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Abstract

The mononuclear phagocyte system (MPS) is a family of cells including progenitors, circu-

lating blood monocytes, resident tissue macrophages, and dendritic cells (DCs) present in

every tissue in the body. To test the relationships between markers and transcriptomic diver-

sity in the MPS, we collected from National Center for Biotechnology Information Gene

Expression Omnibus (NCBI-GEO) a total of 466 quality RNA sequencing (RNA-seq) data

sets generated from mouse MPS cells isolated from bone marrow, blood, and multiple tis-

sues. The primary data were randomly downsized to a depth of 10 million reads and requan-

tified. The resulting data set was clustered using the network analysis tool BioLayout. A

sample-to-sample matrix revealed that MPS populations could be separated based upon tis-

sue of origin. Cells identified as classical DC subsets, cDC1s and cDC2s, and lacking Fcgr1

(encoding the protein CD64) were contained within the MPS cluster, no more distinct than

other MPS cells. A gene-to-gene correlation matrix identified large generic coexpression

clusters associated with MPS maturation and innate immune function. Smaller coexpres-

sion gene clusters, including the transcription factors that drive them, showed higher expres-

sion within defined isolated cells, including monocytes, macrophages, and DCs isolated

from specific tissues. They include a cluster containing Lyve1 that implies a function in endo-

thelial cell (EC) homeostasis, a cluster of transcripts enriched in intestinal macrophages,

and a generic lymphoid tissue cDC cluster associated with Ccr7. However, transcripts

encoding Adgre1, Itgax, Itgam, Clec9a, Cd163, Mertk, Mrc1, Retnla, and H2-a/e (encoding

class II major histocompatibility complex [MHC] proteins) and many other proposed macro-

phage subset and DC lineage markers each had idiosyncratic expression profiles. Coex-

pression of immediate early genes (for example, Egr1, Fos, Dusp1) and inflammatory

cytokines and chemokines (tumour necrosis factor [Tnf], Il1b, Ccl3/4) indicated that all tissue

disaggregation and separation protocols activate MPS cells. Tissue-specific expression

clusters indicated that all cell isolation procedures also co-purify other unrelated cell types

that may interact with MPS cells in vivo. Comparative analysis of RNA-seq and single-cell

RNA-seq (scRNA-seq) data from the same lung cell populations indicated that MPS
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heterogeneity implied by global cluster analysis may be even greater at a single-cell level.

This analysis highlights the power of large data sets to identify the diversity of MPS cellular

phenotypes and the limited predictive value of surface markers to define lineages, functions,

or subpopulations.

Introduction

The mononuclear phagocyte system (MPS) [1] is a family of cells including progenitors, circu-

lating blood monocytes, resident tissue macrophages, and dendritic cells (DCs) that are pres-

ent in every tissue in the body [2–5]. Within each tissue, resident macrophages occupy niches

or territories with a remarkably regular distribution (reviewed in [5, 6]). The proliferation, dif-

ferentiation, and survival of most resident macrophage populations depends upon signals

from the macrophage-colony–stimulating factor receptor (CSF1R) initiated by one of 2

ligands, CSF1 or IL34 [7, 8]. Based upon detection of macrophage-restricted mRNA, including

Csf1r, the relative abundance of resident macrophages in most organs in mice was shown to

reach a maximum in the first week of postnatal life and remains stable thereafter during post-

natal growth [9]. Lineage-trace studies in the C57BL/6 strain suggest that many macrophage

populations established in the mouse embryo are maintained in adults mainly by self-renewal,

whereas others are replaced progressively to differing extents by blood monocytes derived

from bone marrow progenitors throughout life [10–12]. Most, if not all, tissue macrophage

populations can be generated and maintained in the absence of blood monocytes because of

the intrinsic homeostatic regulation by circulating CSF1 [13]. The precise details of ontogeny,

turnover, and homeostasis of resident macrophages may not be conserved across mouse

strains or species [5]. However, regardless of their steady-state turnover, all tissue-resident

macrophages, including the microglia of the brain, can also be rapidly replaced by blood

monocytes following experimental depletion ([3–6, 13] and references therein).

Within individual tissues, resident macrophages acquire specific adaptations and gene

expression profiles [2, 4, 5, 14–16]. These adaptations contribute to survival as well as function

and involve inducible expression of transcription factors and their downstream target genes.

At least some of these transcription factors act by regulating Csf1r expression. Deletion of a

conserved enhancer in the mouse Csf1r gene leads to selective loss of some tissue macrophage

populations, whereas others express Csf1r normally and are unaffected [17]. In the mouse

embryo, where abundant macrophage populations are engaged with phagocytosis of apoptotic

cells [18], the macrophage transcriptome does not differ greatly between organs. Tissue-spe-

cific macrophage adaptation occurs mainly in the postnatal period, as the organs themselves

exit the proliferative phase and start to acquire adult function [9, 16].

Classical DCs (cDCs) are commonly defined functionally on the basis of a proposed unique

ability to present antigen to naïve T cells, a concept that requires a clear distinction between

DCs and macrophages [19]. The situation is confused by the widespread use of the term DC to

describe any antigen-presenting cell (APC), including cells that are clearly derived from blood

monocytes [20]. An attempt at consensus proposed an MPS nomenclature classification based

upon ontogeny and secondarily upon location, function, and phenotype [21]. The proposal sep-

arates monocyte-derived APCs from cDC subsets: cDC1s, dependent on the transcription factor

BATF3, and cDC2s, dependent upon IRF4. Some support for this separation came from analysis

of anMs4a3 reporter transgene, which labelled cells derived from committed granulocyte-mac-

rophage (GM) progenitors and distinguished monocyte-derived cells from tissue DCs [11].
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Secondary classification is based upon cell surface markers that are presumed to be linked in

some way to ontogeny. The proposed development pathway of these DC subsets from a com-

mon myeloid progenitor via a common DC progenitor (CDP) has been reviewed recently [22].

However, it remains unclear as to whether cDCs should be considered part of the MPS and the

extent to which they can be separated from other MPS cells based upon surface markers [13].

Even within individual tissues, resident macrophages are extremely heterogeneous [23, 24].

Since the advent of monoclonal antibodies and later development of transgenic reporter genes

[25], numerous markers have been identified that segregate the MPS into subpopulations.

More recently, mouse tissue macrophage heterogeneity has been analysed using multiparame-

ter flow cytometry and single-cell RNA sequencing (scRNA-seq) [26]. Amongst the recent sug-

gestions, LYVE1 was proposed as a marker of macrophages associated with the vasculature

[27], CD64 (Fcgr1 gene) and MERTK as markers that distinguish macrophages from cDCs

[28, 29], and CD206 (Mrc1 gene) as a marker of so-called M2 macrophage polarisation [30,

31]. Several surface markers have also been identified that are encoded by genes expressed

only in macrophages in specific tissues (for example, Clec4f, Tmem119, Siglecf) [16, 32].

Other markers define macrophages in specific locations within a tissue, for example, CD169

(encoded by Siglec1) in the marginal zone of spleen and haematopoietic islands in bone mar-

row [33]. In the case of blood monocytes, the subpopulations are clearly a differentiation series

in which short-lived LY6Chi ‘classical’ monocytes give rise in a CSF1R-dependent manner [34]

to long-lived LY6Clo nonclassical monocytes via an intermediate state [12, 34, 35]. This is likely

also the case in tissues such as the liver [32] and intestine [36, 37].

Mechanistically, the association between marker expression and cellular function depends

upon coordinated transcriptional regulation. One way to identify coregulated sets of transcripts

is to cluster large transcriptomic data sets. This approach was used to create transcriptional atlases

in multiple species and identify lineage-specific transcription factors and their target genes [38–

42]. It enabled the extraction of a generic tumour-associated macrophage signature from multiple

large cancer data sets [43]. Previous meta-analysis of large microarray data sets [38, 39, 42], as

well as a reanalysis of data from the ImmGen Consortium [44], indicated a clear separation in

the mouse of MPS cells from all other leukocyte lineages but did not support the basic premise

that markers can separate macrophages from DCs or define lineages within the MPS.

Over the past 5 years, RNA-seq has supplanted microarrays as an approach to expression

profiling. The recent cascade of interest in tissue-specific macrophage adaptation has produced

RNA-seq data for MPS cells isolated from most major organs of C57BL/6 mice. There has

been no previous effort to integrate this data deluge into a cohesive view of MPS transcrip-

tional diversity and to identify sets of transcripts that are stringently co-ordinately regulated.

To enable comparative analysis of data sets from multiple laboratories, we devised an auto-

mated informatics pipeline employing random sampling of RNA-seq data to a common depth

and quantification using the pseudoaligner Kallisto. Robust transcriptional atlases for the

chicken [45] and pig [46] were generated using data sets from numerous divergent sources.

The analysis of these merged data sets, as well as large multitissue data sets from sheep,

human, and water buffalo [47–49], provided strong support for the principle of guilt by associ-

ation, namely that genes that contribute to a specific biological function tend to be coregulated.

Each of these analyses identified transcripts that were enriched specifically in MPS cells relative

to other haematopoietic cells. Using the same basic pipeline as in the chicken and pig projects,

we identified a total of 466 RNA-seq libraries generated from isolated macrophage and cDC

populations from 24 different studies that sample mouse MPS transcriptional diversity

(Table 1). Here, we apply network clustering to this large data set to identify shared and diver-

gent transcriptional adaptation of tissue-resident MPS cells and revisit the relationships

between macrophages and DCs.
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Materials and methods

The RNA-seq data sets from within the BioProjects shown in Table 1 were downloaded from

the European Nucleotide Archive (ENA). S1 Data contains all the Sequence Read Archive

(SRA) and National Center for Biotechnology Information (NCBI) accessions and sample

descriptions. Individual BioProjects differ in methods of mRNA isolation, library preparation

and sequencing methods, length, depth, and strandedness, but previous analysis in other spe-

cies [45, 46] indicated that they can still produce comparable expression level estimates. Prior

to expression quantification and for the purpose of minimising variation between samples, all

libraries were randomly downsampled to 10 million reads, 5 times each, as described previously

[45, 46]. The expression levels were then requantified using Kallisto v0.44.0 [50], and the

expression level was taken as the median transcripts per million (TPM) across the 5 down-

sampled replicates. Kallisto quantifies expression at the transcript level as TPM by building an

index of k-mers from a set of reference transcripts and then ‘pseudo-aligning’ reads to it,

matching k-mers in the reads to k-mers in the index. We built a custom index (k = 21) contain-

ing the combined set of 154,627 unique protein-coding transcripts from Ensembl and NCBI

RefSeq, representing 24,149 protein-coding genes (Mus musculus annotation GRCm38.p6).

Table 1. GEO and BioProject accession numbers for samples used in the analysis. SRA and NCBI accessions and sample descriptions are available in S1 Data.

Accession BioProject Reference Description (Markers Used in FACS Purification)

GSE125691 PRJNA517169 [27] Interstitial subsets from lung, skin, fat, heart + monocytes, and alveolar macrophages (LYVE1, SIGLECF).

GSE84586 PRJNA330530 [51] Resident macrophages from heart, kidney, and liver (F4/80, CD11B).

GSE94135 PRJNA369038 [52] Three interstitial subsets from lung (MERTK, CD64, CD11B, CD11C, CD206, MHCII) + alveolar macrophages.

GSE95859 PRJNA378611 [53] Brown adipose macrophages (CX3CR1-EGFP).

GSE114434 PRJNA471340 [37] Monocytes and small intestinal macrophage subsets (CD4, TIM4, CD64).

GSE116094 PRJNA478258 [54] Kidney-resident and monocyte-derived subpopulations, effect of ischaemia (F4/80, CD64, CD11B, CD11C, MHCII).

GSE122766 PRJNA506249 [55] Brain microglia, bone marrow-derived brain macrophages (CD45, CD11B, CX3CR1).

GSE123021 PRJNA507265 [56] Brain microglia, cortex, cerebellum, hippocampus, striatum (TMEM119).

GSE127980 PRJNA525977 [57] Erythroblastic island macrophages from marrow (EPOR-EGFP, F4/80, VCAM1, SIGLEC1).

GSE135018 PRJNA557178 [58] Alveolar macrophages and peritoneal macrophages, effect of Bhlhe40/41 mutation (SIGLECF, CD11B, CD11C, F4/80).

GSE128662 PRJNA528430 [32] Monocyte to KC differentiation series. Effects of Nr1h3 and Smad4 mutations (F4/80, CD11B, LY6C, CLEC4F).

GSE128781 PRJNA529096 [59] Nonparenchymal brain macrophages, microglia, and peritoneal macrophages (MHCII, CD64, CD11B).

