
hemorrhage and disruptive BBB in mice (Seo et al., 2014).

Several neural progenitors have also been shown to play
important roles in brain region-specific angiogenesis via
TGF-β signaling. Tgfbr2 silencing in forebrain-derived neural
progenitors and neural cells impedes EC migration and
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sprouting, decreases vessel density and branching via altered
secretion of pro- and anti-angiogenic factors, thereby leading to
intracerebral hemorrhage in the telencephalon (Hellbach et al.,
2014). Neural progenitor S1P signaling regulates integrin β8
gene expression, thereby activating local TGF-β signaling that
promotes germinal matrix vasculature development. Disruption
of S1P signaling in neural progenitors results in defective
angiogenesis and hemorrhage, as well as phenotypes mimicking
the germinal matrix hemorrhage in humans (Ma et al., 2017).

In addition, BMP2 and BMP4 derived from preosteoblasts and
periosteal dura are essential for dural cerebral vein formation.
Loss of Twist1 or BMP2/4 signaling in skull progenitor cells
and dura leads to cerebral vein malformations, similar to that in
humans with craniosynostosis (Tischfield et al., 2017).

TGF-β Signaling in
Endothelial-to-Mesenchymal Transition
(EndMT)
Endothelial-to-Mesenchymal Transition is a complex biological
process and mainly refers to the trans-differentiation of ECs into
mesenchymal stem cells, fibroblasts, SMCs or pericytes (Dejana
and Lampugnani, 2018). During the process of EndMT, ECs
lose the expression of endothelial markers (such as CD31 and
VE-cadherin), and exhibit increased expression of mesenchymal
transcription factors and molecular markers [such as Snail1,
Slug (Snail2), Twist, ZEBs, vimentin, α-SMA, fibroblast-specific
protein-1 (FSP-1; also known as S100A4 protein), fibroblast
activating protein (FAP), and fibrillary collagens type I and type
III] to obtain a mesenchymal morphology. Mesenchymal cells
derived from EndMT gain enhanced ability of cell migration
and invasion via disturbing the paracellular connection and
polarity of ECs.

Activation of the TGF-β signaling pathway is the most
important onset of EndMT (Ma et al., 2020). All three
TGF-βs (TGF-β1, TGF-β2, and TGF-β3) have been shown
to induce EndMT, while TGF-β2 seems to be more effective
than TGF-β1 or TGF-β3 (Sabbineni et al., 2018). TGF-β
ligands activate the TGFBR2 and ALK2 or ALK5 in ECs,
and induce the pSMAD2/3/4 complex to translocate into the
nucleus, where they interact with other transcription factors
required for EndMT including Snail1, Snail2, Zeb1, Zeb2,
KLF4, TCF3, and Twist and subsequently trigger the expression
of mesenchymal transcription factors and molecular markers.
TGF-β ligands also trigger EndMT through the non-canonical
TGF-β pathways including MAPK, PI3K, and RhoA pathways
(Piera-Velazquez and Jimenez, 2019).

Emerging studies have revealed that BMP signaling serves as
a gatekeeper by antagonizing TGF-β-induced EndMT in ECs.
BMP7 has been shown to inhibit hypoxia-induced EndMT and
gremlin-1-mediated EndMT (Zhang et al., 2018, 2020). Loss
of Bmpr2 in ECs leads to EndMT characterized by conversion
of VE-cadherin to junctional N-cadherin, Slug and Twist
upregulation, as well as increased expression of extracellular
matrix (ECM) proteins (Hiepen et al., 2019). BMPR2-JNK
signaling axis has also been shown to antagonize inflammation-
induced EndMT (Sanchez-Duffhues et al., 2019).

Physiologically, EndMT plays essential roles during
cardiovascular development, such as angiogenic sprouting
and cardiac valve formation (Kruithof et al., 2012; Welch-
Reardon et al., 2014). Dysregulation of EndMT has
been associated with pathological situations, such as
malignant diseases, fibrotic disorders and vascular diseases
(Piera-Velazquez and Jimenez, 2019).

