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Discovering spatiotemporal 
patterns of COVID‑19 pandemic 
in South Korea
Sungchan Kim1, Minseok Kim1, Sunmi Lee1* & Young Ju Lee2*

A novel severe acute respiratory syndrome coronavirus 2 emerged in December 2019, and it took 
only a few months for WHO to declare COVID‑19 as a pandemic in March 2020. It is very challenging 
to discover complex spatial–temporal transmission mechanisms. However, it is crucial to capture 
essential features of regional‑temporal patterns of COVID‑19 to implement prompt and effective 
prevention or mitigation interventions. In this work, we develop a novel framework of compatible 
window‑wise dynamic mode decomposition (CwDMD) for nonlinear infectious disease dynamics. The 
compatible window is a selected representative subdomain of time series data, in which compatibility 
between spatial and temporal resolutions is established so that DMD can provide meaningful data 
analysis. A total of four compatible windows have been selected from COVID‑19 time‑series data from 
January 20, 2020, to May 10, 2021, in South Korea. The spatiotemporal patterns of these four windows 
are then analyzed. Several hot and cold spots were identified, their spatial–temporal relationships, 
and some hidden regional patterns were discovered. Our analysis reveals that the first wave was 
contained in the Daegu and Gyeongbuk areas, but it spread rapidly to the whole of South Korea after 
the second wave. Later on, the spatial distribution is seen to become more homogeneous after the 
third wave. Our analysis also identifies that some patterns are not related to regional relevance. These 
findings have then been analyzed and associated with the inter‑regional and local characteristics of 
South Korea. Thus, the present study is expected to provide public health officials helpful insights for 
future regional‑temporal specific mitigation plans.

A novel virus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified as the 
pathogen for the outbreak of COVID-19 in December  20191. Since then, the COVID-19 pandemic has posed 
huge challenges to public health officials all around the world. Due to the frequent international flights and 
human mobility, it took only a few months that COVID-19 spread to more than 200 countries. Currently, many 
developed countries are in the process of vaccinating their citizens, and some countries hope to soon achieve 
herd  immunity2. In fact, the majority of countries with higher proportions of vaccination have shown a significant 
reduction in the number of COVID-19 cases and deaths from March to June 2021.

Unfortunately, as of July 3, 2021, the confirmed COVID-19 cases have increased worldwide due to the Delta 
 variant3. This is one of the new variants of COVID-19 and is a potential threat to the goal of herd immunity. 
At this point, there are a total of more than 180 million confirmed cases and nearly 4 million deaths in 220 
 countries4. Among others, the US, India, and Brazil are the top three countries of COVID-19 cumulative cases 
and deaths officially; the US (33,709,176; 605,524), India (30,502,362; 401,050), Brazil (18,687,469; 521,952), 
respectively. These numbers indicate officially reported cases and may be considerable underestimates due to 
false  negatives5,6, lack of tracking  systems7, and overloading of healthcare  facilities8. Therefore, it is urgent to 
understand the spatial–temporal transmission dynamics of COVID-19 to propose effective interventions to 
mitigate and reduce further morbidity and mortality. Apparently, COVID-19 has disproportionately affected 
different regional, social, and economic statuses even in developed  countries9–11. South Korea shows a significant 
level of variability in the spatiotemporal patterns of COVID-19 as well. As of March 9, 2020, South Korea had 
a total of 7382 confirmed cases and the largest outbreak of COVID-19 besides  China12. This was mainly due to 
few super-spreading events at the Shincheonji Church in Daegu Province and Daenam health care facility in 
Gyeongsang Province from February 20 to March 20. As of July 3, 2021, the total confirmed cases and deaths of 
COVID-19 increased to 159,342 and 2025 in South Korea, respectively. The spatial and temporal heterogeneity 
of COVID-19 has changed over time.
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An in-depth understanding of COVID-19 requires the use of mathematical modeling, which has played an 
essential role to explain complex spatial and temporal transmission dynamics of various infectious diseases. 
These include recent emerging infectious diseases; novel H1N1 influenza, SARS-CoV-1, Zika, MERS-CoV, and 
SARS-CoV-213. Recent emerging infectious diseases tend to spread all over the world within a shorter time scale 
due to dramatic increases in international flights and human  mobility13,14. There has been much research on spa-
tial–temporal patterns of COVID-19 using various modeling  approaches9,10,15,16. The spread of COVID-19 during 
an early stage of the pandemic in South Korea was investigated; 12 significant spatiotemporal clusters were identi-
fied and  analyzed17. They observed that early interventions including 3T (test, trace, treat) were effective so that 
the cluster size and duration were shortened in time. Castro et al. investigated the spatial and temporal patterns 
of COVID-19 in Brazil and identified several key factors for failure of region-specific effective  interventions10. 
Sartorius et al. employed a Bayesian hierarchical space-time SEIR model to assess the spatiotemporal variability 
of COVID-19 in England and they examined that mobility and social distancing played a critical role in the 
spatiotemporal patterns of mobility and  mortality18. Wang et al. demonstrated the spatiotemporal characteristics 
and trends of COVID-19 in the United States and the various complex interactions with preventive efforts on 
COVID-19 were  analyzed19. Bag et al. explored the spatiotemporal patterns of COVID-19 in India, and further, 
they examined the interplay between the space-specific patterns and governmental  responses20.

However, it is very challenging to discover spatial–temporal transmission mechanisms by the standard 
equation-based framework introduced above. In this work, we propose to discover the high complexity of spa-
tial–temporal dynamics for COVID-19 transmission by employing a data-driven approach based on dynamic 
mode decomposition. The dynamic mode decomposition method (DMD) originated in the fluid dynamics com-
munity as a method to decompose complex flows into spatiotemporal coherent structures. DMD is a matrix-free, 
data-driven method capable of providing an accurate decomposition of a complex system into spatial–temporal 
coherent structures that may even be able to predict the short-time future state. Since Schmid and  Sesterhenn21 
first introduced the DMD algorithm and demonstrated its ability, there have been tremendous works in DMD, 
and DMD became even more popular and is still in development today. This includes a sparsity-promoting 
 DMD22, a randomized  DMD23, which scales with the intrinsic rank of the dynamics, a consistent DMD, a new 
method for computing DMD operator based on a variational  framework24. DMD has been successfully used 
for computational  epidemiology25. Bistrian et al.26 proposed a framework for reduced-order modeling and fore-
casting of non-intrusive data with application to epidemiology, using a technique based on randomized DMD 
combined with ARIMA (AutoRegressive Integrated Moving Average)27 and this has been used also for modeling 
of SARS-CoV-2 dynamics obtained from the raw data reported by World Health  Organization28. Proctor et al.29 
have demonstrated how DMD can aid in the analysis of spatial–temporal disease data. It is shown that DMD is an 
effective and efficient computational analysis tool for the study of infectious disease taking into account several 
tests’ data such as Google Flu Trends data, pre-vaccination measles in the UK, and paralytic poliomyelitis wild 
type-1 cases in Nigeria. We note though that in particular, Google Flu Trends data is shown to be overall more 
influenced by the media clamor than by true epidemiological burden as studied  in30,31.