E-MTAB-

6977

PRJEB27719 [36] Macrophage subsets from intestinal lamina propria, serosa, and muscularis (CD64, CX3CR1 lineage trace).

GSE112002 PRJNA438927 [60] Pancreatic islet and peri-islet macrophage populations. Effect of high-fat diet (F4/80, CD11B, CD11C).

GSE103847 PRJNA407286 [61] White adipose and sympathetic neuron-associated macrophages, spleen, microglia (CD45, CX3CR1-EGFP, F4/80).

GSE68789 PRJNA283850 [62] Mucosal and skin LCs and DCs (CD103, CD11B, EPCAM, CD207).

GSE128518 PRJNA527979 [63] White adipose macrophages, effect of Trem2 mutation (CD11B, F4/80).

GSE107130 PRJNA419127 [64] Brain microglia developmental time course: male and female. Role of microbiome (CD45, CD11B, F4/80, CD64).

GSE83222 PRJNA325288 [65] Spleen, intestine, bone marrow macrophages. Effect of engulfment of apoptotic cells (F4/80, CD11B).

GSE95702 PRJNA378162 [66] Monocyte subsets and bone marrow progenitors. Effect of Cebpb mutation (CD115, CD135, LY6C, CD11B, CD11C).

GSE130201 PRJNA534273 [67] DCs, LN, and spleen. cDC1s/cDC2s (CD11C, CD64, MHCII, CD103, TBX21).

GSE120012 PRJNA491337 [68] Cardiac vessel macrophages (MHCII, CCR2, CD64, CD11B).

GSE140919 PRJNA519465 [69] Monocyte engraftment of colon/ileum (CX3CR1-EGFP, CD115, LY6C, CD64).

GE131751 PRJNA

544681

[70] Kidney-resident and monocyte-derived macrophage and DCs (F4/80, CD64, CD11B, CD11C, MHCII, CLEC9A lineage

trace).

Abbreviations: cDC, classical DC; DC, dendritic cell; EGFP, enhanced green fluorescent protein; FACS, fluorescence activated cell sorting; GEO, Gene Expression

Omnibus; KC, Kupffer cell; LC, Langherhans cell; LN, lymph node; NCBI, National Center for Biotechnology Information; SRA, Sequence Read Archive.

https://doi.org/10.1371/journal.pbio.3000859.t001
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Because expression is quantified relative to this index, Kallisto is robust to the presence of spu-

rious k-mers in the reads so that ranked TPM estimates are largely unaffected by fastq prepro-

cessing. For paired-end samples, Kallisto estimates the fragment length from the reads. For

single-end samples, fragment length cannot be empirically derived from read mapping and is

assumed to follow a truncated Gaussian distribution with user-specified mean and standard

deviation. For the single-end libraries, we considered the mean fragment length to be 1.2 × the

median read length and the standard deviation to be 0.1 × the mean fragment length. Varying

these parameters did not substantially alter the expression profile of each sample.

The selected BioProjects include subsets of resident tissue macrophages defined using sur-

face markers or reporter genes as indicated in Table 1 and separated by FACS, as well as tem-

poral profiles of adaptation from monocytes to tissue macrophages. Several studies involve the

analysis of the impact of mutations in specific transcription factors and surface receptors. The

focus is on tissue-resident cells. Data sets related to inflammatory macrophages or macro-

phages stimulated in vitro have been excluded.

The purpose of this analysis was to identify clusters of transcripts that are robustly corre-

lated regardless of the tissue of origin. The outcomes of such an analysis may reveal tissue-spe-

cific modules but may equally include modules that are shared by several tissues or specific

niches within tissues. For this purpose, the size of the data set and the diversity of transcrip-

tomic space sampled is a major strength.

In an RNA-seq library, the distribution of TPM estimates should comply, to a reasonable

approximation, with Zipf’s law, which states that the probability of an observation is inversely

proportional to its rank [71, 72]. We confirmed that each of the 466 libraries obeyed the pre-

dicted power-law relationship.

Prior to network analysis, transcripts that were not detected at an arbitrary threshold of 10

TPM in at least 1 sample were removed to further minimise stochastic sampling noise intrinsic

in RNA-seq data. Given the nature of the samples, this also helps to reduce the low-level repre-

sentation of transcripts derived from contaminating cells of nonmyeloid origin. Of the 18,175

genes that met this minimum threshold, 11,578 were detected in at least 90% of the RNA-seq

data sets, and 6,901 had a median expression >10 TPM across the 466 samples. The TPM esti-

mates for the 18,175 genes quantified in all 466 samples included are provided in S1 Data.

Network analysis was performed using the program BioLayout (http://biolayout.org). Pair-

wise Pearson correlations (r) were calculated between all samples to produce a sample-to-sam-

ple correlation matrix and inversely between all pairs of genes to produce a gene-to-gene

correlation matrix. Gene coexpression networks (GCNs) were generated from the matrix, in

which nodes represent genes and edges represent correlations between nodes above a defined

correlation threshold. Note that BioLayout supports 3-dimensional visualisation of network

graphs, and each of the graphs generated in this study can be regenerated using the data pro-

vided in Supporting Tables and the freely available software. For each gene-to-gene analysis,

the value of r was chosen to generate an optimal network that retains the maximum number of

transcripts (nodes) with the minimum number of edges [45]. Networks based on Spearman

correlation coefficients (nonparametric) were also calculated to assess the impact of distribu-

tion shape on the analysis.

Results and discussion

Overview

The massive data set in S1 Data presents expression estimates for 18,175 transcripts in 466

RNA-seq data sets from MPS cells in a wide diversity of differentiated states. This provides the

framework for a meta-analysis and review of the current state of knowledge of MPS cell
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differentiation. We first consider the expression profiles of individual transcripts, a network

analysis of the relationships between MPS cell populations, and identification of stringently

coregulated clusters of transcripts. This analysis leads to detailed consideration of the content

of individual clusters enriched in tissue-specific MPS populations and the recognition of likely

artefacts associated with isolation of MPS cells. Separate analysis of expression of transcripts

encoding transcription factors addresses the control network that regulates differential gene

expression in the MPS, whilst analysis of solute carriers and metabolic pathways contributes to

the emerging field of immunometabolism. scRNA-seq is a rapidly emerging approach to iden-

tification of MPS subpopulations. Based upon comparative analysis, we critically review the

validity of conclusions about MPS heterogeneity based upon scRNA-seq and the relationship

with coregulated clusters identified by network analysis. In the light of our analysis, we ques-

tion the validity of cell surface markers in analysis of MPS cell diversity, especially as they relate

to the separate identity of DC and macrophage polarisation states.

Expression profiles of individual transcripts

To survey the heterogeneity of the MPS cells (monocytes, macrophages, and DCs), we first

considered the expression profiles of selected individual transcripts, including candidate

housekeeping genes and surface markers commonly used in studies of this lineage. The

choice of appropriate reference genes for quantitative reverse transcriptase polymerase chain

reaction (qRT-PCR) quantification of RNA levels is a significant issue in many studies,

including macrophage differentiation. For example, Stephens and colleagues [73] proposed

the use of a weighted geometric average of the most stably expressed genes for studies of dif-

ferentiating macrophages and osteoclasts. Fig 1A shows the expression profiles of candidate

housekeeping genes (Hprt, Actb, B2m, Gapdh, Ppia) commonly used in qRT-PCR as refer-

ence genes. We envisaged that these transcripts would be relatively consistent between data

sets and would be correlated with each other. However, each of these transcripts varied by

>10-fold among the MPS populations, and in pairwise analysis, they were only weakly corre-

lated (Pearson correlations in Fig 1B and Spearman correlations in S1 Fig). S1 Data also

includes the mean, standard deviation, and coefficient of variance (CoV) of each transcript

across the entire data set. Only 200 transcripts had a CoV < 0.5. This analysis indicates that

pathways normally considered as housekeeping (intermediary metabolism, protein synthe-

sis, endoplasmic reticulum (ER) and Golgi membrane trafficking and secretion, endocytosis,

cytoskeleton, etc.) are independently regulated in MPS cells. There are few, if any, identifi-

able housekeeping genes.

Fig 2A shows the expression pattern of transcripts encoding surface markers used to sepa-

rate some of the subpopulations herein: Adgre1 (encoding F4/80), Cd4, Cd74 (Class II MHC),

Csf1r (CD115), Cx3cr1, Fcgr1 (CD64), Icam2, Itgax (CD11C), Lyve1,Mertk,Mrc1 (CD206),

and Tnfrsf11a (RANK). Fig 2B shows a summary of the Pearson correlations between them;

Spearman correlations are shown in S1 Fig. Consistent with studies using Csf1r reporter trans-

genes [74, 75], Csf1rmRNA was universally expressed in MPS cells, albeit with significant vari-

ation in level, being highest in microglia and lowest in cDC1s. Csf1r was correlated (Pearson

r> 0.5, Spearman r> 0.65) with Adgre1, Fcgr1, Cx3cr1,Mertk, and Tnfrsf11a, but these tran-

scripts were less correlated with each other.Mrc1 was reported to be correlated with expression

of Lyve1 and inversely with Class II MHC transcripts [27, 76]. Across the entire spectrum of

macrophage transcriptomes, Mrc1 was correlated with Lyve1 but was more widely expressed

(Fig 2A). However, there was no evidence of an inverse correlation betweenMrc1 and Cd74 or

other Class II MHC-associated transcripts.
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Fig 1. Expression of housekeeping genes across MPS cell populations. The data underlying this Figure can be found

in S1 Data. (A) Expression patterns across cells from different tissues. Each column represents a sample. Upper bar

along the X axis shows the cell type (black—monocytes and macrophages; red—DCs). Lower bar shows the tissue,

coloured as shown in the key. Y axis shows expression level in TPM, calculated using Kallisto. (B) Correlations

(Pearson correlation coefficient) between expression patterns of different housekeeping genes. DC, dendritic cell; MPS,

mononuclear phagocyte system; TPM, transcripts per million.

https://doi.org/10.1371/journal.pbio.3000859.g001
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Fig 2. Expression of cell surface marker genes across MPS populations. The data underlying this Figure can be found in S1 Data. (A) Expression

patterns across cells from different tissues. Each column represents a sample. Upper bar along the X axis shows the cell type (black—monocytes and

macrophages; red—DCs). Lower bar shows the tissue, coloured as shown in the key. Y axis shows expression level in TPM, calculated using Kallisto. (B)

Correlations (Pearson correlation coefficient) between expression patterns of different MPS genes. DC, dendritic cell; MPS, mononuclear phagocyte

system; TPM, transcripts per million.

https://doi.org/10.1371/journal.pbio.3000859.g002
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Network analysis of relationships of MPS populations and expressed

transcripts

To determine whether any transcripts encoding surface markers were correlated with cellular

phenotype, we used the graph-based network analysis tool BioLayout. Fig 3 presents a sample-

to-sample correlation matrix generated using the Fruchterman–Rheingold algorithm in Bio-

Layout showing the clear segregation of the MPS populations based on the tissues from which

they were isolated (Fig 3A).

Initial iterations of the sample-to-sample analysis identified 3 technical issues that served

to validate our approach and data quality. We initially included data from the large ImmGen

UL1 project (GSE127267l; GSE124829; see [77]), but this project uses an ultra-low–input

RNA-seq pipeline based upon 1,000 sorted cells and the scRNA-seq platform Smartseq2. The

initial sample-to-sample analysis revealed a large batch effect for these samples relative to all

other samples, and we therefore excluded these data. Secondly, we mistakenly included pop-

ulations of stellate cells, endothelial cells (ECs), and hepatocytes profiled within a study of

the influence of the hepatic niche on Kupffer cell (KC) development [78]. The replicate sam-

ples of these non-MPS cells formed 3 entirely separate clusters each distinct from the main

MPS cluster, and these were also excluded. Thirdly, the initial analysis indicated that macro-

phages isolated from the choroid plexus clustered with resident peritoneal macrophages.

Consultation with the authors of the study [59] confirmed that this was due to a 3-way error

in upload to the SRA, and the samples labelled choroid plexus macrophages were indeed resi-

dent peritoneal macrophages; those labelled peritoneal macrophages were actually microglia,

and those labelled microglia were choroid plexus macrophages. The discovery of these tech-

nical issues highlights the power and validity of the network approach as implemented in

BioLayout.