Emerging evidence indicates that dysregulated EndMT
contributes to certain cerebrovascular diseases (Piera-Velazquez
and Jimenez, 2019). The first evidence that EndMT is involved
in the pathological process of cerebrovascular diseases was
from the study of cerebral cavernous malformation (CCM).
TGF-β signaling mediated EndMT is a direct cellular mechanism
leading to CCMs in either mouse models or human patients
(Maddaluno et al., 2013; Cuttano et al., 2016). Shortly
after, another study reported that a meningeal pathogen
Group B Streptococcus infection induces Snail1 expression
and endothelial dedifferentiation, leading to BBB disruption,
suggesting that EndMT might also contribute to BBB deficiency
(Kim et al., 2015). Very recently, several studies have revealed
that EndMT occurs in multiple sclerosis (MS), ischemic stroke,
as well as brain arteriovenous malformations (AVMs) in humans
(Derada Troletti et al., 2019; Chen et al., 2020; Shoemaker
et al., 2020). All these results indicate that dysregulated EndMT
might be an important pathological process involved in a
variety of cerebrovascular disorders. However, the causal link
between EndMT and various cerebrovascular diseases needs to
be further established.

DYSREGULATION OF TGF-β SIGNALING
IN CEREBROVASCULAR DISEASES

Recent studies have shown that defects in TGF-β signaling
are associated with human cerebrovascular diseases. Pathogenic
mutations in TGF-β signaling, such as ENG, ALK1 gene
mutations, are associated with type 1 and type 2 hereditary
hemorrhagic telangiectasia (HHT), as well as Loeys-dietz
syndrome with cerebrovascular events (McAllister et al., 1994;
Cunha et al., 2017; Laterza et al., 2019). Some genome-wide
association studies (GWAS) or whole exome trio sequencing
have uncovered various pathogenic gene variants in the TGF-
β pathway, which are associated with small vessel ischemic
strokes, intracerebral hemorrhages and sporadic brain AVMs
(Weinsheimer et al., 2016; Yilmaz et al., 2017; Wang et al.,
2018; Chung et al., 2019). Increased expression of TGF-β1 has
been found in the brain tissue after ischemic stroke, as well as
in hereditary cerebral hemorrhage with amyloidosis-Dutch type
(Krupinski et al., 1996; Grand Moursel et al., 2018), while a recent
transcriptome-wide RNA sequencing study revealed that TGF-β
signaling was downregulated in patients with brain AVMs (Hauer
et al., 2020). All these evidences suggest that dysregulation of
TGF-β signaling may contribute to the onset and progression
of cerebrovascular diseases. While there are not many studies
on the mechanisms of cerebrovascular diseases related to TGF-
β dysfunction, we discuss the three most studied cerebrovascular
diseases caused by dysregulation of TGF-β signaling.
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Cerebral Cavernous Malformation (CCM)
Cerebral cavernous malformation is a cerebrovascular disease
causing recurrent cerebral hemorrhage, headaches, seizures and
stroke, which is histologically characterized by clusters of dilated
vascular sacs with ECs lacking tight junctions and mural cell
coverage (Goldstein and Solomon, 2017; Stapleton and Barker,
2018). Genetically, CCMs can be categorized into familial and
sporadic types. Approximately, 20% of all CCMs are Familial
CCMs which present autosomal dominant inheritance with loss-
of-function germline mutations in any one of the following three
genes: CCM1/KRIT1, CCM2/malcavernin, or CCM3/PDCD10
(Zafar et al., 2019). The sporadic CCMs are non-hereditary and
are probably caused due to somatic mutations of CCM genes
(McDonald et al., 2014).

In both familial and sporadic CCM patients, TGF-β signaling
is activated during pathological progression, as indicated by
nuclear accumulation of endothelial pSMAD3 accompanied by
expression of EndMT markers in lesions of familial and sporadic
cavernomas (Maddaluno et al., 2013; Bravi et al., 2016). Besides,
Kruppel-like factor 2 (KLF2) and KLF4, the activators of the
BMP signaling, are significantly upregulated in ECs of familial
and sporadic CCM lesions (Cuttano et al., 2016; Zhou et al.,
2016). Activated TGF-β/BMP signaling has also been observed
in cultured cells wherein all three Ccm genes were knocked down
in ECs (Maddaluno et al., 2013; Cuttano et al., 2016), especially
under low fluid shear stress conditions (Li et al., 2019).

