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Abstract: To explore the prospect of molecules involving silicon-silicon multiple bonds as nonlinear
optical molecular systems, the relationship between the structure and the second hyperpolarizabilities
γ of the oligomeric systems composed of carbon and silicon π-structures is investigated using
the density functional theory method. It is found that these compounds indicate intramolecular
charge transfer (ICT) from the silicon units to the carbon units together with nonzero diradical
characters. The γ values of these compounds are shown to be 2–13 times as large as those of the
carbon analogs. Although asymmetric carbon and silicon π-systems exhibit comparable enhancement
to the corresponding symmetric systems, donor-π-donor structures exhibit remarkable enhancement
of γ despite of their both-end short silicon π-chain moieties (donor units). Further analysis using the
odd electron and γ densities clarifies that the intermediate diradical character also contributes to the
enhancement of γ. These results predict that even short π-conjugated silicone moieties can cause
remarkable enhancement of γ by introducing them into π-conjugated hydrocarbon structures.

Keywords: diradical; second hyperpolarizability; silicon-silicon double bond; density functional
theory

1. Introduction

Multiple bonds are one of the essential elements for highly efficient functional molecules.
Especially, multiple bonds between silicon (Si) atoms have been theoretically and experimentally
investigated with great interest since Si containing compounds have several different chemical features
from the carbon (C) analogs regardless of their belonging to the same 14 group. It is known that
molecules with Si-Si multiple bonds take trans-bent structures [1] and indicate small HOMO-LUMO
energy gap [2] as well as non-zero diradical character [3]. Since the first synthesis of disilene in 1981 [4],
modern synthesis technique has enabled the synthesis of a variety of molecules with Si-Si multiple
bonds, such as disilyne [2,5,6], tetrasilabuta-1,3-diene [7], π-conjugated systems [8], oligomers with
long main chains [9], and so on. Such compounds are expected to have unique properties due to
their stimuli-responsibilities of Si-Si multiple bonds. However, physicochemical properties deriving
from Si-Si multiple bonds have not been revealed adequately. In general, π-electrons in multiple
bonds are known to be well related to absorption-emission spectra and other optical properties of the
molecules. Among them, nonlinear optical (NLO) properties have attracted much interest due to their
future potential for applications in photonics and optoelectronics, e.g., modern harmonic imaging [10],
huge capacity optical-data storage [11,12], and ultrafast optical switching [13]. For enhancement or
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control of NLO properties, several molecular design principles have been proposed, e.g., extension of
π-conjugation [14–16], donor(D)/acceptor(A) substitution [14–17], and controlling charge states [16,18].
Although these traditional design principles have targeted only closed-shell systems, our previous
studies have shed light on open-shell systems and have revealed the relationship between diradical
character (y) and NLO properties: the system with intermediate y (0 < y < 1) indicates larger
enhancement of second hyperpolarizability (γ, the microscopic origin of the third-order NLO
phenomena) than closed-shell (y = 0) and pure-open shell (y = 1) systems of similar size [19–22].
On the basis of this design principle, a variety of molecular systems with intermediate y have been
theoretically and experimentally reported as highly active NLO molecular systems [20–23]. Recently,
we have reported that poly(disilene-1,2-diyl), the silicon analog of polyacetylene, exhibits much
greater enhancement of γ than polyacetylene and polysilane because of its intermediate y values [24].
However, synthesis of poly(disilene-1,2-diyl) with long main chain is still a challenging topic in modern
chemistry due to its instability, though stable π-conjugated systems composed of C and Si π-structures
have been synthesized as mentioned above. Therefore, introducing π-conjugated Si moiety into C
π-structures may be a prospective way to enhance NLO properties due to its more realizability than
poly(disilene-1,2-diyl). In this study, therefore, we investigate the effects of introducing Si–Si double
bonds into C oligomeric π-structures on the γ values from the viewpoint of open-shell singlet nature
and intramolecular charge transfer (ICT) nature. Such systems with long main chains have already
been synthesized [9,25], and are expected to have ICT nature, which is known as one of the important
factors of enhancement of NLO properties and as a molecular design guideline for highly active NLO
systems such as D-π-D, A-π-A, and D-π-A structures [14,17]. The present results will contribute to
building a novel design guideline for stable efficient NLO systems as well as to designing a new type
of realistic Si based NLO molecular systems.

2. Results and Discussion

Figure 1 shows the compounds examined in this study. These compounds are composed of both
ethylene units (C units) and disilene units (Si units). The compounds 1–5 are symmetric systems,
while 6 and 7 are asymmetric systems. For comparison, the results of Cπ(5) and Siπ(5) investigated in
our previous study [24] are also shown.