Consistent with previous analysis of microarray data sets, in which all MPS cells, including

blood monocytes and DCs, clustered together and were clearly distinct from other haemato-

poietic and nonhaematopoietic lineages [39, 41, 42, 44], the isolated spleen, lung, and lymph

node (LN) DC subpopulations did not form a separate element in the network (red nodes in

Fig 3B). Based upon their overall transcriptomic profile, the DCs were no more divergent from

other MPS populations than the isolated monocytes and macrophages purified from different

tissues were from each other. The apparent relationship to BioProject (Fig 3C) occurs mainly

because most studies were focussed on a particular tissue or cell type. There may also be minor

impacts from differing methods of extracting and processing RNA and low-depth and single-

end libraries compared with high-depth/paired-end libraries, but nonetheless, when different

groups had profiled the same cell populations, the profiles were clustered together.

To further test the robustness of the associations between different MPS populations, we

repeated the analysis with increasing r values of the Pearson correlation and based upon a

Spearman correlation. Fig 4 presents the networks with nodes coloured by cell type at different

Pearson and Spearman correlation coefficients. The networks with nodes coloured by tissue

type and BioProject are presented in S2–S5 Figs. These networks clearly show that the DCs are

more similar to monocytes and macrophages from the same tissue than they are to DCs from

another tissue. Creating the network of samples at a Pearson r value of 0.85 clearly separated

the microglia from the main network as the most divergent MPS cells (S2 Fig). Interestingly,

the lung DCs were also separated from the lymphoid tissue DCs. At an r value of 0.95, the dif-

ferent MPS cells formed separate elements in the network (S3 Fig), but the cDC2 samples were

still in the same element as macrophages from several nonlymphoid tissue sources. The close

relationship of DCs with other MPS cells was equally evident when based upon Spearman cor-

relation at the r threshold of 0.85 (S4 Fig) and at higher r (S5 Fig).
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Fig 3. Sample-to-sample network analysis of gene expression in MPS cell populations. Each sphere (node) represents a sample, and lines between

them (edges) show Pearson correlations between them of�0.68 (the maximum value that included all 466 samples). (A) Samples coloured by tissue of

origin. (B) Samples coloured by cell type. (C) Samples coloured by BioProject. MPS, mononuclear phagocyte system.

https://doi.org/10.1371/journal.pbio.3000859.g003
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The GCN for the same data set was developed at an optimal Pearson r value of 0.75 chosen

based on the graph of network size versus correlation threshold (shown in S6 Fig). Fig 5A

shows the whole network, and Fig 5B highlights the tissue-specific clusters and those that con-

tain markers of other cell types, as discussed below. S2 Data summarises the coexpressed gene

Fig 4. Sample-to-sample 2D network analysis of gene expression in monocyte, macrophage, and DC populations. Each sphere

(node) represents a sample, and lines between them (edges) show Pearson correlations between them. (A) Network laid out at

Pearson correlation coefficient of�0.85. The network includes 458 samples. (B) Network laid out at Pearson correlation coefficient

of�0.95. The network includes 418 samples. (C) Network laid out at Spearman correlation coefficient of�0.85. The network

includes 443 samples. (D) Network laid out at Spearman correlation coefficient of�0.9. The network includes 427 samples. The

networks with nodes coloured by tissue and BioProject are shown in S2–S5 Figs. DC, dendritic cell.

https://doi.org/10.1371/journal.pbio.3000859.g004
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Fig 5. GCN analysis of gene expression in MPS cell populations. Each sphere (node) represents a gene, and lines

between them (edges) show Pearson correlations between them of�0.75. Nodes were grouped into clusters with

related expression patterns using the MCL algorithm with an inflation value of 1.7. Lists of genes and expression

profiles of clusters are presented in S2 Data. (A) The network generated by the BioLayout analysis. Elements with�5

nodes are shown. Nodes are coloured by MCL cluster. Lists of genes and average expression profiles for all clusters are

presented in S2 Data. Monocyte and macrophage genes (black ovals), DC genes (red oval). (B) Network showing only

major clusters of monocyte and macrophage genes (black ovals), DC genes (red oval), and other cell types. DC,

dendritic cell; GCN, gene coexpression network; MCL, Markov clustering algorithm; MPS, mononuclear phagocyte

system; NK cell, natural killer cell.

https://doi.org/10.1371/journal.pbio.3000859.g005

PLOS BIOLOGY Mononuclear phagocyte diversity

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000859 October 8, 2020 12 / 45

https://doi.org/10.1371/journal.pbio.3000859.g005
https://doi.org/10.1371/journal.pbio.3000859


clusters and the average gene expression profiles of the clusters containing at least 10 nodes

(transcripts). The graphs are colour-coded to indicate the tissue origin and cell type as in Fig 1

(samples are listed in the Readme sheet of S2 Data). An additional sheet in S2 Data provides

gene ontology (GO) term enrichment of the larger clusters. For ease of visualisation relative to

sample information, profiles of surface markers and transcription factors discussed below are

provided as an additional sheet in S1 Data. Table 2 provides an overview of the major func-

tional clusters discussed in more detail below. It is beyond the scope of this study to analyse

and cite published evidence related to every transcript in detail. In Table 2, individual genes

from within the cluster have been included based their candidate role as transcriptional regula-

tors and upon known associations with mononuclear phagocyte biology determined by

PubMed search on ‘Genename’ AND ‘macrophage’ or ‘dendritic cell’. On the principal of guilt

by association [38–42], there are hundreds of other genes within these clusters that have

inferred functions in innate immunity and mononuclear phagocyte biology.

Major macrophage-enriched coregulated clusters

At the chosen r threshold of 0.75, the GCN approach using the normalised data from multiple

laboratories identified many coregulated clusters of transcripts that are known to be functional

in MPS cells based upon prior knowledge inferred from smaller data sets. In the large tran-

scriptional atlas projects across many species and tissues discussed in the introduction, the

largest clusters tend to contain housekeeping genes that show relatively little variation amongst

tissues. Consistent with the analysis of individual housekeeping genes in Fig 1 and analysis of

the variance for the entire data set in S1 Data, there is no such cluster in the MPS data set.

Cluster 1 is a generic MPS cluster that drives the relatively close association between all of

the samples, including the different subclasses of DCs, in the sample-to-sample network (Figs

3B and 4) and distinguishes MPS cells from other leukocytes. It includes Csf1r, Fcgr1, Cd68,

Sirpa, Tnfrsf11a and the core myeloid transcription factor gene Spi1 alongside many other

known MPS-enriched transcription factors [79, 80]. One notable inclusion is the glucocorti-

coid receptor gene, Nr3c1, which mediates transcriptional activation of a wide range of anti-

inflammatory genes in macrophages [81]. As one might expect from the known endocytic and

secretory activity of MPS cells, the cluster is enriched for GO terms related to endosome/lyso-

some and intracellular transport/secretion, which are major constitutive functions of mononu-

clear phagocytes [38] (S2 Data). Transcripts in Cluster 3 were also expressed widely in MPS

cells, but the cluster has a distinct average expression profile. Cluster 3 includes genes encoding

several forkhead transcription factors (Foxo3, Foxo4, Foxk1, and Foxk2), the key transcrip-

tional regulators of autophagy [82–84], and Nfat5, which controls macrophage apoptosis [85].

This cluster also containsMertk, the perforin-like immune effector geneMpeg1, Aim2 (which

encodes a sensor for cytoplasmic DNA [86]), and transcripts for numerous DEAH- and

DEAD- box helicases all implicated in DNA sensing in innate immunity [87]. There are also

members of the neuronal apoptosis inhibitory protein (NAIP) family of inflammasome regula-

tors (Naip2, 5, 6); reviewed in [88]). We infer that this cluster of transcripts reflects an inde-

pendently regulated capacity for innate immune recognition of internalised pathogens. Other

thanMertk, there is no other plasma membrane marker associated with this set of candidate

innate immune effector genes.

Genes in Cluster 4 were strongly expressed in samples from brain and include microglia-

enriched markers that are depleted in brains of Csf1r-deficient mice and rats, such as Cx3cr1,

Tmem119, P2ry12, and the key transcription factor genes Sall1, Sall2, and Sall3 [17, 89]. This

cluster drives the separation of microglia as the most distinctive member of the MPS family.

Cluster 9 contains the S phase transcription factor gene Foxm1 and numerous cell-cycle–
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Table 2. Description of major functional clusters of coexpressed genes in mouse MPS cell samples.

Cluster

Number

Description Representative Genes

1 MPS Acp2, Atp6 subunits, Cd276, Cd53, Cd68, Cd84, Clec5a, Cln5/8,

Csf1r, Ddx/Dhx family, Fcgr1, Gpr107/108, Hk3, lysosomal

enzymes, Ifngr1/2, Il10ra, Il13ra1, Il6ra, Irak1/2, Jak1/3, Lamp1/
2, Lgals8/9, M6pr, P2ry6, P2rx7, Sirpa, Tlr6/7/8, Tnfrsf11a,

Cebpg, Creb3, Crebzf, Elf1, Etv5, Fli1, Foxj2, Foxn3, Foxo1,
Gabpa,Hdac3/10, Hif1a, Hsf1, Klf3,Maf1,Mafg,Mitf, Nfatc1,
Nfx1, Nfyc, Nr1h2, Nr2c1, Nr2f6, Nr3c1, Prdm4, Rela, Smad1/
2/4, Sp3, Spi1, Srebf1, Stat6, Tcf3, Tfe3

3 MPS Abca1/2, Aim2, Akt2/3, Arrb1, Arrb2, Atxn7, Bak1, Cbl, Cd180,

Cdk8/10/12/13/19, Csk, Ddi2, Ddx3/6/17/19a/21/23/39b/46,

Dhx9/15, Grk2, H6pd, Ly9, Megf8, Mertka, Mpeg1, Naip2/5/6,

Nirp1b, Ptprj, Socs4/7, Syk, Taok1/2, Traf7, Tram2, Atf1, Bach1,
Bcor, Cebpa, Elf2/4, Erf, Foxk1, Foxk2, Foxo3, Foxo4, Fus,
Hsf2, Ikzf1,Maf,Maz,Mef2d, Ncoa3, Ncoa6, Nfat5, Nfatc3,
Nfya, Pbx2, Prdm2, Smad5

4 Microglia and brain macrophages Abi3, Acvr1, Adrb2, Bcl9, Bmp1/2k, Card6, Ccr5, Cd34, Csf3r,
Cx3cr1, Cxxc5, Ddx31/43, Entpd1, Fcrls, Fgf13, Gabbr1, Gpr155,

Gpr165, Gpr34, Hexb, Itgb3/b5, Lpcat1/2/3, Mrc2, Nckap5l,
Olfml3, P2ry12/13, Paqr7, Plexna4, Nanos1, Siglech, Slc1a3/4,

Slco2b1, Slc2a5, Sipa1, Tgfbr1, Tmem119, Tmem173, Trem2,

Vav1, Vsir, Bhlhb9, Ebf3, Elk3, Ets1,Hivep3, Lefty1,Mef2c,
Prox2, Sall1/2/3, Sox4

7 Mitochondria and ribosome Atp5e/g2/h/j2/l, Cox5b/6a1/6b1, Mrpl family, Nduf family, Rpl
and Rps families

9 Cell cycle Aurka, Aurkb, Birc5, Bub1, Ccna2/b1/b2/e2, Cdk1, Cenpe, Haus
family, Kif family, Mcm family, Plk1, Foxm1,Mybl2

10 Lung macrophages Anxa2, Atxn10, Car4, Cd2, Cd200r4, Cd9, Chil3, Ctsk, Cx3Cl1,

Cxcr1, F7, Fabp1, Ffar4, Flt1, Flvcr2, Gal, Htr2c, Igflr1, Il1rn,

Lpl, Ly75, Nceh1, P2rx5, Plscr1, Serpine1, Siglecf, Slc6a4,

Tmem138, Nlrx1, Pparg, Tcf7l2
12 Liver KCs, peritoneal and splenic

red pulp macrophages

Acp5, Adgre4, Apoc1, C6, Cd5l, Cdh5, Clec1b, Clec4f, Fabp7,

Fcgr4, Il18bp, Itga9, Kcna2, Lrp5, Ly9, Pecam1, Pira1/2, Ptger1,

Ptprj, Scarb1, Scarf1, Sema6d, Siglec1, Siglece, Slc11a1, Slc40a1,

Slc1a2, Stab2, Tmem65, Treml4, Trpm2, Vsig4, Elk1, Id3,
Nr1h3, Rxra, Smad6, Thrb, Zbtb4

13 CCR7 DCs Arc, Birc2, Cacnb3, Cblb, Ccl19, Ccl22, Ccr7, Cd1d1, Cd200,

Cd40, Cd70, Dpp4, Fas, Icosl, Glipr2, Gpr68, Heatr9, H2-Q6/7/8/
9, Il15, Il15ra, Itgb8, Laptm4b, Lrrk1, Slamf1, Socs2, Tank,