The activation of TGF-β/BMP signaling has been confirmed
in endothelial specific Ccm1 and Ccm3 knockout mice. Ablation
of Ccm1 in ECs activates the expression of endogenous Bmp6
which induces the upregulation of pSMAD1 and pSMAD3 and
triggers EndMT resulting in cerebral vascular malformations
(Maddaluno et al., 2013). The upregulation of Bmp6 caused by
mutant Ccm1 could be mediated by KLF4 which directly binds
to the promoters of Bmp6 and some EndMT markers to induce
their expression (Cuttano et al., 2016; Figure 2). Moreover,
increased levels of pSMAD1 and pSMAD3 were observed in ECs
of endothelial Ccm3 knockout mice (Bravi et al., 2015). Small-
molecule inhibitors of TGFBR, pSMAD or BMP signaling could
prevent EndMT and reduce the size and number of cerebral
malformations, demonstrating that dysregulation of TGF-β/BMP
signaling directly contributes to the onset and pathological
process of CCMs (Maddaluno et al., 2013).

Some studies have uncovered the causal function of mitogen-
activated protein kinase kinase Kinase 3 (MEKK3) and KLF2/4
in CCM pathogenesis, which is independent of TGF-β/SMAD
signaling (Zhou et al., 2016). Endothelial-specific disruption of
Mekk3, Klf2 or Klf4 significantly suppresses CCM and rescues the
lethal phenotype in Ccm2 mutant mice. Consistently, the levels
of KLF2 and KLF4 are increased in ECs of lesions in familial and
sporadic CCM patients (Cuttano et al., 2016; Zhou et al., 2016).
Supportively, ponatinib, a small-molecule compound inhibits
MEKK3 activity to increase expression of the downstream Klf
gene, suppresses CCM in neonatal Ccm1 deficient mouse models
(Choi et al., 2018). In addition, activation of TLR4 by Gram-
negative bacteria and lipopolysaccharide injection could increase
the expression of Klf2/4 and promote CCM formation in Ccm1

FIGURE 2 | Dysregulation of TGF-β/BMP signaling in CCM. Mutant CCM
release the inhibition of MEEK3/ERK pathway, which trigger the expression of
KLF2/4. KLF2/4 subsequently suppress the expression of endothelial markers
and induce the expression of EndMT-related molecules. KLF4 could also
transcriptionally upregulate BMP6 to active TGF-β/BMP cascades in ECs.
Besides, activation of TLR4 associated with CD14 by Gram-negative bacteria
and lipopolysaccharide injection could increase the expression of Klf2/4 and
promote CCM formation.

and Ccm2 knockout mice (Tang et al., 2017; Figure 2). These
inconsistencies with respect to the role of TGF-β signaling in
the development and progression of CCM might be largely
due to the different genetic backgrounds of the mouse models
used, and the different stages of CCM pathogenesis analyzed
in different experiments. Additional genetic rescue experiments
might be helpful to further demonstrate the causal link between
dysregulation of TGF-β signaling and the development and
progression of CCM.

Hereditary Hemorrhagic Telangiectasia
(HHT)
Hereditary hemorrhagic telangiectasia, also known as Osler-
Weber-Rendu syndrome, is an autosomal dominant genetic
disorder characterized as telangiectasia and AVMs affecting
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vessels in multiple organs and tissues including the brain
(Brinjikji et al., 2015; Kritharis et al., 2018). Five types of HHT
have been described, and HHT1 and HHT2 contribute to the
disease in more than 80% of patients with definite HHT (Brinjikji
et al., 2015). Some HHT patients display brain AVMs, often
accompanied by cerebral hemorrhage, seizure, headache, or focal
neurologic symptoms (Brinjikji et al., 2017a,b). Genetic screening
of HHT patients has identified four mutated genetic loci, all of
which are involved in the TGF-β signaling pathway, including
BMP9 ligand encoding gene GDF2 (HHT5 or HHT like), type
I receptor ALK1 encoding gene ACVRL1 (HHT2), co-receptor
endoglin encoding gene ENG (HHT1) and intracellular mediator
SMAD4 encoding gene MADH4 (JP-HHT) (McAllister et al.,
1994; Johnson et al., 1996; Gallione et al., 2004; Wooderchak-
Donahue et al., 2013; Figure 3).