Figure 1 also shows the charge distribution of each unit in these compounds. Although Cπ(5) and
Siπ(5) hardly indicate ICT, the combined systems 1–7 indicate ICT from Si units to C units. The natural
charge of each Si (C) unit is shown to almost depend on the number of adjacent C (Si) units. In 1 and 3,
for example, the central C (Si) unit is found to be approximately negatively (positively) charged twice
as much as the terminal Si (C) units. It is notable that ICT in 1–7 occurs not in the whole region of the
molecule but between the adjacent units. In the compounds 2, 4, and 5, it turns out that Si units adjacent
to C units donate charge to the adjacent C units and are positively charged with similar amplitudes
(0.406, 0.397, and 0.421, respectively), while that Si units adjacent to Si units in 4 (central Si unit) and
5 (terminal Si units) are hardly charged. The same discussion can be deduced for 6 and 7. It is found
that only Si units adjacent to C units are positively charged (0.412 in 6 and 0.422 in 7, respectively),
while that the other Si units are hardly charged. There is shown to be little difference between their
sum of charge in Si units (0.390 in 6 and 0.393 in 7) and between the longitudinal component of dipole
moment amplitudes (2.93 in 6 and 2.81D in 7). These results show that ICT occurs only between the Si
unit and the adjacent C unit.

Table 1 lists the y and γ values of each compound. The combined systems 1–7 indicate nonzero y
like Siπ(5) though they are smaller than that of Siπ(5). The compound with longer Si chain and more
Si units tends to exhibit larger y. As seen from Figure 2 (see also the Supplementary Materials except
for 2 and 4), the odd electron density of the combined systems are distributed not only on Si units
but also on C units, which means that the radical delocalizes over the whole main chain. This is also
supported by the y values. The compounds 1–3 indicate larger y than Siπ(1) (y = 0.0768 [24]), and 5 also
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indicates larger y than Siπ(2) (y = 0.209 [24]). These results show that separated Si units interact with
each other through the C units.Molecules 2016, 21, 1540 3 of 8 
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Natural charges are calculated using the LC-(U)BLYP(μ = 0.33)/aug-cc-pVDZ method. 

Table 1. y (−) and γ (105 a.u.) values of the compounds shown in Figure 1. 

Compounds y 2 γ/105 a.u. 3

Cπ(5) 0.000 1 2.27 1 
Siπ(5) 0.495 1 48.5 1 

1 0.182 5.90 
2 0.254 12.8 
3 0.235 15.0 
4 0.340 12.1 
5 0.344 31.3 
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7 0.360 15.6 

1 Reference [24]; 2 Calculated using the PUHF/cc-pVDZ method; 3 Calculated using the LC-UBLYP(μ 
= 0.33)/aug-cc-pVDZ method. 

The γ values of the combined systems are shown to lie in between those of Cπ(5) (γ = 2.27 × 105 a.u.) 
and Siπ(5) (γ = 48.5 × 105 a.u.). These γ values are found to depend on their molecular structures 
though γ is shown to basically increase with the number of Si units as well as y. In addition, similar 
spatial distributions of the odd electron and γ densities (see Figure 2 for 2 and 4 as the representatives, 
see also the Supplementary Materials for the other compounds) indicate that the primary contribution to 
γ comes from the radical electrons. 

The comparison of the γ values between isomers 1 and 2 gives noteworthy information. The γ 
value of compound 2 is shown to be twice as large as that of 1, which shows alternate change of sign 
of charge for every double bond unit and this feature tends to cancel the ICT effect with each other 

Figure 1. π-Conjugated molecules examined in this study. Natural charge of each unit is shown.
Natural charges are calculated using the LC-(U)BLYP(µ = 0.33)/aug-cc-pVDZ method.

Table 1. y (−) and γ (105 a.u.) values of the compounds shown in Figure 1.

Compounds y 2 γ/105 a.u. 3

Cπ(5) 0.000 1 2.27 1

Siπ(5) 0.495 1 48.5 1

1 0.182 5.90
2 0.254 12.8
3 0.235 15.0
4 0.340 12.1
5 0.344 31.3
6 0.287 9.58
7 0.360 15.6

1 Reference [24]; 2 Calculated using the PUHF/cc-pVDZ method; 3 Calculated using the LC-UBLYP(µ = 0.33)/
aug-cc-pVDZ method.