Tmem19, Tnfrsf4, Tnfrsf9, Traf1, Tyk2, Vsig10, Zc3h12c,
Zmynd15, Foxh1, Id2, Ikzf4, Spib, Stat4

15 Monocytes C3, Camkk2, Ccr2, Cd177, Cd244a, Celsr3, Clec2g, Erbb4, Fgr,
Gpr15, Gpr35, Gpr141, Hpse, Il17ra, Itga4, Met, Mmp8, Ms4a4c,
Nlrc5, Ptgir, Ptprc, Sell, Sgms2, Slk, Vcan, E2f2, Foxn2, Jarid2,
Rara, Rfx2, Stat2b

21 Peritoneal macrophages Ackr3, Alox15, Arg1, C4a/b, Car6, Cyp26a1, F5, F10, Fgfr1,

Fzd1, Icam2, Itga6, Itgam, Jag1, Lbp, Lrg1, Mst1r, Naip1, Nt5e,
Padi4, Pycard, Selp, SerpinB2, Slpi, Tgfb2, Thbs1, Wnt2, Gata6,
Rarb, Smad3, Sox7, Tox2

22 LYVE1-positive macrophages Adam9, C3ar1, C5ar1, Cd36, Cfh, Clcn5, Ctsb, Dab2, Egfr, Epor,
F13a1, Fcgrt, Frmd6, Gas6, Gpr160, Igfbp4, Lyve1, Mrc1, Nrp1,

S1pr1/2, Tlr5, Tmem9, Trf, Trpv4, Etv1, Nfatc2, Tcf4
28 DCs Adam11, Bcl2a1b/d, Ccr6, Cd7, Clec4a4, Ddr1, Dtx1, Flt3,

H2-DMb2, H2-Eb2, H2-Oa/b, Kit, Lta/b, Nlrp10, P2ry10, Siglecg,
Sirpb1a, Tnfrsf18, Relb

38 Intestinal macrophages Adam19, Asb2, Cxcl9, Cxcr4, Dna1l3, Fgl2, Gpr31b, Gpr55, Il10,

Il12rb1, Kynu, Mmp9/13/14, Ocstamp, P2rx6, Pgf, Tlr12, Wnt4,

Fosb, Hes1,Hic1

(Continued)
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associated transcripts [90], and the GO term enrichment supports a cell-cycle role. Genes of

the cell-cycle cluster were expressed in all isolated MPS populations at various levels, consis-

tent with evidence that they are capable of self-renewal in the steady state [5, 6, 13]. The separa-

tion of this cluster indicates that proliferative activity is not tightly linked to any MPS

differentiation state or surface marker.

Identification of a capillary-associated expression cluster

Most macrophages and DCs included in this analysis were purified by FACS based upon

their expression of specific markers including those shown in Fig 2 (see Table 1). Chakarov

and colleagues [27] identified a population of pericapillary cells in the lung that expressed

LYVE1 and extended their analysis to FACS-separated cells from fat, heart, and dermis.

Their RNA-seq results are included in our data set. Based upon analysis of differentially

expressed genes, the authors identified a set of genes with high expression in sorted LYVE1hi

macrophages relative to LYVE1lo macrophages across the 4 tissues, including Mrc1, Timd4,

Cd5l, Fcna, and Vsig4 [27, 76]. The GCN reveals that there is, indeed, a set of transcripts

(Cluster 22; see S2 Data) that is strongly correlated with Lyve1 expression across MPS cells

from a larger spectrum of tissues. The cluster includes Mrc1 but excludes Timd4, Cd5l, Fcna,

and Vsig4, which were associated with distinct tissue-specific clusters (Table 2). The correla-

tion between Lyve1 and Mrc1 is actually lower than the network threshold of 0.75 (r = 0.62,

Fig 2B). The 2 genes were included in Cluster 22 because of shared links to other genes. In

fact, Mrc1 was only marginally enriched in the purified LYVE1hi macrophages from fat,

heart, lung, and skin [27]. It was highly expressed in isolated MPS cells from adipose, brain,

intestine, kidney, and liver that lack Lyve1 mRNA (see S1 Data/selected transcripts and Fig

2). We conclude that most LYVE1hi macrophages express Mrc1, but the reciprocal relation-

ship does not hold.

The set of coexpressed genes in Cluster 22 suggests a function for LYVE1hi macrophages in

control of endothelial biology and vascular permeability. It includes genes for 2 of the sphingo-

sine-1-phosphate (S1P) receptors (S1pr1 and S1pr2) that have been implicated in many aspects

of inflammation, lymphangiogenesis, and angiogenesis [91, 92]; the vanilloid receptor (Trpv4),

which controls capillary barrier function and inflammation [93, 94]; and neuropilin 1 (Nrp1),

which controls endothelial homeostasis [95]. Cluster 22 also contains the erythropoietin recep-

tor gene (Epor), which was shown to synergise with S1P to promote apoptotic cell clearance by

Table 2. (Continued)

Cluster

Number

Description Representative Genes

41 Immediate early genes Ccrl2, Dusp1, Mcl1, Tnfaip3, Trib1, Zfp36, Atf3, Egr1, Fos, Ier2/
5, Jun, Junb, Jund, Klf2, Klf6, Nfe2l2, Nfkbiz, Tgif1

43 LCs Cd207, Dkk1, Dpep3, Hapin3, Il1r2, Mfge8, P2rx2, P2rx5, Plek2,

Sema7a, Serpind1, Tnfaip2
49 cDC1s Cd8a, Clec4b2, Clnk, Ctla4, Gcsam, Gpr33, Gpr141b, Gpr171,

Ildr1, Itgae, Il12b, P2ry14, Procr, Plekha5, Tlr11, Xcr1, Ncoa7
165 Class II MHC Cd74, H2-Aa, H2Ab1, H2-DMa/b1, H2-Eb1

Bold text indicates transcription factors. For descriptions and accession numbers of all genes, please see S1 Data.

Abbreviations: cDC, classical DC; DC, dendritic cell; KC, Kupffer cell; LC, Langerhans cell; MHC, major

histocompatibility complex; MPS, mononuclear phagocyte system.

https://doi.org/10.1371/journal.pbio.3000859.t002
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macrophages [96], and the epidermal growth factor (EGF) receptor gene (Egfr), which has also

been shown to regulate macrophage function in a range of inflammatory models [97]. Indeed,

the coexpressed genes might support the known functional association of macrophages with

lymphatic as well as blood vessels [98]. The Lyve1-associated cluster contains genes for 3 candi-

date transcriptional regulators: Etv1, Nfatc2, and Tcf4. Etv1 expression in macrophages has

been implicated in functional polarisation in vitro and the response to altered mitochondrial

membrane potential [99]. NFATC2 is required for osteoclast differentiation in vitro [100], but

its roles in macrophage differentiation/function have not been explored. Tcf4 encodes a tran-

scription effector of the Wnt/β-catenin pathway, which is implicated in responses to E-cad-

herin and other effectors in macrophage differentiation [101].

Mrc1 is commonly referred to as a marker for alternative or M2 macrophage polarisation

[31]. Another putative marker of M2 polarisation is the somatic growth factor insulin-like

growth factor 1 (Igf1 gene) [102]. Igf1 was correlated withMrc1 (r = 0.67) but did not form

part of a coexpression cluster. It was absent from monocytes and DCs but was highly expressed

in most resident tissue macrophages (see S1 Data/selected transcripts). Igf1 is CSF1-inducible

and of particular interest because of the profound impact of Csf1rmutations in multiple spe-

cies on postnatal growth and development [8]. Unlike hepatocytes and mesenchymal cells, tis-

sue macrophages did not express transcripts encoding the growth hormone receptor (Ghr),
Igf1r, or the Igf1 binding protein genes (Igfals, Igfbp1, 2, 3, 5, 6). The exception is Igfbp4, which

was highly expressed in most macrophage populations and did form part of the Lyve1/Mrc1-

associated Cluster 22. Interestingly, Igfbp4 knockout in mice mimics impacts of Csf1r defi-

ciency on somatic growth and adipose formation [103, 104].

The intimate association of macrophages with capillaries was evident from the first localisa-

tion of the F4/80 antigen [105]. Adgre1 expression was also correlated withMrc1 (r = 0.64;

Fig 2B), but it was more widely expressed than eitherMrc1 or Lyve1 and therefore not within

Cluster 22. Adgre1 was not enriched in any of the purified LYVE1hi macrophage populations

relative to LYVE1lo cells from the same tissue [27]. It was high in most isolated tissue macro-

phages and induced during differentiation of monocytes in situ, as in the liver data set [32]

and the intestinal developmental series [36, 37]. F4/80 (now known as ADGRE1) was proposed

as a marker of macrophages of embryonic origin [106], but Adgre1mRNA was equally high in

intestinal macrophages, which turn over rapidly from monocytes [107, 108], and in cDC2s. It

was also strongly induced during monocyte differentiation to occupy a vacant KC niche [32].

Whatever the association with ontogeny, the pattern is rodent-specific. Adgre1 is a rapidly

evolving gene, and the expression pattern also varies across species [109].

Tissue-specific macrophage clusters

Several coexpressed clusters were associated with MPS cells isolated from a single tissue. Aside

from the large brain-enriched expression cluster (Cluster 4) that contains many microglia

markers, Cluster 10 was lung-enriched and contains the alveolar macrophage marker Siglecf
and key transcription factor Pparg [16]. Cluster 12 was shared amongst liver KCs, peritoneal

macrophages, and splenic macrophages and includes the transcription factors Id3, Nr1h3, and

Smad6 and markers Cd5l, Clec4f, and Vsig4 [16, 32, 37]. Within Cluster 12, we noted the strong

coexpression (r = 0.81) between Nr1h3 and Rxra, the gene encoding its promiscuous heterodi-

merisation partner, which is also implicated in control of KC lipid and iron metabolism [110]

and may have independent function in innate immune regulation [111].

The average expression of Cluster 12 increased progressively in the monocyte-KC differen-

tiation series [32] included in this data set (see profile in S7 Fig). Cluster 12 also reveals the reg-

ulated and coordinated expression of the thyroid hormone receptor (Thrb gene), likely
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mediating the many impacts of thyroid hormones in innate immune function [112]. One

other potential regulator identified in this cluster is Zbtb4, which encodes an epigenetic regula-

tor with a high affinity for methylated CpG. Zbtb4−/− mice are viable and fertile but growth

retarded compared with littermates [113]. Impacts on myeloid differentiation have not been

reported. The transcription factor SPIC is implicated in splenic red pulp macrophage differen-

tiation and iron homeostasis [114, 115]. Although SpicmRNA was highest in red pulp macro-

phages, KCs, and bone marrow macrophages, it was detected in other macrophage and DC

populations and therefore has a unique expression profile. Cluster 21 contains transcripts

most highly expressed in resident peritoneal macrophages and includes the genes for the tran-

scription factor Gata6 and the retinoic acid receptor (Rarb), which control peritoneal macro-

phage survival and adaptation [116, 117]. The data confirm the specific high expression of the

enigmatic plasminogen activator inhibitor encoded by Serpinb2 in resident peritoneal macro-

phages, first described >20 years ago [118] and still seeking a function [119].

Genes in Cluster 15, including the monocyte-specific chemotactic receptor Ccr2, were

highly expressed in classical monocytes. Genes in Cluster 43 were expressed specifically in

Langerhans cells (LCs). They include the marker Cd207 (langerin) used in the purification of

LCs [62] but also expressed at lower levels in many other tissue macrophage populations. This

cluster did not include the gene for another LC marker, Epcam [62]. It was highly expressed in

LCs but also detected in one set of intestinal macrophage samples, most likely a contamination

with epithelial cells (Cluster 5, see below). Epidermal LCs have at times been considered as

DC-like because of their migratory and APC properties but are now considered to be special-

ised resident tissue macrophages [120]. Unlike most classical DCs in lymphoid tissue but in

common with nonlymphoid DCs, they are clearly CSF1R-dependent and share with several

other macrophage populations dependence on the conserved enhancer in the Csf1r locus [17].

Cluster 43 did not include a transcriptional regulator specific to LCs. In common with several

other macrophage populations, LC differentiation is regulated by transforming growth factor

β (TGFβ) signalling, involving transcription factors RUNX3 and ID2 [120]. Both transcription

factor genes were highly expressed in LCs but also present in several other tissue macrophage

populations.