BMP9/10-ALK1 signaling suppresses HHTs through
SMAD-dependent or SMAD-independent pathways.
Endothelial-specific knockout of Alk1 triggers cerebral AVMs
mimicking the pathologic characteristics of HHT (Park et al.,
2009). In adult mouse, combined with VEGF stimulation,
knockout of Alk1 could alter cerebral arteriovenous molecule
specificity and induce AVMs (Walker et al., 2011). Zebrafish
harboring mutations in Bmp9 and duplicate Bmp10 paralogs,
Bmp10 and Bmp10-like exhibit cranial AVMs mimicking Acvrl1
mutants (Capasso et al., 2020). In postnatal retina, BMP9/10
ligand blockade and endothelial-specific homozygous ALK1
inactivation induces excessive angiogenesis via activating VEGF
and PI3K/Akt signaling (Ola et al., 2016; Ruiz et al., 2016; Alsina-
Sanchis et al., 2018). Pharmacological or genetic inhibition
of PI3K rather than VEGFR could abolish ALK1-induced
vascular hyperplasia in vivo, confirming that PI3K/Akt is the
core mechanism downstream of BMP9/10-ALK1 signaling in
maintaining vascular quiescence (Alsina-Sanchis et al., 2018; Ola
et al., 2018; Iriarte et al., 2019; Figure 3).

Mice with homozygous or heterozygous deletion of Eng with
VEGF treatment exhibit brain AVMs (Choi et al., 2012, 2014),
and endothelial-specific Eng knockout mice spontaneously
develop AVMs in the retina or brain (Mahmoud et al., 2010; Choi
et al., 2014). In cerebral and retinal vessels, the Eng-null ECs
cannot migrate against blood flow toward the arteries, leading
to the accumulation and proliferation of ECs thereby triggering
AVMs. Increased VEGFA expression which activates PI3K/Akt
signaling through VEGFR2 may be responsible for stimulating
sprouting angiogenesis and promoting venous differentiation
in Eng mutant mice (Jin et al., 2017). Consistently, a recent
study showed that ECs lacking Eng exhibit increased VEGF
sensitivity and abnormal proliferation resulting in the formation
of peripheral AVM (Tual-Chalot et al., 2020).

The essential role of endothelial SMAD4 in the maintenance
of cerebrovascular integrity has been demonstrated by the
study using a brain endothelial specific Smad4 knockout
mouse, which develops phenotypes partially simulating HHT
patients, such as dilated vessels, increased EC proliferation,
intracranial hemorrhage and BBB breakdown (Li et al., 2011).
Postnatally inducible endothelial Smad4 knockout results in
AVM in neonatal and adult mice, which is comparable with
the phenotypes observed in inducible endothelial Alk1 and Eng

FIGURE 3 | Dysregulation of BMP-ALK1-Smad4 signaling in HHTs. The
mutant components within the BMP-ALK1 pathway including BMP9, ALK1,
Endoglin, and SMAD4 are unable to suppress the transcription of CK2.
Therefore, PTEN is phosphorylated by CK2 and loss the capacity to inhibit the
PI3K/Akt pathway, which result in dysdifferentiation, disorganization, dilation
and subsequent AVMs in cerebrovasculatures. Besides, AVMs-caused
hypoxia increases the level of VEGFA, which subsequently binds VEGFR2 to
active downstream PI3K/Akt signaling to aggravate the pathological process
of AVMs. In addition, mutant SMAD4 increases the expression of
angiopoietin-2 (Angpt2), leading to AVMs.

knockout mice (Crist et al., 2018; Kim et al., 2018; Ola et al., 2018).
Mechanistically, SMAD4-mediated BMP9/10-ALK1 signaling
inhibits the transcription of casein kinase 2 (CK2) which
limits PTEN phosphorylation and PI3K/Akt activation, thereby
preventing AVMs in the brain, retina, and gastrointestinal tract
(Ola et al., 2018). In addition, Smad4 knockout leads to increased
angiopoietin-2 (Angpt2) expression in ECs, which might cause
AVM by changing the size and shape of ECs in the retina of
Smad4 mutant mice (Lan et al., 2007; Crist et al., 2019; Figure 3).