The γ values of the combined systems are shown to lie in between those of Cπ(5) (γ = 2.27 × 105 a.u.)
and Siπ(5) (γ = 48.5 × 105 a.u.). These γ values are found to depend on their molecular structures
though γ is shown to basically increase with the number of Si units as well as y. In addition, similar
spatial distributions of the odd electron and γ densities (see Figure 2 for 2 and 4 as the representatives,
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see also the Supplementary Materials for the other compounds) indicate that the primary contribution
to γ comes from the radical electrons.

The comparison of the γ values between isomers 1 and 2 gives noteworthy information. The γ

value of compound 2 is shown to be twice as large as that of 1, which shows alternate change of sign
of charge for every double bond unit and this feature tends to cancel the ICT effect with each other
in the molecule. The compound 2 indicates ICT nature with a D-π-D structure. Moreover, it is found
that the γ value of 2 is comparable to that of 4, though 4 has a longer Si chain length and a larger y
than 2. These results clarify the γ enhancement effect of D-π-D structure. These explanations rationally
accord with the result of 5, which also has a D-π-D structure and indicates a larger y than 2, and which
exhibits the largest γ of these compounds. These D-π-D systems 2 and 5 exhibit more than 5 times and
13 times enhanced γ as compared to Cπ(5). Especially, the γ value of 5 is comparable to that of Siπ(5).
These results imply that even short π-conjugated Si-chain can cause enhancement of γ by introducing
it into C π-structures and that the introduction of Si moiety into the both-end region of C π-structures is
better to enhance the γ than that into the central region of C π-structures since the former constructs a
D-π-D structure. This enhancement can be explained as follows. Although radical electrons delocalize
in the whole region of the main chain, their distributions on Si units are more significant than those on
C units (Figure 2a,c). Therefore, the odd electron density of a D-π-D structure such as 2 tends to be
primarily distributed in the both-end region, while that of an A-π-A structure such as 4 tends to be
primarily distributed in the middle region. As mentioned above, their γ density distributions show
similar tendencies to their odd electron densities, and the one end region has an opposite sign to the
other end region. Since the large distance between the positive and negative γ densities with larger
amplitudes gives larger contribution to γ, the introduction Si units into the both-end region is found
to be superior to that into the central region. Consequently, D-π-D structures constructed from the
introduction of Si units into the both-end region tend to exhibit larger enhancement of γ than A-π-A
structures constructed from the introduction into the central region though ICT occurs in both systems.
As a result, such a short π-conjugated Si moiety is expected as a building block of highly efficient
π-conjugated NLO systems.
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are not shown to cause remarkable enhancement of γ. 

Finally, we investigate a realistic system involving both C and Si π-systems, the compound 8, 
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Figure 2. Comparison between the odd electron density distribution and γ density distribution of
2 and 4: (a) Odd electron density distribution of 2 with the contour value of 0.001 a.u.; (b) Positive
(yellow) and negative (blue) γ density distributions of 2 with the contour value of ±3000 a.u.; (c) Odd
electron density distribution of 4 with the contour value of 0.0025 a.u.; (d) Positive (yellow) and
negative (blue) γ density distributions of 4 with the contour value of ±3000 a.u.

On the other hand, asymmetric systems 6 and 7 indicate merely comparable enhancement of γ to
symmetric systems though asymmetricity or large ICT is found to be able to cause further enhancement
of hyperpolarizabilities in general [17,26]. It turns out that the compound 6 has a slightly smaller γ
than 2 despite its longer Si chain, and that 7 also exhibits a comparable γ to 3. These results can be
attributed to their weak asymmetricity. As mentioned before, ICT in 6 and 7 almost occurs not over
the whole region of the molecule but between the adjacent Si- and C-units. Thus, their dipole moment
amplitudes are not shown to be so large (2.93 and 2.81D, respectively), so that they are not shown to
cause remarkable enhancement of γ.
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Finally, we investigate a realistic system involving both C and Si π-systems, the compound 8,
whose main skeleton has been synthesized [25]. For comparison with the carbon analog, the
compound 9 is investigated. As seen from Table 2, compound 8 indicates nonzero y (y = 0.160)
and the γ is shown to be about five times as large as that of 9. This result is attributed to the D-π-D
structure of 8. As seen from Figure 3, ICT occurs from the central benzene ring to the terminal Si unit,
while such ICT does not occur in 9. In addition, the similarity between the odd electron and γ density
distributions of 8 indicates the contribution of the diradicals with intermediate diraidcal character to
the enhancement of γ (see Figure 4).
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Table 2. y and γ values of the compound 8 and 9.