In this paper, we propose a compatible window-wise dynamic mode decomposition (CwDMD). The notable 
difference of our work from other available works is that we tackle COVID-19 time series data in a way that 
the data sets are made to be consistent in the sense of Tu et al.32. Basically, the compatible window is a selected 
the data set that can be modeled by a linear operator, thereby making DMD analysis meaningful. Further, we 
show that the consistency is equivalent to the linearity and demonstrate that DMD produces misleading data 
interpretation for inconsistent or nonlinear data in general. This indicates that the direct and reliable DMD 
analysis of large time-series data such as COVID-19 data is not feasible. We develop a strategy to choose an 
adequate set of representative subdomains called windows in which an appropriate balance or compatibility 
between spatial and temporal resolutions is built. The total size-times duration of all the windows serving a given 
system depends only on local situations that can arise in the full time-series data. We then apply DMD to each 
window that results in robust and reliable data analysis. It is easy to see that if the data is linear, DMD analysis 
will be adequate while it is not for nonlinear data. Oftentimes such an inadequacy has been justified through 
the Koopman mode analysis in the framework of Hankel DMD. However, it is well-known that Hankel DMD is 
proven to work only for ergodic  data33,34. These frameworks, therefore, can not be applied in general, for highly 
nonlinear data. Such data includes internal solitary wave as discussed  in35 as well as COVID-19 data analyzed 
in the present paper, which are not necessarily ergodic. It is notable that a recent work by Zhang et al.35 is closely 
relevant to our method. However, their work is not based on compatible windows, i.e., the choice of windows 
is constructed without respecting the consistency. Phase studies are not investigated either unlike the proposed 
study in this paper. Furthermore, we make significant and novel progress from the consistency assumption that 
the data fitting for any given window can be achieved accurately only by finding the coordinate of any single data 
within the window in terms of DMD modes. This allows us to achieve a significant computational reduction. The 
identified coordinate is then used as a certain scale for the selection of important DMD modes.

Our new method is used to investigate the spatiotemporal patterns of COVID-19 in South Korea from January 
20, 2020 to May 10, 2021. A total of four compatible windows have been selected from the given COVID-19 time 
series data. The spatiotemporal patterns of these four windows are then analyzed by a few important DMD modes 
selected based on our new criterion. Several hot and cold spots were identified, their spatial–temporal relation-
ships, and some hidden regional patterns were discovered. Our analysis reveals that the first wave was contained 
in the Daegu and Gyeongbuk area, but it spread rapidly to the whole of South Korea after the second wave. Later 
on, the spatial distribution is seen to become more homogeneous after the third wave. These findings have then 
been associated with the inter-regional and local characteristics of South Korea. We expect that the present 
study can provide public health officials helpful insights for future regional-temporal specific mitigation plans.
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Results
Spatial–temporal characteristics of COVID‑19 in South Korea. In this section, we present an over-
view of COVID-19 data collected in South Korea (see Fig. 1 for more description). Daily confirmed cases and 
deaths of COVID-19 from January 20, 2020 to May 10, 2021, were obtained from the Korea Centers for Disease 
Control and Prevention (KCDC) and each provincial  website12. As of May 10, 2021, there were a total of 127,772 
COVID-19 confirmed cases and 1875 deaths in South Korea. To analyze the spatiotemporal patterns of COVID-
19, the spatial distribution of COVID-19 confirmed cases is refined in 17 first-tier administrative divisions of 
South Korea. Figure  1 shows a South Korea map (a) with spatial distributions of the cumulative number of 
COVID-19 confirmed cases (b) and the cumulative number of COVID-19 deaths (c). As displayed in b, c, d of 
Fig. 1, South Korea shows a high level of spatial and temporal heterogeneity in 17 regions. We can observe that 
the main characteristics of the temporal patterns of South Korea can be placed into the particular four stages, 
i.e., three big waves and the last stage. More precisely, the first window is from January 20, 2020 to April 26, 2020, 
the second window is from July 28, 2020 to October 12, 2020, the third window is from November 3, 2020 to 
February 1, 2021, and the period after the third wave is February 2, 2021, to May 10, 2021. These are chosen as 
four windows and represented by different colors in Fig. 2a.

The first case of COVID-19 in South Korea was a 35-year-old Chinese woman who traveled from Wuhan, 
China, and was confirmed on January 20, 2020. She entered the Incheon international airport and she was iso-
lated at a hospital upon entry. After the index case, only 30 confirmed cases have occurred until February 17, 
2020. However, there was an explosive outbreak in Daegu due to the superspreading events from the Shincheonji 
Church-related clusters from February 18 to March 23,  202012. As a result, the first wave (January 20, 2020–April 
26, 2020, see Fig. 2a) was focused on the Daegu and Gyeongbuk area with almost 80% of a total of 10,298 cases 
(Daegu 6846 and Gyeongbuk 1364). Since March 2020, the epicenter of COVID-19 has begun to move from the 
Daegu and Gyeongbuk area to Seoul and Gyeonggi regions. A few sporadic clusters of COVID-19 continued in 
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Population
(× 1,000)

Area (km2) Density
(per km2)

Cumulative cases Cumulative
deaths1st wave            2nd wave            3rd wave after the

3rd wave

Total 51781 100350.7 516.0 124679 10298 10077 50827 48408 1873
Seoul 9602 605.2 15865.8 39895 629 3990 18183 15468 464
Busan 3344 770.2 4341.7 5286 137 320 2179 2501 122
Daegu 2419 883.5 2738.0 9448 6846 201 1138 1123 221
Incheon 3951 1065.3 3708.8 5839 92 588 2773 1994 60
Gwangju 1488 501.2 2968.9 2518 30 294 1301 679 22
Daejeon 1500 539.6 2779.8 1835 40 232 656 730 20
Ulsan 1140 1062.4 1073.0 2247 43 97 774 1290 38
Sejong 349 465.3 750.1 386 46 28 114 190 1
Gyeonggi 13405 10193.9 1315.0 35852 668 3161 14413 15819 608
Gangwon 1515 16833.3 90.0 2843 53 155 1420 1128 50
Chungbuk 1632 7418.2 220.0 2708 45 105 1388 1124 65
Chungnam 2204 8254.7 267.0 3175 141 309 1459 1137 36
Jeonbuk 1792 8072.1 222.0 2033 18 112 876 979 58
Jeonnam 1765 12335.7 143.1 1178 16 140 560 418 11
Gyeongbuk 2655 18964.3 140.0 4352 1364 173 1434 1315 79
Gyeongnam 3350 10534.6 318.0 4268 117 139 1696 2243 19
Jeju 670 1850.8 362.0 816 13 33 463 270 1

Total

Figure 1.  Spatial distribution of the cumulative confirmed and deaths of COVID-19 as of May 10, 2021. (a) 
A map of South Korea. South Korea is divided into 17 first-tier administrative divisions: 7 metropolitan cities 
(Seoul, Busan, Daegu, Incheon, Gwangju, Daejeon, and Ulsan), 1 special self-governing city (Sejong), and 9 
provinces. The metropolitan area refers to Seoul, Incheon, and Gyeonggi. (b) Cumulative confirmed cases. (c) 
Cumulative deaths. Geographical descriptions such as population, area, and population density of each region; 
and COVID-19 profiles are in (d). Population density between metropolitan cities and non-metropolitan areas 
is extremely polarized, except Gyeonggi. The total population of three metropolitan areas is about 26 million as 
of May 2021, which is more than 50% of the South Korean population.