These studies based on mouse models that mimic human
HHT patients have provided the causal link between dysregulated
TGF-β signaling and the pathogenesis of HHT. Blood flow
stimulates BMP9-ALK1-ENG-SMAD4 signaling to maintain EC
quiescence by suppressing EC proliferation and inducing pericyte
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recruitment (Baeyens et al., 2016), which involves PI3K/Akt
signaling, Angpt2 signaling and possibly other factors (Alsina-
Sanchis et al., 2018; Ola et al., 2018; Crist et al., 2019). It is
worth noting that AVMs develop due to a combination of gene
mutations in TGF-β signaling with angiogenic induction (via
VEGF stimulation or wounding) (Park et al., 2009; Garrido-
Martin et al., 2014), supporting the “Two hit mechanism” in
HHT. Consistently, the tissues that are most vulnerable to AVMs
or telangiectasia are those-susceptible to repeated damage and
repair, such as the face, lips, and fingers in HHT patients (Brinjikji
et al., 2015). Further investigation is required to elucidate whether
dysregulation of other signaling pathways which cross talk with
the TGF-β signaling pathway could serve as the second hits in the
pathogenesis of HHT.

Cerebral Autosomal Recessive
Arteriopathy With Subcortical Infarcts
and Leukoencephalopathy (CARASIL)
Cerebral Autosomal Recessive Arteriopathy with Subcortical
Infarcts and Leukoencephalopathy is a rare autosomal recessive
cerebrovascular disease that mainly occurs in cerebral white
matter and basal ganglia, causing early adult-onset dementia,
gait disturbance, alopecia, and low back pain (Nozaki et al.,
2014; Tikka et al., 2014). Histologically, CARASIL displays
cerebral arteriopathy showing fibrous proliferation of intima,
loss of vascular SMCs and thickening of meningeal and
parenchymal arteries. Fibrous hyperplasia in arteries results in
the impaired contraction, leading to subcortical lacunar infarcts
and subsequent vascular dementia (Oide et al., 2008; Ito et al.,
2016). Genetically, mutations in high-temperature requirement
serine peptidase A1 (HTRA1) gene have been identified to be
associated with CARASIL (Hara et al., 2009). In patients, TGF-
β1-pSMAD2 activation was observed in cerebral small arteries
(Hara et al., 2009; Shiga et al., 2011).

The mechanistic role of TGF-β signaling in the pathogenesis
of CARASIL, is a debatable topic. HRTA1 is a serine protease
which is strongly expressed in ECs, vessel SMCs and pericytes (De
Luca et al., 2003). HtrA1 knockout mice display a significantly
decreased retinal vascular density which coincides with patients
presenting reduced cerebral small vessels (Zhang et al., 2012).
Mechanistically, HTRA1 cleaves the pro-domain of proTGF-
β1 and TGF-β receptors to antagonize TGF-β signaling (Oka
et al., 2004; Shiga et al., 2011; Graham et al., 2013). Consistently,
HtrA1 knockout either in vivo or in cultured cells induces
the expression of TGF-β ligands and activates pSMAD2/3
signaling (Zhang et al., 2012; Klose et al., 2019). All these
results indicate that abnormal activation of TGF-β signaling
contributes to the pathogenesis of CARASIL. However, there
are studies showing that impaired TGF-β signaling is involved
in CARASIL pathogenesis (Beaufort et al., 2014; Fasano et al.,
2020). Loss of HtrA1 leads to defective HTRA1-mediated LTBP-
1 processing and reduced TGF-β signaling (Beaufort et al.,
2014), and fibroblasts derived from HTRA1 mutation carriers
exhibit no significant change in pSMAD2/3 expression (Fasano
et al., 2020). The possible reasons for the discrepancy might
partially be due to different HTRA1 mutations leading to different

outcomes (Verdura et al., 2015; Lee et al., 2018). Future studies
should identify the natural characteristics of CARASIL associated
mutations and develop animal models that accurately mimic all
pathological and molecular aspects of human CARASIL patients,
which will help uncover the mechanisms of CARASIL and
discover new therapeutic targets.