Intestinal macrophage-enriched gene expression profiles, which have not previously been

identified, emerge in Cluster 38. Two large separate data sets of intestinal macrophages were

included here [36, 37], both likely reflecting a differentiation series of adaptation from blood

monocytes to resident intestinal tissue macrophages [5]. In one case, CD4 and TIM4 were

used as markers [37]. Surprisingly, despite the fact that TIM4 was used as a marker to sort

intestinal macrophages, the Timd4 gene was not part of a significant coexpression cluster; it

was highly expressed in the sorted intestinal macrophages but idiosyncratically in several other

tissue macrophage populations. Cd4mRNA expression was shared uniquely with lung, skin,

and kidney macrophage subpopulations (see Fig 2A). A third data set tracks the adaptation of

transferred blood monocytes to the intestinal niche [69]. Cluster 38 identified Cxcr4 as a candi-

date intestinal macrophage marker consistent with their continuous derivation from CXCR4+

monocytes. The high expression ofWnt4 in lamina propria macrophages was recently con-

firmed by immunohistochemistry (IHC). Conditional deletion ofWnt4 using Itgax-cre led to

dysregulation of immunity against an intestinal parasite [121]. WNT4 is a candidate mediator

of the key trophic role of lamina propria macrophages in the intestinal stem cell niche [122].

Fosb,Hes1, and Hic1 encode identified potential transcriptional regulators of intestinal macro-

phage differentiation and adaptation. HES1 inhibits inflammatory responses in macrophages

and contributes to gut homeostasis [123, 124]. FOSB has not previously been implicated in

macrophage adaptation to any niche. Unfortunately, we were not able to include data from a

microarray analysis of resident colonic macrophages that identified a set of 108 genes >2-fold
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higher in the colon relative to other macrophage populations in the ImmGen database [125].

However, Cluster 38 confirmed the gut-macrophage–specific expression of several of these

transcripts, including Dna1l3, Fgl2, Gpr31b,Hes1,Mmp13, Ocstamp, Pgf, and Tlr12.

There were no unique expression profiles enriched in macrophages isolated from any other

major tissues including adipose, brain (nonmicroglia), heart, kidney, pancreas, or skin. The

abundant resident macrophages of adipose are especially topical in light of the obesity epi-

demic. The literature on adipose macrophages focusses on ‘M2-like’ markers [126]. Amongst

resident macrophage populations, Apoe and Retnla, both detected in most tissue macrophages

and not included in a cluster, were highest in adipose-derived macrophages. RETNLA (also

known as RELMα) has been referred to as an adipokine, regulated by food intake and control-

ling lipid homeostasis [127]. Kumamoto and colleagues [128] claimed that Retnla was coex-

pressed withMgl2 (another putative M2 marker) in many mouse tissues, including adipose,

and attributed it a role in maintenance of energy balance. The 2 transcripts were not correlated

in this larger data set. In fact,Mgl2 was part of a small cluster (Cluster 83) with Cd14. Like

Retnla, mRNA for the related lectin, MGL1 (Clec10a gene)—also considered an M2 macro-

phage marker [126]—was highest in the adipose-associated macrophages but also expressed in

macrophages from other tissues, including dura, heart, lung, and skin (Cluster 101).

DC coexpression clusters

It has become a central dogma in immunology that DCs are uniquely adapted to present anti-

gen to naïve T cells. This view has driven the search for surface markers to enable isolation of

DCs for immunotherapy and receptors that can mediate selective antigen uptake to enhance

immunisation. If the central dogma is correct and currently used DC markers have any valid-

ity, network analysis should uncover coexpression clusters associated with antigen uptake,

processing, and presentation to T cells. This prediction is not supported by the data. Despite

evidence that it is expressed by many resident tissue macrophages (reviewed in [25]), CD11C

(encoded by Itgax) is still widely used as a surface marker in mouse DC purification. Ongoing

studies of the impacts of conditional mutations using Itgax-cre continue to be interpreted

solely in terms of DC specificity (for example, [121, 129, 130]). Consistent with the literature

[25], Itgax was expressed in multiple macrophage populations other than DCs (Fig 2A) at lev-

els at least as high as in DCs purified using CD11C as a marker and correlated only with Cd22,

Cd274 (encoding programmed cell death 1 ligand 1), Csf2rb, Csf2rb2, solute carrier (Slc)15a3,

Tmem132a, and the transcription factor gene Prdm1 (Cluster145). Class II MHC is also often

used as a marker to purify DCs, and expression is obviously a prerequisite for antigen presen-

tation to T cells. The ImmGen Consortium compared DCs from multiple sources with various

macrophage populations to identify transcripts that distinguish DC from macrophages [28,

29]. Since the macrophages used for comparison were MHCIIlo, the DC signature included

class II MHC genes. In our meta-analysis, one small cluster (Cluster 165) contained the tran-

scription factor gene Ciita and Cd74,H2-Aa,H2Ab1,H2-DMa/b1, and H2-Eb1 encoding its

targets. The genes in this cluster were clearly highly expressed in many tissue macrophages

(see profile for Cd74 in Fig 2A) but regulated independently of any other markers and

expressed no higher in cells annotated as DCs than in cells annotated as macrophages from

intestine, lung, heart, and kidney. Interestingly, again highlighting the issue with a definition

of DCs based upon unique APC function, isolated lung MHCIIhi interstitial macrophages

were as active as cDC2s in antigen-presentation assays in vitro [27]. These results are consis-

tent with the sample-to-sample analyses that showed that DCs and monocytes/macrophages

from the same tissue are more similar than DCs are to DCs from other tissues (Figs 3 and 4).
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The GCN analysis did identify 3 separate DC-associated coexpression clusters that are con-

sistent with current knowledge of putative DC subsets and adaptation in mice [21, 22, 131].

Cluster 13 includes Ccr7 and transcription factor genes Spib and Stat4; Cluster 28 includes

Flt3, Kit, and the transcription factor gene Relb; and Cluster 49 includes cDC1 markers Itgae
(CD103) and Xcr1. CCR7 is associated with DC migration [132] and the transcript was abun-

dant in both cDC1s and cDC2s isolated from spleen and LN. By contrast, the expression was

much lower in isolated lung DCs and in kidney DCs from a separate data set (see below), simi-

lar to levels in isolated macrophages from multiple tissues. Several putative DC markers were

excluded from DC-specific clusters. The transcription factor gene Batf3, implicated in cDC1

differentiation [133], did not form part of a cluster and was detected in most macrophage pop-

ulations (consistent with [16]). Similarly, IRF4 has been attributed a specific function in cDC2

differentiation [130]. Irf4mRNA was more abundant in cDC2s than in cDC1s but was also

expressed in monocytes and monocyte-derived macrophage populations. Transcripts encod-

ing NFIL3 and IRF8, which interact in the regulation of cDC1 differentiation [134], were also

highly expressed in cDC2s and in monocytes and many tissue macrophages. Although the

transcription repressor gene Zbtb46, encoding a putative DC lineage marker [135], was highest

in DCs, it was also detectable in most isolated tissue macrophages, notably in kidney and lung.

Another putative DC marker gene, Clec9a [70], also clustered independently because of

expression in isolated intestine, kidney, liver, and lung macrophages.

Interestingly, tissue macrophages may contribute to homeostatic regulation of cDC differ-

entiation. The transcript encoding the FLT3 ligand (Flt3l) was expressed constitutively to vary-

ing degrees in all of the MPS populations studied. Fujita and colleagues [129] showed that

FLT3L is cleaved from the cell surface of expressing cells by ADAM10. Conditional deletion of

Adam10 using Itgax-cre led to reduced differentiation of cDC2s. Adam10 is also expressed by

CD11C+ macrophages; it forms part of Cluster 3, containing genes that are low in monocytes

and expressed by all resident macrophages at higher levels than in DCs.

Aside from CLEC9A, many other lectin-like receptors have been proposed as DC markers

and inferred to have a function in antigen uptake. Fig 6 shows the profiles for the 12 members

of the so-called DC immunoreceptor (DCIR) family. The original member of this family,

Clec4a2, the likely ortholog of the single CLEC4A gene in humans, encodes a lectin with a

broad binding specificity for mannose and fucose [136]. Studies on knockout mice lacking

Clec4a2 continue to be based upon the claim that the lectin is mainly expressed by DCs [137],

but the global analysis showed that the mRNA is more highly expressed in most isolated mac-

rophage populations. Two of the DC-associated clusters contained other members of the fam-

ily, Clec4a4 and Clec4b2. Clec4a4 has been attributed a specific role in cDC1 function [138],

but it was equally expressed in cDC2s and forms part of Cluster 28. Most of the Clec4 genes in

the mouse genome are in a single location on Chromosome 6. They also include macrophage-

inducible C-type lectin (Mincle) encoded by Clec4e, which mediates innate immune responses

to Candida [139]. The related Clec4f (KC marker) and Cd207 (langerin) are located together in

a separate locus on Chromosome 6. Each of the Clec4 genes had a unique expression profile in

tissue MPS populations. Analysis of the entire data set reveals that ‘DCIR’ is a misnomer for

this family. The DC designation has also been misapplied to other surface receptors, including

DC-SIGN (CD209 in humans), DEC205 (Ly75), and DC-HIL (Gpnmb). In mice, there are

multiple Cd209 paralogs. Cd209b was highly expressed in marginal zone macrophage popula-

tions in spleen and is Csf1r-dependent [89]. These cells have not been successfully isolated by

tissue disaggregation. Four members of the CD209 family (Cd209a, d, f, g) were coexpressed in

a unique pattern (Cluster 100) together with Cbr2, Ccl24, and Clec10a. Ly75 was detected in

both cDC subpopulations but was most highly expressed in lung macrophages (Cluster 10).
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Fig 6. Expression of members of the DCIR (CLEC4) family across MPS cell populations. (A) Expression patterns across cells

from different tissues. Each column represents a sample. Upper bar along the X axis shows the cell type (black—monocytes and

macrophages; red—DCs). Lower bar shows the tissue, coloured as shown in the key. Y axis shows expression level in TPM, calculated

using Kallisto. (B) Correlations (Pearson correlation coefficient) between expression patterns of different Clec4 genes. DC, dendritic

cell; DCIR, DC immunoreceptor; MPS, mononuclear phagocyte system; TPM, transcripts per million.

https://doi.org/10.1371/journal.pbio.3000859.g006
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CD64 (Fcgr1 gene) was used as an exclusion criterion to remove or separate macrophages

from DCs or to enrich macrophages in all of the data sets included herein based upon the ear-

lier studies of the ImmGen Consortium [28]. This exclusion was clearly successful in that all

the purified DC data sets have very low Fcgr1 (Fig 2A and S1 Data), but the expression of this

gene in macrophage populations was also highly variable. As a simple screen for additional

markers that distinguish all CD64+ ‘macrophages’ from all CD64− ‘DCs’, we averaged expres-

sion across all macrophage and DC samples and compared them (see S1 Data). Amongst the

transcripts that were robustly expressed and highly enriched in macrophages to at least the

same extent as Fcgr1, those encoding surface markers were also variably expressed amongst

macrophage populations. However, we identified 3 transcription factor genes—Cebpb,Mafb,

and Klf10—that were apparently excluded from all of the CD64− cDCs. The role of Cebpb in

macrophage differentiation is well-recognised [66, 140, 141], and one of the data sets includes

progenitors from Cebpb−/− mice [66]. There is evidence of a negative feedback relationship

with Irf8 in monocyte-derived DCs [142]. Cebpb was detected in most tissue macrophages but

uniquely excluded from some populations, notably the heart and intestinal muscularis. MAFB

has been proposed previously as a lineage marker separating macrophages from DCs [143,

144]. However, the most parsimonious explanation of the data would be that MAFB regulates

expression of Fcgr1. The literature on KLF10 is more limited, with evidence that it participates

in TGFβ-induced macrophage differentiation [145].

In overview, although our analysis identifies coregulated clusters associated with cells cur-

rently defined as DCs, most proposed markers of this population are clearly shared with other

MPS cells, and there is no enrichment for any genes that could confer unique APC activity.