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:24470  | https://doi.org/10.1038/s41598-021-03487-2

www.nature.com/scientificreports/

Seoul including the Guro call center and the Itaewon club cluster in May 2020. From July 28 to October 12, 2020, 
the second wave started in Seoul and Gyeonggi Province (see Fig. 1d). The main cause of the second wave was 
the rally held at Gwanghwamun Square in Seoul. Seoul city has the highest in the confirmed cases and Gyeonggi 
Province has the second-highest in the confirmed cases and the highest in deaths. The largest wave was the third 
wave from November 3, 2020 to February 1, 2021. This was partly due to the winter seasons, which results in a 
favorable condition for close contact between people staying indoors. After the third wave, the constant level of 
COVID-19 cases has been maintained nationwide from February 2, 2021, to May 10, 2021.

Analysis of spatial–temporal COVID‑19 in South Korea. In this section, we shall present the analysis 
of spatial–temporal COVID-19 in South Korea. Figure 2 displays confirmed cases of COVID-19 in South Korea 
from January 20, 2020, to May 10, 2021. Panel a of Fig. 2 shows the daily confirmed cases while the panel b of 
Fig. 2 illustrates region-specific COVID-19 weekly confirmed cases (bars on the left) and cumulative cases (solid 
curves on the right) for 17 first-tier administrative divisions of South Korea. The three highest cumulative cases, 
which include Seoul, Gyeonggi, and Daegu are marked in red, the next five highest cases are marked in green, 
and the rest of the cases are marked in blue.

First of all, Supplementary Fig. S1 displays the evolution of spatial distributions in 17 regions; the top panels 
show the cumulative number of COVID-19 cases per 100,000 on the last day of each period. The bottom panels 
show the cumulative number of COVID-19 cases per 100,000 during each period. The bottom panels indicate 
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Figure 2.  Time series of COVID-19 outbreak in South Korea. (a) Daily incidence of COVID-19 in South 
Korea. South Korea went through three big waves, after the third wave, the incidence has been maintained with 
no significant increase or decrease. The four windows of main interest were colored and given as; (1) the first 
wave (January 20, 2020–April 26, 2020); (2) the second wave (July 28, 2020–October 12, 2020); (3) the third 
wave (November 3, 2020–February 1, 2021); and (4) after the third wave (February 2, 2021–May 10, 2021). (b) 
Weekly incidence and cumulative cases in 17 regions, plotted as the bars and as a curve, respectively. The three 
highest cumulative cases, the next five highest cases, and the rest cases are marked with red, green, and blue, 
respectively.
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that the hot spots were moving from Daegu to Seoul and Gyeonggi while Jeonnam remained the cold spot in the 
first, third, and last periods. Interestingly, Daegu and Gyeongbuk were the cold spots during the second wave 
after the severe first outbreak.

The chosen four windows are then used to apply CwDMD, which results in the discrete DMD modes and 
eigenvalues in each window. Supplementary Figs. S2–S5 compare the results of the DMD data fitting with the 
region-specific COVID-19 data for each window. There is a perfect agreement between the COVID-19 data (red 
dot) and the DMD output (black solid) in all 17 regions.

CwDMD has been used to investigate the spatiotemporal pattern of COVID-19 in 17 regions, whose discus-
sions are presented in the following four subsections. Note that a few important DMD modes selected in each 
window are categorized into three regimes, oscillatory, growing, and decaying. These are then used for the phase 
and magnitude analysis of each window.

The first wave. The first wave is chosen as the total of 14 weeks and so, the spatial vs temporal resolution is 17 
to 14. This is compatible as discussed in the section for “Methods”.

In Fig. 3, we show the power of DMD modes in a, i.e., the measure of the scaled size of the DMD modes (see 
the section of “Methods” in details). The power is used for the selection of dominant DMD mode and the selected 
DMD mode is then utilized for both magnitude and phase analysis.

We note that the first three DMD modes of the highest power were chosen and they are denoted by #1, #2, and 
#3 as shown in Fig. 3a. In fact, the selected three DMD modes correspond to the growing, the oscillatory, and the 
decaying modes, respectively in the discrete dynamical system for the first window. The magnitude analysis has 
been performed using these dominant DMD modes. We observe that all three DMD modes show that Daegu and 
Gyeongbuk have the largest magnitude and Seoul and Gyeonggi are next. These are indicated by gray bars in b, 
c, d, respectively, and consistent with the cumulative confirmed cases of the first wave given in e and f of Fig. 3.

Next, we explored the phase analysis from the three selected DMD modes. We note that phase or phase differ-
ence can be interpreted as the time (in week) between peak to peak of the region-specific COVID-19 outbreak. 
Namely, the smaller the phase difference of two different regions is, the closer the peaks of these regions will be. 
We find that in all three DMD modes, the phases of Busan, Gyeongnam, and Chungnam are similar. Note that 
these three regions are close to the epicenter. Consequently, we find a strong correlation between the phase of the 
southern part of South Korea and the distances from the epicenter, i.e., Daegu and Gyeongbuk. This is consistent 
with the data presented in f of Fig. 3.

On the other hand, the phase of DMD mode #1, shows that there is a time lag of 2–3 weeks between the peaks 
of Seoul and Gyeonggi and those from Busan, Gyeongnam, Gyeongbuk, and Daegu. In particular, from the fact 
that the DMD mode #1 is a growing mode, the above conclusion indicates that there was definitely a different 
cause for the COVID-19 outbreak of Daegu and Gyeongbuk from that of Seoul and Gyeonggi. Note that it can 
be clearly identified in the graph of e and f in Fig. 3. More precisely, the weekly confirmed cases of Seoul and 
Gyeonggi are similar to those of other regions from weeks 5 to 7. However, the confirmed cases began to increase 
from week 8 to 13, while those of other regions decreased. We later found that this peculiar behavior could be 
associated with a few large workplace-related clusters such as the Guro-Gu call center in Seoul and Gyeonggi 
from March 2020 to April  202036,37.

The second wave. The second wave is chosen as the total of 11 weeks and so, the spatial vs temporal resolution 
is 17 to 11. This is compatible as discussed in the section for “Methods”.

In Fig. 4, we show the power of DMD modes in a. The power is used for the selection of dominant DMD 
mode and the selected DMD mode is then utilized for both magnitude and phase analysis. We note that the first 
two DMD modes of the highest power were chosen and they are denoted by #1 and #2 as shown in Fig. 4a. The 
selected two DMD modes correspond to the oscillatory and the growing modes, respectively. The magnitude 
analysis has been performed using these dominant DMD modes. The weekly confirmed cases of the total of six 
selected regions are then shown in d of Fig. 4.

The magnitude analysis using both of these selected DMD modes shows that Seoul and Gyeonggi have a 
significantly large magnitude of confirmed cases. This is in fact, consistent with the data shown as Fig. 4d. The 
main drive behind this large magnitude can be correlated with the outbreak from the rally held at Gwanghwamun 
Square in Seoul on August 15, 2020. Note that this rally was organized by SarangGeil Church in Seoul and people 
from all regions of South Korea participated. We observe that, unlike the first wave, the magnitude of Daegu 
and Gyeongbuk are relatively small. This can be attributed to the continued strict mitigation interventions in 
the Daegu and Gyeongbuk area since the first wave. See also the COVID-19 cases shown in Fig. 1 as well as in 
Supplementary Fig. S1, which are consistent with our magnitude analysis for Daegu and Gyeongbuk.