POTENTIAL THERAPIES TARGETING
TGF-β SIGNALING

Current therapies for CCM, HHT, and CARASIL patients mainly
rely on surgery or relieving complications (Tikka et al., 2014;
Kritharis et al., 2018; Stapleton and Barker, 2018). Recent
advances in understanding the mechanisms of dysfunctional
TGF-β signaling which results in cerebrovascular diseases has
provided hope to develop pharmacological and genetic therapies
for these diseases.

Activated TGF-β/BMP signaling has been demonstrated to
contribute to the onset and progression of CCMs in patients
and mouse models (Maddaluno et al., 2013; Bravi et al.,
2016; Cuttano et al., 2016). Therefore, it is expected that
therapeutics targeting TGF-β/BMP signaling would be beneficial
for CCMs. Indeed, TGFBR1/pSMAD inhibitors LY364947 and
SB431542 as well as BMPR1 inhibitor dorsomorphin (DMH1)
strikingly reduce the level of pSMAD1 and pSMAD3, prevent
the expression of EndMT markers, and decrease the number
and size of vascular malformation lesions in CCM1 mutant
mice (Maddaluno et al., 2013). KLF4 has been shown to be a
good therapeutic target for CCM. Ccm1 knockout results in
MEKK3-MEK5-ERK5-MEF2 signaling dependent activation of
KLF4 which promotes the expression of Bmp6. A specific MEK5
inhibitor BIX-02189 (Tatake et al., 2008) significantly decreases
pERK5 and KLF4 expression, inhibits Bmp6 upregulation
and EndMT in CCM1 deficient ECs (Cuttano et al., 2016),
indicating that inhibitors of the MEKK3-MEK5-ERK5-MEF2
axis might be useful for suppressing BMP signaling and EndMT
in the pathogenesis of CCM. There are several novel drugs
targeting TGF-β signaling, developed through preclinical trials
and further tested in clinical trials, including anti-ligand antisense
oligonucleotides (ASOs), ligand-competitive peptides, antibodies
targeting ligands, receptors or associated proteins, and inhibitors
against TGF-β receptor kinases for various diseases (Akhurst and
Hata, 2012; Graham et al., 2013; Kemaladewi et al., 2014; Aykul
and Martinez-Hackert, 2016; Wu et al., 2017; Holmgaard et al.,
2018). It is worth examining whether these candidate drugs that
target TGF-β signaling could inhibit the progress of CCMs.

The majority of HHT patients have pathogenic loss of function
mutations in TGF-β signaling. Although many studies have
uncovered the molecular mechanisms underlying HHTs caused
by dysfunctional TGF-β signaling, there is currently no efficient
drug for HHT treatment. Current drug therapy regimens mainly
focus on interfering with the downstream core signaling pathway
such as activated VEGF and PI3K/Akt signaling (Alsina-Sanchis
et al., 2018; Ola et al., 2018). Since haploinsufficiency of endoglin
and ALK1 have been identified as the causes of HHT1 and HHT2,
a better understanding of the regulation of their expression
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levels at the transcriptional level or post-transcriptional level
will help developing therapeutic strategies targeting endoglin and
ALK1 expression or function. Indeed, a very recent study shows
that ALK1-overexpression could normalize SMAD and NOTCH
target gene expression, restore the effect of BMP9 on suppression
of p-Akt, and inhibit the development of AVMs in Alk1- and Eng-
inducible knockout mice, suggesting that ALK1 overexpression
or activation might be a potential therapeutic strategy for HHT
patients (Kim et al., 2020).

Genome editing may serve as the final solution. CRISPR-based
genome editing has been demonstrated as a powerful tool for
treating genetic diseases (Pickar-Oliver and Gersbach, 2019). The
CRISPR-Cas9 system has been demonstrated to efficiently correct
gene mutations in various mouse models of human diseases,
including cataracts, muscular dystrophy and many others (Wu
et al., 2013; Long et al., 2014). Recent studies show that base
editing can correct mutations in human cells and in a mouse
model of genetic deafness, and a newly developed template-free
Cas9 editing is able to precisely correct the pathogenic mutations
in human cells (Gaudelli et al., 2017; Gao et al., 2018; Shen
et al., 2018). A newly developed CRISPR-Cas8 system, with a
molecular weight which is only half of Cas9 or Cas12a displays
expanded target recognition capabilities and is functional in
human cells as well (Pausch et al., 2020), providing a new genome
editing tool for treating cerebrovascular diseases. Once the causal
link between mutations in TGF-β signaling and cerebrovascular
diseases has been established, genome editing will likely correct
these mutant genes to heal the related cerebrovascular diseases.