Resident macrophage activation during isolation

Cluster 41 contains numerous immediate early genes (IEGs) encoding transcription factors

and feedback regulators (for example, Fos, Egr1, and Dusp1), consistent with evidence from

scRNA-seq of disaggregated cells that isolation of cells from tissues produces cell activation

[59, 146]. In many samples, IEGs were amongst the most highly expressed transcripts. The

majority of isolated MPS populations also had high levels of macrophage-specific lipopolysac-

charide (LPS)-inducible genes. Cluster 224 contains Ccl2, Ccl7, Ccl12, Cxcl1, and Il6; Cluster

329 includes Il1b and Ptgs2 (also known as Cox2); and Cluster 485 contains Tnf and inducible

chemokines Ccl3 and Ccl4. The anti-inflammatory cytokine Il10, which is also LPS-inducible,

formed part of the intestinal macrophage cluster (Cluster 38). IL10 is essential to intestinal

homeostasis [107], but Il10mRNA was detected in only 1 of the 3 intestinal macrophage data

sets [37] alongside very high expression of IEGs and proinflammatory cytokine genes (for

example, Il1b, Tnf). The apparent expression of Fosb in intestinal macrophages discussed

above is likely also an artefact because it is undetectable in total intestinal mRNA (see http://

biogps.org). Inflammation-associated transcripts were highlighted as evidence of activation in

vivo in sensory neuron-associated macrophages [61]. Similarly, Chakarov and colleagues [27]

highlighted selective expression of Il10 in interstitial lung macrophages and differential expres-

sion in the LYVE1hi/MHCIIlo subpopulation. They did not comment upon the reciprocal pat-

tern observed with Tnf and Il1b, which were both more highly expressed in the LYVE1lo

macrophages. Both populations of interstitial lung macrophages (and all the samples from

other tissues in this BioProject) expressed very high levels of all of the IEG transcripts in Clus-

ter 41. Whereas macrophage-expressed transcripts such as Adgre1 are readily detected in total

tissue mRNA and are CSF1R-dependent, inflammatory cytokines and IEG transcripts are not

[9, 48]. Accordingly, in each of the RNA-seq data sets we have analysed, the expression of IEGs
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and inducible cytokines is most likely an artefact of tissue disaggregation and/or cell isolation

and separation by FACS.

Interestingly, Acod1, which was massively induced within 1 hour by LPS in mouse macro-

phages in vitro (see http://biogps.org), was only detected at low levels in a small subset of sam-

ples and was not correlated with IEGs or any other inflammatory activation markers.

Induction of this gene has been attributed functions in adaptive immunometabolism and accu-

mulation of tricarboxylic acid (TCA) cycle intermediates in activated macrophages [147]. The

lack of detection in the isolated macrophages suggests either that induction is specific to

recruited inflammatory macrophages or that inducible expression is purely an in vitro phe-

nomenon. The Acod1 expression pattern was correlated only with Il23a (encoding a subunit of

the cytokine IL23) at the stringency used here (r� 0.75).

Contamination of macrophage populations with other cell types

Table 3 and Fig 5B highlight other clusters that were tissue-specific and contained markers

and transcription factors associated with organ/tissue-specific differentiation, with corre-

sponding enrichment for GO terms associated with specific tissues (S2 Data). There are 3 ways

in which mRNA from purified macrophage/DC populations may be contaminated with

mRNA from unrelated cells. The most straightforward is poor separation of macrophages

from unrelated contaminating cells by FACS for purely technical reasons. A second source

derives from active phagocytosis by macrophages of dying (senescent/apoptotic) cells, in

which RNA from the engulfed cell may be detected. Finally, there is a phenomenon that arises

from the extensive ramification of macrophages and their intimate interactions with other

cells. Gray and colleagues [148] found that cells purified from LNs with the surface marker

Table 3. Major contaminant clusters.

Cluster

Number

Description Representative Genes

2 General neuronal contamination Cacna family, Cdh family, Chrn family, Gabrg1/g2, glutamate

receptors, etc.

5 and 17 Intestinal epithelial Multiple SLCs, Cdx1/2, Hox family, Isx, Ihh
8 and 14 Kidney epithelia Pax8, Cldn4/8, Hnf1b, Hoxb2/7
16 Hepatic parenchymal cells Alb, C8/9, Cyp2 family, Igfbp1, Serpina1, Nr1l3
18 Pancreatic islets Ins1, Gcg, Isl1
26 Skin/keratinocytes Krt4/5/6, Stfn, Pitx1/2
32 Bone-marrow–specific, neutrophil

contamination

Elane, Camp, Fcer1a, Gpc1, M6s4a3, Mpo, Prg2/3, S100a8/
S100a9, Gata2, Gfi1, Cebpe, Myb

33 Immature erythroid Hemgn, Klf1
36 Neuronal Tnfrsf14, Pax6, Sox8
45 Pancreatic acinar cells Cel, Cpa1, Ctrb1, Pnlip
65 Smooth muscle (intestine

muscularis

Acta2, Cnn1, Des, Mylk, Tpm1, Nkx3-2

67 NK cells Cd3g, Cd160, Gzma/b/c, Il2rb, Itga2, Kirg1, Klra4/7/8/9,

Klrc2/3, Ncr1
76 Endothelial Adgrf5, Clec4g, Ehd3, Flt4, Kdr, Ptprb, Robo4, Tie1, Sox18,

Gata4
87 B cells Blk, Cd19, Cd79a, Cxcr5, Fcer2a, Fcmr, Itk, Lax1, Tnfrsf13c,

Mef2b

Abbreviations: NK cell, natural killer cell; SLC, solute carrier.

https://doi.org/10.1371/journal.pbio.3000859.t003
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CD169 were in fact lymphocytes coated with blebs of macrophage membrane and cytoplasm.

Similarly, Lynch and colleagues [149] found that all methods to isolate KCs for flow cytometry

produced significant contamination, with CD31+ endothelium tightly adhered to remnants of

KC membrane.

Cluster 2 appears to be a generic ‘rubbish’ cluster, containing transcripts detected at rela-

tively low levels only in specific BioProjects and unrelated to tissue of origin. Other clusters

were driven by a single RNA-seq result from within 1 BioProject. These clusters most likely

represent technical noise as well as contamination.

Consistent with the proposal from Lynch and colleagues [149], 3 endothelial-associated

transcripts—Cdh5, Pecam1, and Stab2—were contained with the KC-enriched cluster (Cluster

12) and apparently increased in expression during KC differentiation. However, other abun-

dant endothelial transcripts were absent. Bonnardel and colleagues [78] generated RNA-seq

data from purified liver sinusoidal ECs. We examined the profiles of the most highly expressed

EC genes in the macrophage data set. Many of them were detectable in isolated KCs but at

much lower levels than Cdh5, Pecam1, and Stab2. They contributed to a separate liver-specific

endothelial cluster (Cluster 76). So, whilst there is evidence that ECs contaminate KC prepara-

tions, reflecting the close apposition in the sinusoids, Chd5, Pecam1, and Stab2 are likely also

genuine KC-expressed transcripts.

The detection of mature red cell transcripts encoding haemoglobins (Hba,Hbb), which are

quite abundant in many macrophage populations, most likely reflects ongoing erythrophago-

cytosis. Macrophages isolated from the intestinal lamina propria in 1 of the 2 large data sets

from small intestine [36] were heavily contaminated with markers of intestinal epithelium

(Clusters 5 and 17). This might be a separation artefact but could also reflect an active role of

macrophages in homeostatic turnover of epithelial cells [150]. Cluster 18 and Cluster 45 were

restricted to samples from a study of pancreatic islet and peri-islet macrophage populations

[60]. The authors noted the expression of insulin (Ins1) mRNA in their islet macrophage popu-

lations and attributed it to an intimate interaction with β-cells. Contamination or β-cell–mac-

rophage fusion was said to be excluded on the basis that β-cell markers such as Pdx1 were not

detected. However, many other islet-associated transcripts were abundant and formed part of

Cluster 18, notably transcription factors Isl1, Foxa2, Nkx6.1, and Nkx2.2as well as other islet-

specific transcripts, Inhba, Chga/b, Iapp, Gipr, and Gcg. Similarly, Cluster 45 was relatively

enriched in the peri-islet macrophages and contains transcripts encoding many pancreatic

enzymes. Cluster 65 includes Acta2 and other smooth muscle markers that selectively contam-

inated macrophages isolated from the intestinal muscularis [36].

The bone marrow contains several populations of macrophages [33], including those asso-

ciated with haematopoietic islands expressing CD169 (Siglec1 gene) and VCAM1. One of the

data sets included in the present study profiled the transcriptome of macrophages associated

with erythroblastic islands, based upon isolation using an Epor-EGFP reporter gene [57]. A

second bone marrow data set separated macrophages based upon their engagement in phago-

cytosis of blood-borne material [65]. The putative erythroblastic island macrophages did not

actually express increased EpormRNA (although Epor was detected in other macrophage pop-

ulations as reported recently [96] and fell within Cluster 22). However, in the isolated bone

marrow macrophages, Siglec1 was correlated with high levels of both immature neutrophil

(Cluster 32) and erythroid-associated (Cluster 33) mRNAs. The separation of these 2 clusters

implies that the contamination occurs in distinct macrophage populations, enriched selectively

in each preparation and perhaps derived from separate haematopoietic islands [33]. Cluster

32 also contains the myeloid progenitor transcription factorMyb and the GM-progenitor

markerMs4a3. Given the extensive ramification of marrow macrophages and their intimate
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interactions with progenitors [33], this contamination likely reflects the same isolation artefact

reported in LN [148], namely haemopoietic progenitor cells cloaked in macrophage clothing.

There are separate clusters including B-cell and natural killer (NK)-cell–specific markers.

The B-cell cluster, Cluster 87, shows the highest average expression in intestine, bone marrow,

lung, and spleen and likely reflects close association between macrophages and B cells in lam-

ina propria and germinal centres [36]. The cluster containing NK cell markers, Cluster 67, had

the highest average expression in one of the DC preparations. Those DCs came from a study

that proposed a further subdivision of cDC2s based upon expression of transcription factors

T-bet (Tbx21) and RORγT [67] and separated cDC2s based upon expression of a Tbx21
reporter allele. Tbx21 was detected in all purified splenic cDC preparations presented on

http://biogps.org but at much lower levels than in NK cells. NK cells also express Itgax, used in

purification of the cDCs. Accordingly, it seems likely that apparent Tbx21 expression in DCs is

due to NK cell contamination.

Clustering of transcription factor expression

Most of the coregulated clusters identified above contain genes encoding transcriptional regu-

lators that are known to be essential for tissue-specific adaptation. These represent only a small

subset of the transcription factors detected in MPS cells. The r value of 0.75 was selected for

the analysis of the whole data set to maximise the number of genes included whilst minimising

the number of edges between them (S6 Fig) and aimed at assessing the predictive value of

markers including those shown in Fig 2. To test the effect of reducing the stringency, we

focussed on annotated transcription factors [151] to reduce the complexity and remove noise.

One thousand, one hundred and three transcriptional regulators were detected above the 10

TPM threshold in at least 1 MPS population. The sample-to-sample matrix including all sam-

ples formed a single network, including the annotated DCs, as shown in Fig 7. As with the

whole data set, increasing the r value resulted in separation of various cell populations, but the

DCs remained in a group with monocytes/macrophages. We generated GCNs at 3 different

Pearson correlation coefficient thresholds, 0.5, 0.6, and 0.7 (S8 Fig). The results are provided

in S3 Data. As the cutoff was reduced, more transcription factor transcripts were included in

the network. At the highest stringency r value (�0.7), the largest cluster includes Spi1 along-

side many of the transcription factors identified in the largest generic MPS coexpression clus-

ters above (Clusters 1, 3, and 4). We conclude that the basic shared identity of MPS cells

involves coordinated expression of around 100–150 transcription factors. Even at the lowest r
value (�0.5), transcription factor genes identified as specific to particular tissue-specific MPS

populations made few additional connections, indicating that local adaptation is dependent on

highly correlated and regulated expression of a small cohort of transcription factors. Neverthe-

less, associations that become evident at lower r values may identify combinatorial interactions

in particular cell populations: Mycl, associated with DC fitness [152], was weakly correlated

with Irf8 and Zbtb46; Cebpb with Nfil3; and interferon-related transcription factors (Batf2,

Irf1/7/9, Stat1/2) were connected at the threshold of 0.5 (S3 Data).

Expression of solute carriers and metabolism genes in MPS cell populations

The burgeoning field of immunometabolism has focussed on regulation of intermediary

metabolism in recruited monocytes and macrophages in various states of activation or polari-

sation [147]. Amongst emerging concepts is the view that M1 polarisation (classical activation)

is associated with aerobic glycolysis and mitochondrial dysfunction, whereas M2 polarisation

requires an active tricarboxylic acid cycle [147]. We used the MPS transcriptome to infer likely

metabolic adaptations of tissue-resident MPS cells.
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Cluster 7 contains mitochondria-associated transcripts and transcripts encoding ribosomal

subunits, with variable expression across all samples even from the same tissue, indicating that

resident tissue macrophages vary in their dependence upon mitochondrial oxidative phos-

phorylation irrespective of surface markers or differentiation state.