We now explore the phase analysis from the two selected DMD modes. First, we begin with the following 
facts; (1) the maximum phase difference in the DMD mode #1 is between Sejong and Ulsan and its value is 1.54 
weeks; (2) the maximum phase difference is 1.04 weeks and it is between Busan and Jeju in the DMD mode #2. 
The relatively short phase difference indicates that the second wave can be characterized as an almost simultane-
ous nationwide spread. This can be attributed to the fact that all participants from all regions who attended the 
rally in Seoul returned to their home region within a few days, i.e., less than a  week38.

The third wave. The third wave is chosen as the total of 13 weeks and so, the spatial vs temporal resolution is 17 
to 13. This is compatible as discussed in the section for “Methods”.

In Fig. 5, we show the power of DMD modes in a. The power is used for the selection of dominant DMD 
mode and the selected DMD mode is then utilized for both magnitude and phase analysis. We note that the first 
two DMD modes of the highest power were chosen and they are denoted by #1 and #2 as shown in Fig. 5a. The 
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selected two DMD modes correspond to the growing and the oscillatory modes, respectively. The magnitude 
analysis has been performed using these dominant DMD modes. The weekly confirmed cases of the total of eight 
selected regions are then shown in d of Fig. 5.

The magnitude analysis using both of these selected DMD modes shows that Seoul and Gyeonggi have a 
significantly large magnitude of confirmed cases, similar to the second wave. This is in fact, consistent with the 
data shown as Fig. 5d. This is due to the cold winter seasons, as people favorably stayed indoors for close con-
tacts, which is enhanced by the higher population density in Seoul and Gyeonggi; the South Korean population 
is highly disproportionate and the metropolitan area has more than 50% of the total South Korean population.

The phase analysis in this wave shows that the maximum phase difference is larger than that of the second 
wave for both modes. Namely, the maximum phase difference in the DMD mode #1 is 4.02 weeks, which is 
between Busan and Jeonnam, while the maximum phase difference in the DMD mode # 2 is 4.13 weeks, which 
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Figure 3.  The first wave: DMD eigenvalues and modes. (a) shows eigenspectrum {�j}j=1,··· in the left and 
powers, defined as {|�pj |�αjφj�F}j=1,··· , in the right. The first three DMD modes that represent growing, 
oscillatory and decaying modes are enumerated as #1 , #2 , and #3 . (b–d) Show the phase and magnitude of the 
selected DMD modes, #1 , #2 , and #3 , respectively. (e) and (f) show time series of weekly cumulative cases for 
some selected regions. (e) is for high transmission areas, Daegu and Gyeongbuk, while (f) is for other relatively 
low transmission areas.
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is between Gyeonggi and Jeonnam. In particular, regions grouped according to the higher phase similarity are 
(1) Busan, Gyeongnam, and Ulsan, which are all located in the southeast area, (2) Seoul, Gyeonggi, and Incheon, 
which are all located in the northwest area, and (3) Daegu and Gyeongbuk, which are at the central area. This 
analysis identifies that there are strong spatial correlations in the third wave. This seems to be natural. But, to 
our surprise, we observe that there is more or less independent phase behavior between Gwangju and Jeonnam 
in DMD mode # 2. This means that Jeonnam is not much affected by the outbreak of COVID-19 in Gwangju, 
even if Jeonnam surrounds Gwangju. In fact, it is in this way throughout the whole time when COVID-19 data 
is collected. This indicates that the expected spatial correlation is sometimes misleading. Additionally, the similar 
phenomenon is also observed between in Daejeon and Chungnam.

The period after the third wave. The period after the third wave is chosen as the total of 13 weeks and so, the 
spatial vs temporal resolution is 17 to 13 again like the third wave. The main feature of this period is that the 
weekly incidence is relatively large all over South Korea.

In Fig. 6, we show the power of DMD modes in A. The power is used for the selection of dominant DMD 
mode and the selected DMD mode is then utilized for both magnitude and phase analysis. We note that a single 
DMD mode shows the dominant power and so, only this DMD mode is chosen and denoted by #1 as shown in 
Fig. 6a. The selected DMD mode corresponds to the oscillatory mode.

The magnitude analysis using this selected DMD mode shows that Seoul and Gyeonggi have the largest mag-
nitude, which is consistent with the highest cumulative COVID-19 cases during the period after the third wave 
in these regions as shown in Fig. 2b. This consistency also holds for the next largest magnitudes or cumulative 
cases occurring in the southeast areas, which include Busan, Ulsan, and Gyeongnam.

The phase analysis in this period shows that the maximum phase difference is 11.8 weeks, which is from 
Incheon and Gwangju. Furthermore, the phase difference between neighboring regions such as Seoul and Gyeo-
nggi, Daejeon and Chungnam, and Daegu and Gyeongbuk is also more than three weeks, which is relatively 
large. This indicates that overall large weakly incidence in each region is local in nature. Namely, the outbreaks 
in each region are mainly due to local outbreaks within the region and the inter-regional correlation of outbreaks 
seems to be irrelevant in this period. This has been further justified by investigating the spatial variations using 
the estimation of so-called the coefficient of variation below.
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Figure 4.  The second wave: DMD eigenvalues and modes. (a) shows eigenspectrum {�j}j=1,··· in the left and 
powers, defined as {|�pj |�αjφj�F}j=1,··· , in the right. The first two DMD modes of highest powers are enumerated 
as #1 and #2 . (b) and (c) show phase and magnitude of the #1 and #2 DMD modes, respectively. In the phase 
diagram, regions, whose phases are similar are gathered. (d) is the time series for weekly cumulative cases for 
some selected regions.
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Time dependent spatial variation of COVID‑19 in South Korea. In this section, we further investi-
gate the data to quantify the time-dependent spatial variation of COVID-19 in South Korea over the period of 
interest.