CONCLUSION AND PERSPECTIVES

Previous studies have demonstrated the crucial function
of TGF-β signaling in cerebral vasculature development
and integrity, and uncovered the causal link between the
dysfunctional TGF-β signaling and the onset or progression
of several cerebrovascular diseases such as CCM, HHT and
CARASIL. However, the related mechanisms underlying the
dysregulation of TGF-β signaling resulting in cerebrovascular
diseases remains to be further elucidated. In recent years,
using the rapidly developed single cell sequencing technology
and advanced graphics algorithm, researchers have revealed
the unappreciated heterogeneity and plasticity of human
and mouse cerebral blood vessels, discovering not only new
markers for different subtypes of ECs but also a new cell type
adjacent to the blood vessel (Schaum et al., 2018; Vanlandewijck
et al., 2018; Kalucka et al., 2020). Further investigation of the
role and mechanism of TGF-β signaling in the regulation
of cerebrovascular heterogeneity and plasticity will help to
understand the function of TGF-β signaling in the occurrence
and development of cerebrovascular diseases.

There are not many animal models that can accurately
mimic the genetic and pathological characteristics of human
cerebrovascular diseases. Rapid advances in genome editing
technologies based on CRISPR-Cas systems provide powerful
tools for generating animal models carrying genomic mutations
precisely mimicking the ones in human patients (Pickar-Oliver

and Gersbach, 2019). Studies using cell lineage tracing technology
combined with single cell sequencing in animal models of
human cerebrovascular diseases will help reveal the cellular
and molecular mechanisms of cerebrovascular diseases and
discover new therapeutic targets. In addition, human cortical
organoids with functional cerebral vessels will provide valuable
models for dissecting the roles of TGF-β signaling in the
development and progression of human cerebrovascular diseases
(Cakir et al., 2019).

Although recent advances have indicated that targeting
TGF-β signaling will be a potential strategy for the treatment
of cerebrovascular diseases, clinical transformation is still
challenging. Considering the cell context-dependent pleiotropic
roles of the TGF-β signaling pathway, the selectivity and dosage of
targeted drugs may be crucial for the desired therapeutic effects.
Previous research has identified various TGF-β inhibitory drugs
involving almost every level in the TGF-β signaling cascade, some
of which have been proved safe and effective for treating systemic
sclerosis, cancers or idiopathic pulmonary fibrosis in clinical
trials (Rice et al., 2015; Yingling et al., 2018; Joyce et al., 2019;
Kelley et al., 2019; Papachristodoulou et al., 2019; Santini et al.,
2019). These existing TGF-β inhibitory drugs provide potential
therapeutic opportunities for treating cerebrovascular diseases
with activated TGF-β signaling. For cerebrovascular diseases with
loss-of-function mutations in TGF-β signaling, somatic genome
editing may provide tools to correct the mutations or enhance
TGF-β signaling.

Increased clinical research data shows that there is a close
correlation between cerebrovascular and central nervous system
diseases. Abnormal cerebrovascular structure and function
are closely related to brain atrophy, dementia and various
neurodegenerative disorders and cognitive impairment (Turner
et al., 2016; Yang et al., 2017; Iadecola and Gottesman,
2018; Kummer et al., 2019). Dysregulated TGF-β signaling
has been observed in neurodegenerative diseases accompanied
by cerebrovascular abnormalities (von Bernhardi et al., 2015).
Further studying the synergistic mechanisms by which TGF-β
signaling maintains the homeostasis of the cerebrovascular and
central nervous system might be very helpful in uncovering the
direct causal link between cerebrovascular and central nervous
system diseases, providing new theoretical basis and treatment
strategies for joint preventing and treating cerebrovascular and
central nervous system diseases.
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