In many cases, metabolic pathways are regulated at the level of solute transport [147]. There

were> 400 members of the SLC family expressed in mononuclear phagocytes above the 10

TPM threshold. Some were more highly expressed in intestine and kidney epithelial cells and

clustered with tissue-specific epithelial markers. However, many contributed to macrophage-

enriched expression clusters. One such gene, Slco2b1, which encodes an organic anion trans-

porter of unknown function, has been proposed as a marker gene to distinguish macrophages

from DC subsets, and the promoter was used in an inducible macrophage depletion strategy

[27]. The larger data set herein does not support this dichotomy. Slco2b1 is part of Cluster 4,

enriched in microglia and absent from multiple other macrophage populations, in addition to

both cDC subsets.

Macrophages depend to varying degrees upon glutamine, glucose, and fatty acids as fuels

[153], and glutamine is an important immune regulator [154]. 14 different solute carriers from

4 families have been shown to transport glutamine [155]. Of the genes encoding these carriers,

Slc38a1 was widely expressed in MPS cells and did not fall within a cluster, whereas Slc7a5,

Slc7a7, Slc7a8, and Slc38a7 were part of distinct macrophage-enriched clusters. Consistent

Fig 7. Network analysis of transcription factor gene expression in MPS cell populations. The sample-to-sample network was

generated by BioLayout analysis at r� 0.66, which included all 466 samples. Nodes representing samples are coloured by source

tissue (left) and cell type (right). Lists of genes and expression profiles of clusters at different r values are presented in S3 Data. MPS,

mononuclear phagocyte system.

https://doi.org/10.1371/journal.pbio.3000859.g007

PLOS BIOLOGY Mononuclear phagocyte diversity

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000859 October 8, 2020 25 / 45

https://doi.org/10.1371/journal.pbio.3000859.g007
https://doi.org/10.1371/journal.pbio.3000859


with the importance of glutamine as a fuel for resident MPS cells, transcripts encoding

enzymes of glutamine metabolism (Gls, Glud1, Glul, Slc25a11) were also highly expressed and

part of Clusters 1 and 3. By contrast, resident MPS cells apparently have very limited expres-

sion of glucose transporters. Slc2a1 (encoding glucose transporter GLUT1) was low, highly

variable, and idiosyncratic amongst tissues. A myeloid-specific conditional knockout of Slc2a1
confirmed that GLUT1 was the major glucose transporter in macrophages analysed in vitro,

but the loss of glucose as a fuel had remarkably little impact on macrophage function [156].

The expression of Slc2a1 in cells isolated from tissues is difficult to interpret because the trans-

porter is induced by hypoxia [157], which might arise during isolation.

In the absence of Slc2a1, macrophages in vitro increased oxidation of fatty acids [156]. The

Slc27a1 gene, encoding the fatty acid transporter FATP1—which also contributes to functional

regulation in macrophages [158, 159]—was widely expressed in tissue macrophages and, with

carnitine acyl transferase genes (Crat, Crot), formed part of Cluster 1. Slc2a5 (found in Cluster

4) encodes a fructose-specific transporter [160] and was expressed primarily in microglia.

Slc2a6 is a lysosome-associated glucose transporter that was recently knocked out in the

mouse genome [161]. It also has a novel expression profile, being highest in monocytes and

cDC2s.

One of the best known functional solute carriers in macrophages is natural resistance

associated membrane protein 1 (NRAMP1; Slc11a1 gene), which is associated with genetic

resistance to intracellular pathogens. SLC11A1/NRAMP1 is expressed in lysosomes and con-

tributes to pathogen resistance by restricting available iron [162]. The role in iron metabolism

is reflected by its presence in Cluster 12 alongside Slc40a1, encoding ferriportin, the macro-

phage-enriched iron exporter [163]. One other prominent class of solute carriers highly

expressed in macrophages (Slc30a6, Slc30a7, Slc30a9, Slc39a3, Slc39a7, and Slc39a9 in Cluster

1 and Slc39a12 in Cluster 4) is involved in transport of zinc, which is a component of antimi-

crobial defence [164, 165]. Two further zinc transporters, Slc39a2 and Slc39a11, were enriched

in lung macrophages (Cluster 10). This lung-macrophage–enriched cluster also contains

Slc52a3, encoding a riboflavin transporter, Slc6a4 (sodium- and chloride-dependent sodium

symporter), and 2 members of the Slc9 family of sodium–hydrogen exchange (NHE) trans-

porters (Slc9a4 and Slc9a7), which are more traditionally associated with epithelial function

[166].

Validation of coexpression clustering with an independent kidney data set

The abundant macrophage populations of the kidney were first described in detail using F4/80

as a marker in situ [167]. There has been considerable debate about the relationships between

resident macrophages, monocyte-derived macrophages, and cDC subsets in the kidney [168].

The main cluster analysis did not reveal a separate kidney-resident macrophage-enriched pro-

file. The kidney data set in the preceding analysis included F4/80+, CD64+ macrophages iso-

lated from control and ischaemic kidneys, further subdivided based upon expression of

CD11B and CD11C [54]. Salei and colleagues [70] recently produced RNA-seq data for iso-

lated populations of resident macrophages, monocyte-derived cells, cDC1s, and cDC2s from

kidney compared with similar populations from spleen. The primary data were not available

for download by our automated pipeline through the ENA at the time we pooled and froze our

data set (February 2020). We therefore obtained the processed data directly from the authors

and carried out network analysis using the 33 samples and 9,795 genes with normalised

expression of at least 10 in at least 1 sample. This analysis served to validate the approach to

analysis and the core conclusions using an independent data set.
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The macrophages of the kidney are intimately associated with the capillaries [167, 169],

but Lyve1 was not detectable in resident macrophages in this data set or in [54]. Published

IHC on mouse kidney reveals that LYVE1 is restricted to lymphatic vessels [170]. Fig 8 illus-

trates the way in which the sample-to-sample matrix revealed relationships between the cell

populations with increasing correlation coefficient threshold. Even at the lowest correlation

cutoff used in the main atlas (0.75), the splenic red pulp macrophages separated from all kid-

ney and DC samples. As the cutoff was made more stringent, the cDC1s from both spleen

and kidney separated, but the resident kidney macrophages, cDC2s, and monocyte-derived

macrophages remained closely connected until r� 0.98, when the spleen cDC2s separated

from the monocyte-derived macrophages and kidney cDC2s. At r� 0.99, the kidney cDC2s

and monocyte-derived macrophages were still not separated, indicating that the expression

profiles of these cell types are very similar. Salei and colleagues [70] performed a principal

components analysis based upon the 500 most variable transcripts and also identified the

close relationship between cDC2s and monocyte-derived cells. Our analysis further empha-

sises their conclusion that the main axis of difference is between spleen macrophages and all

other cells. cDC1s from both tissues were more similar to each other than to the other cells,

but spleen cDC2s were only separated from kidney cDC2s and monocyte-derived macro-

phages at the highest stringencies. We also performed a gene-to-gene analysis on these data.

The profiles of kidney myeloid cells other than cDC1s were very similar and differed by only

a small number of genes. Consistent with this conclusion, the 2 largest clusters in this analy-

sis (see S4 Data) were shared between all of the isolated populations and contain Spi1 as well

as many of the DC-enriched markers identified in the main analysis. However, Ccr7 and

many of the genes associated with it in the main data set (Cluster 13, Table 2; for example,

Spib, Stat4, Vsig10, Cd200, and Itgb8) were expressed at low levels in isolated kidney DCs as

in lung DCs. Cluster 3 of the kidney analysis was specific to splenic red pulp macrophages

and contains the known transcriptional regulators Pparg, Spic, and Nr1h3. Transcripts in

Cluster 4 were enriched in the resident kidney macrophages compared to both splenic mac-

rophages and other kidney myeloid populations. Interestingly, the resident kidney macro-

phage cluster includes many genes that are also highly expressed in microglia and depleted

in the brain in Csf1r mutant mice and rats, including Cx3cr1, C1qa/b/c, Csf3r, Ctss, Fcrls,
Hexb, Laptm5, Tgfbr1, Tmem119, and Trem2 [17, 89]. These were also detected in the iso-

lated kidney macrophages in S1 Data. Both microglia and resident F4/80hi kidney macro-

phages are selectively lost in a mouse line with a mutation in a conserved enhancer of the

Csf1r locus [17]. RUNX1 regulates the activity of the Csf1r enhancer [171] and has also been

implicated in the establishment of microglial cells during development [172]. The Runx1
gene was within this cluster. Csf1r mRNA was expressed at high levels in cells defined as

cDC2s, as well as monocyte-derived cells and resident macrophages. All cells expressing a

Csf1r-EGFP reporter in the kidney were depleted by treatment with anti-CSF1R antibody

[34]. This suggests that despite their expression of FLT3, renal cDC2s are CSF1R-dependent,

a conclusion consistent with previous evidence that cells classified as cDC2s in other non-

lymphoid tissues are dependent upon CSF1R rather than FLT3 [173]. Cluster 6 of the kidney

analysis, including Itgam, was enriched as expected in the selected CD11B+ populations

from kidney but highly expressed in all of the populations. This cluster includes all of the co-

regulated IEGs identified in Cluster 41 in the extended MPS data set above, suggesting that

recent monocyte-derived cells may be more susceptible to activation during isolation. In

summary, sample-to-sample and gene-to-gene networks on this smaller independent data

set are entirely consistent with conclusions from the global MPS analysis that question the

basis for the separation of DC from macrophages using surface markers.
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Fig 8. Sample-to-sample 2D network analysis of gene expression in macrophage and DC subpopulations from kidney and

spleen. The sample-to-sample network was generated by BioLayout analysis at the indicated Pearson r values, which all included all

33 samples up to r� 0.98. Above r� 0.98, 1 red pulp macrophage sample was lost. Red, kidney DC1; pink, kidney DC2; dark blue,

spleen DC1; light blue, spleen DC2; black, kidney macrophages; grey, monocyte-derived macrophages; white, spleen red pulp

macrophages. Lists of genes and expression profiles of clusters are presented in S4 Data. DC, dendritic cell.

https://doi.org/10.1371/journal.pbio.3000859.g008
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The relationship between single-cell and bulk RNA-seq data

The advent of scRNA-seq has been heralded as a revolution, promising new approaches to

classification of myeloid heterogeneity [26, 174, 175]. To determine whether scRNA-seq pro-

duces distinct insights about MPS heterogeneity, we wished to assess the relationship between

the coexpression networks we have generated from large total RNA-seq data sets and the coex-

pression modules inferred from scRNA-seq. scRNA-seq is an intrinsically noisy, nonquantita-

tive stochastic sampling of a subset of the most abundant mRNAs in individual cells [176,

177]. Algorithms that support nonlinear dimensional reduction (for example, t-distributed

stochastic neighbour embedding [t-SNE] or Uniform Manifold Approximation and Projection

[UMAP]) [178] followed by some form of clustering are then used to join together groups of

cells in which the members share detectable expression of an arbitrarily defined set of markers.

The number of populations defined depends upon the parameters applied, and different

approaches do not always give the same answers [178]. There is an implicit assumption in this

approach that defined cell types with approximately identical transcriptomes actually exist and

that sampling noise can be overcome by analysis of a sufficiently large number of cells. Based

upon scRNA-seq analysis of interstitial lung macrophages, Chakarov and colleagues [27]

inferred the existence of a subpopulation that selectively expressed Lyve1. They then generated

bulk RNA-seq data from separated LYVE1hi and LYVE1lo subpopulations. Their data uniquely

support a critical comparison of the 2 approaches to transcriptome analysis and the outcomes

of our network analysis. For this purpose, the primary scRNA-seq data were downloaded,

reanalysed, and expressed as TPM using the Kallisto pseudoaligner, as described in the ‘Mate-

rials and methods’. S5 Data contains these reprocessed scRNA-seq data, alongside the bulk

RNA-seq data for the lung macrophage subpopulations from the same study, with the level of

expression ranked based upon the bulk RNA-seq data for the purified LYVE1hi interstitial

macrophages.

Consistent with Zipf’s law, the power-law distribution of transcript abundance [71, 72], the

top 200 expressed transcripts in the bulk RNA-seq data (approximately 1% of the total) con-

tribute around 50% of the total detected transcripts in the scRNA-seq data (S5 Data). The

abundant transcripts from bulk RNA-seq that were also detected in scRNA-seq samples

include many cell-type–specific surface markers, which explains the ability to use scRNA-seq

to discover such markers. These abundant transcripts also include IEGs such as Dusp1, Egr1,

Fos, Ier2, and Junb, indicative of the activation that occurs during isolation as discussed above.