We investigate the rate of incidence per 100,000 people in each region for the first wave, the second wave, 
the third wave, and the period after the third wave and plot this in Fig. 7a–d, respectively. This shows that the 
regional variation in weekly incidence is gradually decreasing over time. We observe that in the first wave (see 
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Figure 5.  The third wave: DMD eigenvalues and modes. (a) shows eigenspectrum {�j}j=1,··· in the left and 
powers, defined as {|�pj |�αjφj�F}j=1,··· , in the right. The first two DMD modes of highest powers are enumerated 
as #1 and #2 . (b) and (c) show the phase and magnitude of the #1 and #2 DMD modes, respectively. In the phase 
diagram, regions, whose phases are similar are gathered. (d) is the time series for weekly cumulative cases for 
some selected regions.
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Fig. 7a), only the rate of incidence for Daegu and Gyeongbuk is shown to be higher than average. After the first 
wave, the rate of incidence for Daegu and Gyeongbuk becomes below the average, whereas that of Seoul and 
Gyeonggi stays higher than the average. Even if it is not definitely clear, as time proceeds, the regional differences 
seem to get smaller. To quantify this observation on the time-dependent regional difference in the incidence rate, 
we compute so-called the coefficient of variation (CV) for the rate of incidence per 100,000 people. The CV is 
defined by the ratio of the standard deviation to the  mean39. This is a dimensionless number that can be used to 
compare the dispersion of groups with different means or different units. Similar to the standard deviation, the 
larger the CV is, the more over-dispersed the data will be. The computed CV is presented in Fig. 7e, in which 
we find that the CV decreases in time. More precisely, we have 2.93 CV (95% credible interval (CrI): 2.19–4.47 
CV) for the first wave, 0.75 CV (95% CrI: 0.56–1.14 CV) for the second wave, 0.52 CV (95% CrI: 0.39–0.79 CV) 
for the third wave, and 0.51 CV (95% CrI: 0.38–0.77 CV) for the period after the third wave. This result clearly 
demonstrates that the first drastic reduction in CV occurred during the second wave, and the regional varia-
tion of weekly incidence tends to decrease over time. Namely, the spatiotemporal incidence pattern tends to be 
homogeneous, thereby indicating that the local outbreaks are dominant in most of the regions for the period 
after the third wave.

Novel compatible window‑wise dynamic mode decomposition. Our data analysis using CwDMD 
has clearly shown the usefulness of the method to identify patterns of the spatially and temporally correlated 
nonlinear data. It is shown as well that some hidden patterns could be identified. The standard DMD, however, 
has a limitation in that it may provide misleading analysis generally for the inconsistent  data32. The inconsistent 
data, equivalent to the nonlinear data can be interpreted as the data in which spatial resolution, the amount of 
spatial detail is given incompatible with the temporal resolution, the amount of temporal detail. Precise condi-
tion for the compatibility is obtained in section for “Methods”. In Fig. 8 we have considered the COVID-19 
time series data collected in a total of 17 regions. The standard DMD operator is shown to be able to fit the data 
perfectly in case a total of 18 or smaller temporal data is selected. The number 18 is the maximal time resolu-
tion for which the compatibility between spatial and temporal resolutions is valid. As the temporal resolution 
increases, the data fitting quality by DMD deteriorates significantly. This is unequivocally interpreted that DMD 
is inadequate to provide meaningful data analysis for these cases. To quantify the inadequacy, we investigate the 
phase and magnitude analysis from the selected DMD mode. For 19-week data from December 27, 2020–May 8, 
2021, there is an evident disagreement between the COVID-19 data (black solid) and the DMD output (orange 
bar). The actual data indicates that the number of confirmed cases is higher in Gyeonggi and Seoul and it is 
relatively lower in Ulsan. However, DMD data analysis indicates otherwise that the number of confirmed cases 
in Ulsan is higher than in Seoul. This implies that the selected DMD mode does not represent the data pattern 
adequately. Thus, the direct and reliable DMD analysis of large time-series data is concluded not to be feasible 
unless it is linear.

We, therefore, arrive at the need of introducing a novel compatible window-wise dynamic mode decomposi-
tion. The main issue in DMD for large time-series lies in the nonlinearity of the data. The point of CwDMD is that 
for any given nonlinear data, it is proven to be possible to select an adequate set of representative subdomains 
called windows, each containing moderate-sized linear data. For example, Fig. 2a, shows specially chosen win-
dows for COVID-19 data in South Korea we analyze. The total size-times duration of all the windows serving a 
given system depends only on local situations that can arise in the full-time series data. We then apply the stand-
ard DMD for each window. This strategy is called the compatible window-wise dynamic mode decomposition 
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Figure 7.  Regional variation in infection rate relative to the average rate. (a–d) show the rate of incidence per 
100,000 people relative to the average rate for the first wave, second wave, third wave and after the third wave, 
respectively. The only incidence rates of Daegu and Gyeongbuk are shown to be higher than average. After the 
first wave, the incidence rates of Daegu and Gyeongbuk decreased to be under the average. The coefficient of 
variation (CV), defined as the ratio of the standard deviation to the mean is plotted in (e). Grey bar and black 
vertical line represent the CV of each period and its 95% credible interval (CrI), respectively. The CV estimated 
for each period is found to be 2.93 (95% CrI: 2.19–4.47), 0.75 (0.56–1.14), 0.52 (0.39–0.79), and 0.51 (0.38–0.77), 
respectively. This result shows that regional variation in the rate of incidence per 100,000 population becomes 
gradually uniform over time.
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(CwDMD). Basically, CwDMD is a collection of DMD for a specially selected set of consistent windows. In each 
window, we choose the most significant DMD modes, and the reconstructed data in its dimension, from the 
selected DMD modes are constructed and investigated to understand the actual data.

Discussion
In this study, we have developed a novel data-driven framework: compatible window-wise dynamic mode decompo-
sition (CwDMD). Using the CwDMD, we have identified the spatiotemporal transmission patterns of COVID-19 
in South Korea from January 20, 2020 to May 10, 2021. It is generally very challenging to uncover COVID-19 
transmission dynamics since there exists a complex interplay among various time-varying factors such as virus, 
human, mobility, socio-economic infrastructures, and public health policies. However, our CwDMD analysis 
successfully elucidates how spatial correlations among 17 regions evolve in the presence of such complex features.

The first wave was focused on the Daegu and Gyeongbuk area, which was mainly caused by the superspreading 
events from the Shincheonji Church-related  clusters12,17. It spread to several regions nearby, but this was quickly 
contained. This was due to aggressive interventions such as drive-through or walk-through rapid PCR testing, 
contact tracing, isolation, mask distribution, and social  distancing40. Most of all, the behavior and awareness of 
South Koreans were the most crucial reasons for great success. As a result, the substantially largest outbreaks 
from the Shincheonji Church-related clusters did not last for more than a month. Our analysis also confirmed 
that the local outbreaks were kept in the Daegu and Gyeongbuk areas. Towards the end and after the first wave, 
a few major large-scale outbreaks occurred in the metropolitan regions including Seoul, Gyeonggi, and Incheon. 
For example, in Seoul, there were a few sporadic large outbreaks, which include the Guro-call center, Itaewon 
Club, and Richway (Seoul-based health product retailer) between March 2020 and June 2020.

Execution of online school, which was initiated in the middle of the first wave, and ongoing intensive inter-
ventions contributed to maintaining a low level of COVID-19 outbreaks nationwide until the rally held in Seoul. 
On August 15, 2020, the rally led by SarangGeil Church caused 641 cases in Seoul and thus initiated the second 
wave. Our phase analysis for the second wave captured that COVID-19 spread rapidly throughout the nation. 
This is linked to the fact that people participated in the rally and returned to their home regions in a few  days38, 
which arose local outbreaks in every region as well.