Compound y 1 γ/105 a.u. 2

8 0.160 1.81
9 0.000 0.366

1 Calculated using the PUHF/cc-pVDZ method; 2 Calculated using the LC-UBLYP(µ = 0.33)/aug-cc-pVDZ
method.
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3. Theories and Calculation Methods

Geometrical optimizations were conducted at RB3LYP/cc-pVDZ level of theory without any
symmetry constraints. The diradical character y [27,28] is defined as the occupation number of the
lowest unoccupied natural orbital (LUNO) by quantum chemical calculation:

y = nLUNO (1)

Broken symmetry methods like the spin-unrestricted (U) HF method generally suffer from spin
contamination in electronic structure calculation for open-shell systems. In such cases, an approximate
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spin-projection scheme [29] is known to improve the results. The y values by the spin-projected (P)
UHF method are given by

y = 1 − 2T
1 + T2 (2)

where T denotes the overlap between the highest occupied corresponding orbitals for the α and β

spins [29]. In this study, the y values are calculated at PUHF/cc-pVDZ level of theory. The finite field
approach [30] was adopted to obtain the static longitudinal second hyperpolarizability γ with the
long-range corrected (LC)-UBLYP(µ = 0.33)/aug-cc-pVDZ method because the LC-UBLYP(µ = 0.33)
method is known to semiquantitatively reproduce the result by the highly correlated wavefunction
method, UCCSD(T), for open-shell systems [31] and because the diffuse functions are necessary for
accurate evaluation of high-order optical response properties [32]. The longitudinal axis is defined to
be along the line connecting the two terminal 14 group elements in the main chain. The natural charges
and dipole moments were calculated by the LC-(U)BLYP(µ = 0.33)/aug-cc-pVDZ method. To clarify
the spatial distribution of radical (unpaired) electrons, odd electron density analyses [33,34] were
performed using the LC-UBLYP(µ = 0.33)/aug-cc-pVDZ method. The odd electron density Dodd(r) is
defined by the mth NO φm and its occupation number nm as

Dodd (r) = ∑
m

min (nm, 2 − nm) φ∗
m (r) φm (r) (3)

Here, min(nm, 2 − nm) can be regarded as the probability for the electron of being unpaired in φm.
To clarify the spatial contribution of electrons to γ, the γ density analyses [35] are also performed using
the LC-UBLYP(µ = 0.33)/aug-cc-pVDZ method. The γ density ρiii(r) is defined as

ρiii (r) =
∂3ρ

∂F3
i

∣∣∣∣∣
F=0

(4)

where ρ and Fi denote the electron density and the longitudinal component of the external static
electric field, respectively. The γ value can be expressed by ρiii(r) as

γ = − 1
3!

∫
riρiii (r) dr (5)

where ri denotes the longitudinal component of the coordinate of an electron. All the quantum chemical
calculations were performed by the Gaussian 09 program package [36].

4. Conclusions

Using the density functional theory methods, the effects of introducing Si-Si double bonds into
C π-structures on γ are investigated. In such compounds, ICT from Si unit to C unit is found to
occur. These compounds indicate relatively small diradical character as compared to Siπ(5) and exhibit
enhancement of γ as compared to Cπ(5), e.g., one of their γ values are found to be comparable to that
of Siπ(5), which shows about 20 times enhancement as compared to that of Cπ(5). The comparison
between the odd electron and γ densities shows the contribution of diradicals with intermediate
diradical character to the enhancement of γ. It is also found from the comparison for the systems with
the same number of Si units that D-π-D structures, 2 and 5, are more effective to the enhancement
of γ than the corresponding asymmetric systems, 6 and 7, respectively, which show comparable
enhancement of γ to the other symmetric systems with the same number of Si units, 1 and (3, 4),
resepectively. In addition, the introduction of relevant-length Si units into the both-end regions of
C π-structures (5) are found to be more effective to enhancing γ than that into the central region of
C π-structures (4) since the former constructs a D-π-D structure with abundant distribution of radical
electrons in the both-end region. In realistic compounds, for example, the D-π-D system composed
of benzene and Si=Si units (8) exhibits about five times greater enhancement of γ than its carbon
analog (9). Considering the previous studies on synthesis of the systems composed of both Si and
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C π-structures [8,9,25], such π-conjugated Si-chain substituted hydrocarbon systems are expected to be
more stable than the corresponding π-conjugated Si moiety of similar-size and to be realizable as a
novel type of highly efficient open-shell NLO molecular systems.

Supplementary Materials: Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/21/
11/1540/s1, Figures S1–S5: Comparison between odd electron and γ density distributions of the compounds 1, 3,
and 5–7, Tables S1–S9: optimized structures of the compounds 1–9.
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