The local outbreaks became dominant compared to inter-regional outbreaks during the winter season from 
November 2020 to February 2021. The large-scale local spread of COVID-19 led to the third wave with the largest 
cumulative cases nationwide. Since the outbreaks were significantly severe in the third wave and the majority of 
the cases were focused on the metropolitan area, region-specific public health policies were first implemented 
and risk assessment level for social distancing interventions was refined from Level 3 to Level 5, as of November 
7,  202041. Moreover, region-specific restrictions of large gatherings, such as prohibiting gatherings of more than 
four people and closing shops after 10 pm, have been imposed during the third  wave42 as well. Additionally, a 
special quarantine period was imposed on Thanksgiving and the New Year’s holidays nationwide. These strict 
interventions combined with vaccination have slowed down the third wave from February 2021. Vaccination 
started from February 26, 2021, with a slow rate at the early stage; 7.1% of the primary dose; 1.1% of the second 
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Figure 8.  Results showing the inadequacy of the standard DMD applied to incompatible data. (a) shows the 
calibration error as a function of temporal resolutions. The spatial resolution is fixed as 17 and we see that as the 
temporal resolution becomes larger than 18, the calibration errors start to increase. In (b), we consider the total 
of 19 weeks’ time series data from Dec. 27, 2020–May 8, 2021, which is incompatible with 17 spatial resolution. 
We selected DMD mode consistently and analyzed its magnitude. Clearly, (b) shows that the magnitude does 
not adequately represent that of data. Recall Figs. 5 and 6 are for the compatible windows, in which such 
erroneous result do not occur.
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dose, as of May 10,  20212. COVID-19 has then been maintained without major outbreaks for more than four 
months after the third wave, between February 2, 2021 to May 10, 2021.

Overall, cumulative cases and deaths of COVID-19 in South Korea seem not that large compared to those of 
other countries with similar population densities, and the duration of each wave seems not too long either. For 
example, as of July 9, 2021, a total of 814,533 cumulative cases and 14,933 deaths of COVID-19 in Japan were 
reported while a total of 165,344 cumulative cases and 2036 deaths in South  Korea4 were reported. Japan’s vac-
cination rate (2.1 % of the primary dose and 1.0% of the second dose as of May 10, 2021) and population density 
(337/km2 ) are similar to those of South Korea. However, the fourth big wave occurred in Japan, from March 
2021 to May 2021 with a maximum daily number of confirmed cases of more than 6000. This can be associated 
with the fact that Japan imposes voluntary social distancing policy, while South Korea continues to enforce com-
pulsory social distancing policies even after the third wave. Japan has invoked a number of COVID-19 State of 
Emergencies, but compulsory policies such as forced suspension or lockdown was not  imposed43. On the other 
hand, policies in South Korea such as prohibiting gatherings of more than four people and closing shops after 
10 p.m. forcibly prevent further infections from occurring. It is worth mentioning that there are data-related 
issues in this study. First, the official (reported) data could be different from the real ones due to the selective 
biases of various  kinds5,6. Next, other factors such as temperatures, seasonality, UV radiation, pollution, etc.44–46 
are not included in the analysis.

South Korea is one of the most successful countries for mitigating and preventing the COVID-19 pandemic. 
Since South Korea has learned a valuable lesson from the MERS-CoV outbreak, which was the largest outbreak 
originated from the Middle Eastern countries in 2015, various preparedness plans have been initiated for emerg-
ing infectious diseases including medical infrastructure and transparent data disclosure through daily  briefings47. 
Real-time infection transmission notification through mobile phone applications or websites, and a real-time 
alarm system through mobile phone (including location-specific risk notification through GPS) have been newly 
developed during the COVID-19 pandemic. In addition, South Koreans were quickly alert and carried out volun-
tary preventing activities such as wearing a mask and prohibiting gatherings. With such an ensemble of national 
infrastructure and citizens’ voluntary participation in quarantine, South Korea demonstrates its superiority in 
handling COVID-19 outbreaks through successful mitigation strategies.

DMD has been successful to extract spatial–temporal coherent patterns in a specific form of periodic, grow-
ing, and decaying dynamical spectrum  decomposition34. On the other hand, it is shown that balance between 
spatial and temporal resolutions has to be taken into account since otherwise, DMD mode analysis can result 
in erroneous data interpretation for highly nonlinear time series data. This balance is mathematically identified 
as the linearity of data in this paper, which means that DMD can in general make sense only for the appropriate 
selection of windows from the full temporal data sets so that spatial resolution is larger than the temporal reso-
lution. This clearly generates the limitation of the use of classical DMD and/or its  variants22,25 since oftentimes 
it is useful to extract spatiotemporal patterns for rather long data sets. To overcome this issue, one can select a 
special set of the time series data with certain labels as discussed  in48 or more generally, one can use a certain 
multiscale temporal representation of the data. Namely, one can decompose the temporal steps, from fine to 
coarse so that in coarse level, the global data makes the linearity, while the fine-scale is handled only in several 
local windows. Somewhat similar but different idea, named as multiresolution DMD can be found  at49. Overall, 
a systematic method or mathematical modeling for forecasting COVID-19 data is an open and challenging issue. 
The multiscale approach briefly described above is potentially useful to generate the prediction operator. Lastly, 
if we can identify the data related to external controls and interventions to stop spreading COVID-19, then we 
may be able to apply DMD with control, presented  in50 for analysis, which is yet to be investigated.

Methods
Compatible window‑wise dynamic mode decomposition (CwDMD). In this section, we shall 
describe the compatible window-wise Dynamic Mode Decomposition (CwDMD), a novel dynamic mode 
decomposition method that respects the compatibility of the data set. A detailed statement of compatibility will 
be presented as well. Basically, we present a new observation that the consistent data is a linear data and suggest 
that DMD has to be applied for the consistent or linear data. A compatibility condition is a way of achieving this 
consistency or linearity of the data set. We shall show that certain windows of the given time series data has to be 
selected so that a balance between the spatial and temporal resolution of the data set is made. This balance will 
then lead to the linearity of the selected windows. The application of DMD for each window is shown to result 
in accurate data analysis.

Throughout this section, for the sake of convenience, we denote Cn×ℓ by the space of complex matrices of 
size n× ℓ . For n = 1 or ℓ = 1 , we shall omit writing it. Namely, for ℓ = 1 , we set Cn := C

n×1 , that of which is 
sets of complex vectors of size n. For any element c ∈ C , we shall denote c by its complex conjugate. We shall 
denote ·

∼
 by the vector and ·

≈
 by the tensor. For M

≈
∈ C

n×ℓ , its null and range will be denoted by N (M
≈

) and 

R(M
≈

) , respectively. We denote M
≈

∗ by its complex adjoint matrix, and also denote M
≈

† by the pseudoinverse of 

M
≈

 . The symbol δ
≈

 denotes the identity matrix. Note that M
≈

† satisfies the following conditions:

In particular, if M
≈

 has a linearly independent columns, it holds that M
≈

† = (M
≈

† M
≈

)−1 M
≈

∗.

Dynamic mode decomposition (DMD). Given a data set in a form of a time series data as follows:

M
≈

M
≈

†
M
≈

= M
≈

, M
≈

†
M
≈

M
≈

† = M
≈

†, (M
≈

M
≈

†)∗ = M
≈

M
≈

†, and (M
≈

†
M
≈

)∗ = M
≈

†
M
≈

.
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where u
∼k

 stands for the k th snapshot of the data set for k ≥ 0 with m+ 1 being the last entry of the data set, we 
let X

≈
 and Y

≈
 denote the followings:

We shall briefly review the general description of the dynamic mode decomposition (DMD) applied for T
≈

 . For 

clarity, we assume an ordered sequence of data separated by a constant sampling time �t . The idea of DMD lies 
at the assumption that there exists a linear operator A

≈
 that connects at least, approximately two data u

∼k
 and its 

subsequent data u
∼k+1

 for all k ≥ 0 , that is

The ambiguity in the approximation ≈ will be clarified by defining A
≈

= Y
≈

X
≈

† or as the solution to the follow-

ing optimization problem:

where � · �F is the Frobenius norm. We note that the operator A
≈

 is a type of dynamic operator that relates two 

consecutive data set. The goal of the dynamic mode decomposition is to extract the dynamic characteristic of A
≈

 , 

not directly to construct the mapping A
≈

 . More precisely, DMD obtains spectrums or spatial–temporal charac-

teristics of the dynamical process described by A
≈

 . We note that the spectrums can be used to completely construct 

the action of the operator A
≈

 if needs arise.

The essential algorithmic background lies in singular value decomposition of data, X
≈

 and the relationship 

between eigen-pairs of A
≈

 and its representation in principal component modes (see Lemma 1 and Lemma 2, in 

Supplementary note for Method). These are used to obtain the standard dynamic mode decomposition algorithm, 
as provided in Algorithm 151.

 Generally, the data analysis can be accomplished through the dynamic modes and eigenvalues, as given as 
(�i ,φ

∼i
, )i=1,··· ,n . We remark that {φ

∼i
}i=1,··· ,n ’s are called the DMD modes or mode vectors and they provide a rich 

set of information, especially spatial information about the data  set25. For example, the modulus of the element 
of the mode vector provides measure of the spatial region’s participation for that mode. On the other hand, the 
eigenvalues {�i}i=1,··· ,n are relevant to the time evolution of the data sets and thus, they contain temporal 
information.

Linearity, consistency, and CwDMD. A loophole in DMD lies in that DMD spectrums are found for an approx-
imate dynamic operator A

≈
 for the data set T

≈
 . It is very much ambiguous and completely unknown theoretically 

how much the error observed in Eq. (1) results in misleading data interpretation from DMD spectrums. This has 
been elaborated in Fig. 8 for further clarity. The desired DMD is then not to start with constructing DMD-
spectrums for A

≈
 that satisfies (1), but, to build DMD spectrums based on A

≈
 that satisfies the following relation-

ship:

T
≈

= {u
∼0

, u
∼1

, . . . , u
∼m−1

, u
∼m

} ∈ C
n×(m+1),

X
≈

= {u
∼0

, u
∼1

, . . . , u
∼m−1

} and Y
≈

= {u
∼1

, u
∼1

, . . . , u
∼m

}.

(1)u
∼k+1

≈ A
≈

u
∼k

, ∀k ≥ 0 equivalently Y
≈

≈ A
≈

X
≈

.

(2)
A
≈

= arg min
C
≈

� Y
≈

− C
≈

X
≈

�F ,
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Thus, we investigate the condition for the existence of an operator A
≈

 that satisfies the Eq. (3). This is in fact 

dependent on the data set T
≈

 . Namely, there must be a condition for T
≈

 , which leads to the existence of such an 

operator A
≈

 . Therefore, we introduce a notion of the linearity. Basically, we say that the data T
≈

 is linear if and only 

if there exists an operator A
≈

∈ C
n×n such that Y

≈
= A

≈
X
≈

 (see the notion of linearity precisely defined for T
≈

 in 

Definition 1 of Supplementary note). The compatibility condition is basically the condition for which the data 
T
≈

 is linear. We remark that a relevant notion that states the Eq. (3) for a particular A
≈

 of the form A
≈

= Y
≈

X
≈

† 

for the data T
≈

 has been provided by Tu et al.  in32, i.e., a notion of linear consistency, stating that the null space 

of X
≈

 is contained in that of Y
≈

 (N ( X
≈

) ⊂ N ( Y
≈

)) (see the notion of linear consistency defined for T
≈

 in Definition 

2 and also Theorem 1 of Supplementary note). We remark that the linearity is much more intuitive and general 
than the linear consistency. The notion of the linearity is a certain extension of the existence of line connecting 
two points in two dimensional Euclidean space consisting of one spatial dimension and one temporal dimension. 
On the other hand, we observe that these two concepts; linearity and linear consistency are in fact equivalent. 
Namely, the linear consistency of T

≈
 holds if and only if the linearity of T

≈
 holds (see Theorem 2 in Supplementary 

note for detailed proof). In another words, nonlinear data is inconsistent and inconsistent data is nonlinear. This 
equivalency is remarkable since these two concepts can be used to derive so-called the compatibility condition, 
which can be used to easily verify the linearity of T

≈
 . Note that the linear consistency condition provides an 

important algebraic condition for the data being linear. However, authors find it difficult to verify that condition 
in general.

The concept of compatibility is based on the observation that the data T
≈

 being linear is relevant to the balance 

between spatial and temporal resolutions. As mentioned, for example, in one spatial dimension, only two points 
(two temporal data) can be connected in general by a line, unless data consisting of more than two points are 
collinear. Its extension for higher dimensional case can be understood as a simple inequality: m ≤ n . More 
precisely, the compatibility condition can be stated as follows:

Definition (Compatibility Condition) Compatibility condition is the balance between to the balance between 
temporal and spatial resolutions, i.e., a data set T

≈
 with the temporal resolution m+ 1 and spatial resolution n 

have the relationship that m ≤ n.

Note that for m > n , T
≈

 will be in general inconsistent unless it is linear. The compatibility condition is stated 

to cover very general situations for which DMD can have a meaningful usage. We can show that under the 
compatibility condition, DMD will provide meaningful results with probability one. To be more precise, we note 
that the consistency can be easily understood in terms of the linear independency of the data X

≈
 , i.e., the linear 

independency of X
≈

 implies the consistency of T
≈

 and this can in particular, remove the trivial case that any column 

of X
≈

 is the zero vector. Theoretically, it is established that if T
≈

 satisfies the compatibility condition, then almost 

all X
≈

∈ C
n×m with m ≤ n will consist of columns which are linearly  independent52,53. This means that 

N ( X
≈

) = { 0
≈
} . Therefore, the data set T

≈
 is linear. The compatibility condition thus implies the consistency with 

probability one. Thus, the compatibility condition implies that the linearity of the data T
≈

 is almost always guar-

anteed in case m ≤ n , which then leads to the meaningful DMD results.
In a very much rare case, when the consistency breaks under the compatibility condition, one can provide a 

small (arbitrarily small) perturbation to obtain Tε

≈

∈ C
n×(m+1) , which is proven to result in a linear  data54. 

Namely, for m ≤ n , let Xε

≈

∈ C
n×m consist of first m columns of Tε

≈

 . Then we consider X̃ε

≈

∈ C
m×m obtained from 

Xε

≈

 by chopping off all rows underneath m th row of Xε

≈

 . This square matrix can be proven to be  diagonalizable52,54, 

i.e., it consists of linear independent columns and thus the columns of Xε

≈

 is linearly independent. In view of the 

spatio-temporal analysis of the data, arbitrarily small perturbation will not change the result significantly. Fur-
thermore, theoretically, such arbitrarily small perturbation will not affect the computation of the DMD-spectrums 
if they are in particular,  Gaussian55,56. We remark that our data is generally very nice, i.e., whenever we choose 
m ≤ n , the data set T

≈
 is always linear consistent and so, no perturbation was needed.

We are in a position to introduce our new algorithm, so-called a compatible window-wise dynamic mode 
decomposition (CwDMD). Our observation is that for m > n , T

≈
 will be in general inconsistent unless it is linear. 

As such, the direct and reliable DMD analysis of large time series data is not feasible in general. The strategy is 
to choose an adequate set of representative subdomains called windows, each containing a moderate size of 
time-series data that satisfies the compatibility. The total size-times duration of all the windows serving a given 

(3)u
∼k+1

= A
≈

u
∼k

, ∀0 ≤ k ≤ m, equivalently Y
≈

= A
≈

X
≈

.
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system depends only on local situations that can arise in the full time series data. For example, Fig. 2, A shows 
a class of windows for the COVID-19 data in South Korea. Namely, given a data set {u

∼0
, u
∼1

, . . . , u
∼k

, . . . , u
∼m

} , we 
consider the following windows that are consistent:

for which Xk

≈

 and Yk

≈

 are consistent for k = 0, 1, . . . , ℓ . The compatible window-wise dynamic mode decomposi-

tion is to apply the dynamic mode decomposition locally for each compatible window (Xk

≈

, Yk

≈

) . Note that these 

windows can be constructed so that they may overlap or non-overlap depending on the situations. Therefore, 
choices of window can be made without too much restriction other than the condition of compatibility. This can 
be summarized as in the Algorithm 2.

Data fitting, dimensional reduction, frequency and phase analysis. In this section, we discuss the data fitting 
using the DMD operator and choice of modes for the dimensional reduction and their uses for the phase analy-
sis of each window. Throughout this section, we assume that T

≈
∈ C

n×(m+1) is consistent and the DMD operator 

A
≈

 is given in terms of eigen-pairs (�i ,φ
∼i
)i=1,··· ,n . We would also like to mention that the precise action of the 

operator A
≈

 may not be found solely from these eigenspectrums. Namely, the data X
≈

 has to be represented in 

terms of DMD modes, which requires to solve certain optimization problem. In a prior work, this has been 
accomplished by taking into account the whole data X

≈
 . We shall show that this can be done taking into account 

any single snapshot data in X
≈

 under the consistency condition, thereby achieving a significant computational 

reduction. We begin our discussion with the fact that almost all complex matrices over complex fields are 
 diagonalizable52,54. Namely, geometric and algebraic multiplicities of almost all complex matrices over complex 
fields are identical. This means that the DMD modes make a full set of eigenvectors for almost all data set satisfy-
ing the compatibility. Some list of a couple of equivalent conditions to the fact that algebraic and geometric 
multiplicities agree for a matrix A

≈
∈ C

n×n can be found  at57 and Theorem 3 in Supplementary note. Therefore, 

in general, we have that Cn = span{φ
∼i
}i=1,··· ,n . Having a full set of eigenvectors of A

≈
 , we can represent for exam-

ple, the data u
∼η

 of T
≈

 with 0 ≤ η ≤ m+ 1 , as follows:

where �
≈

= [φ
∼1

. . . φ
∼n

] . With α
∼

 given above, we can obtain the action of the DMD operator A
≈

 as follows: for 

−η ≤ k ≤ −η +m+ 1,

where î  is the pure imaginary number such that î2 = −1 . We remark that it is standard to choose η = 0 , which 
is also our choice. Oftentimes DMD is argued to be biased to the initial  data24, our observation is that it is not 
really the case, for the consistent data. We recall that the framework of the optimized  DMD22 is also designed to 
obtain the same α

∼
 for fitting, X

≈
 , by solving the following optimization problem:

where

(Xk

≈

, Yk

≈

), with Xk

≈

:= {u
ks
∼

, . . . , u
ke−1
∼

} and Yk
∼

:= {u
ks+1
∼

, . . . , u
ke
∼

}.

u
∼η

=

n∑

i=1

αi φ
∼i

or α
∼
= �

≈

−1 uη
∼

,

(4)u
∼k

=

n∑

i=1

αie
kR(log(�i))eîkI(log(�i)) φ

∼i
,

α
∼
= arg min

µ
∼
=(µi)i=1,··· ,n

∥∥∥∥∥∥
X
≈

− �
≈

Dµ

≈

Vm−1

≈

∥∥∥∥∥∥
F

,
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It is clear that the consistency of data leads to a significant reduction of the computational effort.
We now can consider a discrete to continuous extension of the action of DMD operator. We remark that from 

the discrete represent of u
∼k

 in (4), a continuous extension can be achieved as follows: for all t ≥ t0 = 0,

We now discuss the mode choice for the phase analysis, which will be used to obtain the dimensional reduction of 
the data. The most natural guide to choose the important DMD mode is to find the DMD mode which contributes 
most significantly to the data both temporally and spatially. This leads us to choose the index of DMD mode for 
which the following quantity, product of the temporal and spatial contribution in each window is maximized:

where p is the temporal resolutions for the window. We call the quantity |�k|p�αk φ
∼k

�F the power of the k th 

DMD mode and observe that in general one or two dominant powers exist. These are then chosen to form a 
dimensionally reduced data. For example, φ

∼k
 is the DMD mode whose power is the largest. Then it is used to 

form a dimensionally reduced data: for all t ≥ t0 = 0,

which is used for the data interpretation such as phases and magnitudes. In literature, DMD modes are chosen 
based on their norms or weighted norm by the corresponding DMD  eigenvalues32. For example, the use of 
weighted norm by DMD eigenvalues, can be interpreted as to penalize spurious modes with large norms but 
quickly decaying contributions to the  dynamics29. In our choice, we incorporate α

∼
 , the coordinate of data in 

the frame of DMD modes as a special scale for DMD modes. These measurements are meaningful especially 
for highly nonlinear data, since coordinates given in terms of DMD modes can much affect the dynamics of 
data. We remark that the frequency of the solution for the mode k, can be defined through I(log(�k))/2π and 
thus the period is given by the reciprocal of the frequency. The identified DMD mode can be categorized as 
periodic, growing or decaying modes depending on the magnitude of �k . Namely, for eigenvalues on (or close), 
outside or inside the unit circle, the corresponding modes are considered as oscillatory, growing, and decaying 
modes, respectively. In the present work, we give a tolerance ǫ = 5.E−2 and denote No = {i : ||�i| − 1| ≤ ǫ} , 
Ng = {i : |�i| > 1+ ǫ} , Nd = {i : |�i| < 1− ǫ} by the set of oscillatory modes, the set of growing modes, and 
the set of decaying modes, respectively. We first select the DMD modes of large powers, and then measure the 
magnitude of its eigenvalues and determine whether they are oscillatory, growing or decaying mode.

Data availability
The map of South Korea was obtained in the form of a shapefile from the website of the Statistical Geographic 
Information Service (panel A of Fig. 2)58. Population, area, and density by the 17 regions as of April 9, 2021, were 
obtained from the website of e-indicatior in South Korea (panel B of Fig. 2)59. The daily incidence of COVID-19 
by regions from January 20, 2020, to May 10, 2021, was obtained on the website of Seoul National University 
Asia Regional Information Center (SNUARIC) (panel B of Fig. 2)60.
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