The inducible cytokines, including Ccl2, Tnf, Il1b, Il6, and Il10, were each detected in a subset

of the single cells, most likely also induced during isolation. Of the 200 most highly expressed

transcripts identified in the bulk RNA-seq data, only a very small subset (including Actb, Apoe,
B2m, Ccl6, Cd74, Ctsb, Fth1, Ftl1, and Lyz2) had nonzero values in all cells in the scRNA-seq

output. The average expression of the top 500 transcripts in the single cells was similar to the

bulk RNA-seq, but the detected expression level varied over 4 orders of magnitude amongst

individual cells. Fcgr1 andMertkmRNAs, encoding markers used to purify the interstitial

macrophages for scRNA-seq, as well as other commonly used markers (Cx3cr1, Itgax) were

actually detected in only a small subset of the cells and were not correlated with each other.

Both this study and a subsequent study [76] state thatMrc1 and Lyve1 expression is shared by

overlapping populations of lung interstitial macrophages. That conclusion is not supported by

the data. Even in the bulk RNA-seq data from lung interstitial macrophages, the expression of

Mrc1 was only marginally enriched in purified LYVE1hi cells relative to LYVE1lo cells (S1

Data). The separation of these 2 markers was evident from the separate study of lung intersti-

tial macrophage populations [52] included in our global MPS analysis and has been discussed

above. Consistent with that conclusion, in the scRNA-seq data, the two are not strictly
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correlated with each other, withMrc1 being detected in many more cells than Lyve1 (Fig 9A)

despite similar absolute levels of expression in the total RNA-seq data.

To identify whether any robust correlations actually exist in the scRNA-seq data, the top

500 expressed transcripts in the scRNA-seq samples were used for network analysis. The sam-

ple-to-sample network (r� 0.53) is shown in Fig 9B, and the gene-to-gene network (r� 0.5)

in Fig 9C. The cluster list and average expression profiles are provided in S6 Data. One clear-

cut finding is the coexpression of genes involved in APC activity (H2-Aa,H2-Ab1,H2-Eb1,

Cd74, and Ctss; Cluster 13 of the scRNA-seq analysis, indicated in Fig 9C), which were effec-

tively present or absent in individual cells. Chakarov and colleagues [27] defined 2 subpopula-

tions as LYVE1hi/MHCIIlo and LYVE1lo/MHCIIhi, but only 6 of the scRNA-seq samples

expressed Lyve1, and only half of those also expressed detectable MHC II genes (Fig 9A). This

is consistent with the lack of any inverse correlation between Lyve1 and Cd74 in Fig 2B. Even

at this low r value, known highly expressed markers segregated from each other. Lyve1 forms a

cluster withMgl2, Cd209, and Cd302 (Cluster 7 in the scRNA-seq analysis; Fig 9C). Adgre1 is

in a coexpression cluster that includes Lyz2 andMsr1 (Cluster 4 of the scRNA-seq analysis),

Csf1r is coexpressed withMrc1 and Cd163 (Cluster 2), and Lgals3 with Retnla and Fcrls

Fig 9. Network analysis of scRNA-seq data. The reprocessed data and the bulk RNA-seq data for the lung macrophage

subpopulations from the same study are available in S5 Data. (A) Expression profiles in single cells for selected genes. Each column

represents RNA from a single cell. Y axis shows expression in TPM, calculated using Kallisto. Only the first 6 cells expressed Lyve1
(coloured red). (B) The sample-to-sample network was generated by BioLayout analysis at r� 0.53, which included all 54 single-cell

samples. Nodes represent samples; red nodes show the samples with high expression of Lyve1. (C) Gene-to-gene network (r� 0.5),

clustered at MCL inflation value of 1.7. Cluster lists and expression profiles are available in S6 Data. MCL, Markov clustering

algorithm; RNA-seq, RNA sequencing; scRNA-seq, single-cell RNA-seq; TPM, transcripts per million.

https://doi.org/10.1371/journal.pbio.3000859.g009

PLOS BIOLOGY Mononuclear phagocyte diversity

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000859 October 8, 2020 30 / 45

https://doi.org/10.1371/journal.pbio.3000859.g009
https://doi.org/10.1371/journal.pbio.3000859


(Cluster 1). The coregulation of MHC-related genes and genes located in the same chromo-

somal region (for example, C1qa, C1qb, C1qc; Cluster 25 of the scRNA-seq analysis), as well as

the relatively uniform detection of genes such as Actb (Fig 9A), suggests that a significant pro-

portion of the all-or-nothing differences in expression between cells in the scRNA-seq data is

real. That conclusion may be considered a reflection of the limitations of the technology, but it

is actually supported by other evidence. Tan and Krasnow [179] defined subpopulations of

interstitial lung macrophages based upon expression of F4/80, Mac-2 (Lgals3), and Class II

MHC and tracked the changes in their relative abundance during development. Interestingly,

they did not detect LYVE1 on adult lung interstitial macrophages by IHC. Consistent with

their data, in the scRNA-seq data examined here, most lung interstitial macrophages expressed

high levels of either Adgre1 or Lgals3, but some expressed both or neither.

Across our data set, the selection of MPS populations based upon surface markers was also

strongly enriched for the mRNA encoding those markers (for example, CD11C+ cells express

Itgax). The reciprocal relationship need not be the case. Protein expression at a single-cell level

clearly does not vary to the same extent as mRNA because proteins have different rates of

translation, turnover, and decay [180]. Markers such as F4/80 and CD11C and transgenes

based upon macrophage-enriched promoters such as those of Csf1r and Cx3cr1 do appear to

label the large majority of MPS cells in most tissues. The disconnect between scRNA-seq and

cell surface markers may partly reflect the nature of transcription. At the single-cell level, tran-

scription occurs in pulses interspersed by periods of inactivity and mRNA decay, which can

manifest as random monoallelic transcript expression [181]. If gene expression is genuinely

probabilistic at the level of individual loci [180], the assumption of transcriptomic homogene-

ity in definable cell types upon which scRNA-seq analysis is based is clearly invalid. The num-

ber of macrophage subpopulations that can be defined in any scRNA-seq data set becomes a

matter of choice and model. As an extreme example, one recent scRNA-seq study identified 25

distinct myeloid cell differentiation ‘states’ in a mouse lung cancer model [182].

A critical view of the validity of markers

The RNA-seq data included as representative of cDC subsets [67] were from cells purified

using CD64 as a marker to exclude macrophages. Despite this choice, an unbiased assessment

of the sample-to-sample networks in Figs 3B and 4 (based on all genes) and Fig 7 (based on

transcription factor genes) would class all of these DCs as part of the same family as monocytes

and macrophages. The use of CD64 as a definitive marker distinguishing macrophages from

DCs was criticised when it was proposed [44], and it remains untenable. It is actually a curious

choice as a marker to define a cell as a macrophage because the encoded protein FCGR1

(CD64) has been implicated functionally in APC activity [183]. Interestingly, a recent study of

inflammation in the lung now posits the existence of CD64++ cDC2s and suggests that CD26

(encoded by Dpp4) is a more definitive marker [184]. In the separate kidney data set [119],

monocyte-derived macrophages were separated from cDC2s based upon CD64 as a marker.

Indeed, the cDC2s lacked Fcgr1 expression, but there was no enrichment for Dpp4. As noted

above, despite the use of CD64 as a marker, the transcriptomes of the 2 populations (cDC2s

and monocyte-derived macrophages) were almost indistinguishable. Like other MPS cells, DC

expression profiles may also be influenced by tissue-specific signals. Both the larger data set

and the kidney data [70] suggest that there is tissue-specific adaptation of ‘cDC2s’ that may

remain more ‘macrophage-like’, which may be a reflection of their dependence upon CSF1R.

From our analysis, the proposed separation of DCs from all other members of the MPS based

upon APC function, surface markers, transcription factors, or ontogeny [21] remains prob-

lematic [19].
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The concept of M1/M2 polarisation derives from analysis of classical and alternative activa-

tion of recruited monocytes by Th1 (interferon gamma [IFNγ]) and Th2 (IL4/IL13) cytokines

[31]. Previous meta-analysis indicated that proposed M2 markers defined by others [31] corre-

late poorly with each other in isolated inflammatory macrophages and are not conserved

across species [30]. The M1/M2 concept was also challenged in a recent comparative analysis

of in vitro and in vivo data on macrophage gene expression [185], which concluded that ‘valid

in vivoM1/M2 surface markers remain to be discovered’. We would suggest that they do not

exist; each proposed marker also has its own unique transcriptional regulation and tissue-spe-

cific function in resident macrophages. Aside from proposed M2 markers already mentioned

that each have idiosyncratic expression (Mrc1, Retnla, Igf1,Mgl2), Chil3 (also known as Ym1)

was highly expressed in lung macrophages (Cluster 10 of the whole data set analysis; S2 Data),

Arg1 and Alox15 were restricted to peritoneal macrophages (Cluster 21), and Cd163 was part

of a small cluster of 4 transcripts (Cluster 312). Detection of M2 markers on resident macro-

phages cannot imply that they share any functions with alternatively activated recruited

monocytes. Nevertheless, IL4/IL13/STAT6 signalling could contribute to resident MPS cell

differentiation. The IL13 receptor (Il13ra) is part of the generic MPS Cluster 1, and Il4ra is

also highly and widely expressed. IL4 administration to mice can drive resident tissue macro-

phage proliferation beyond levels controlled homeostatically by CSF1 [186].

How do transcriptional networks contribute to understanding macrophage

heterogeneity in situ?

One concern with analysis of the cells isolated by tissue digestion and evaluated here is whether

recovered cells are representative of the tissue populations. Several macrophage populations

have resisted isolation, notably those of the marginal zone of spleen and subcapsular sinus of

LNs and the abundant macrophage populations detected in skeletal muscle [5], whilst others

are clearly fragmented during isolation as discussed above. Given the remarkable ramification

of resident MPS cells in situ, it seems unlikely that they are quantitatively recovered intact in

any isolation protocol. Subpopulations of isolated cells defined by markers can sometimes be

linked to precise location within the tissue. One recent example is the clear separation of dis-

tinct myeloid populations in the liver. A unique subcapsular MPS cell population distinct from

KC was initially classified as DC-like based upon expression of CD11C and apparent lack of

macrophage markers [187], but these cells were subsequently characterised as F4/80+, CSF1R-

dependent macrophages uniquely expressing CD207 [188]. Another is the apparent location

of LYVE1hi macrophages with capillaries in the lung [27]. On the other hand, it is unclear

where the putative long-lived CD4+, TIM4+ population in the gut [37] is located. In broad

overview, macrophages in every organ, detected with Csf1r reporter transgenes that are

expressed in all myeloid cells including DCs, have a remarkably regular and uniform spatial

distribution. The concept of a macrophage territory [5] or a niche [189, 190] has been

proposed. Despite this apparent homogeneity in location and morphology, multicolour immu-

nolocalisation of macrophage surface markers indicates that they are almost infinitely hetero-

geneous (reviewed in [24]). Some of this variation may be purely stochastic [180]. However,

most of the data sets analysed here suggest that monocytes and macrophages in each organ are

a differentiation series. We have taken the view that macrophages in tissues have a defined

half-life such that some cells survive by chance and continue to change their gene expression

[5]. Each macrophage that occupies a new territory, following either infiltration as a monocyte

or self-renewal by cell division, starts a life history that involves changes in gene expression

and surface markers with time. In that view, many MPS subpopulations may be no more than

arbitrary windows within a temporal profile of adaptation.
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Conclusion

The transcriptional network analysis confirms that using our unique approach to downsizing

and a common quantification pathway, the RNA-seq data from different laboratories can be

merged to provide novel insights. The network analysis indicates the power of large data sets

to detect sets of coregulated transcripts that define metastable states of MPS adaptation and

function. The merged data set we have created provides a resource for the study of MPS biol-

ogy that extends and complements resources such as ImmGen (http://www.immgen.org). It

can be readily expanded to include any new RNA-seq data for comparative analysis, and clus-

ters can be regenerated using BioLayout or the further development of this network approach,

Graphia, which are freely available (http://biolayout.org; https://graphia.app). For example, 2

recent studies have profiled isolated macrophage subpopulations from peripheral neurons

[191, 192].

Clusters of transcripts that are robustly correlated give clear indications of shared functions

and transcriptional regulation. However, our analysis also revealed 2 important artefacts in the

study of isolated tissue macrophages: the clear evidence of inflammatory activation during iso-

lation and the extensive contamination of isolated preparations with transcripts derived from

other cell types. One recent innovation that may obviate these issues is the use of a so-called

MacTrap transgene to isolated macrophage-specific polysome-associate mRNA from tissues

without isolating the cells [193].

A discussion review of MPS heterogeneity in 2010 [194] suggested that in order for the field

of immunology to advance and communicate, ‘all cells have to be called something’. This Lin-

naean view continues to drive efforts to classify MPS cells into subsets based upon markers.

The analysis we have presented shows that surface markers are poorly associated with each

other and have very limited predictive value. Aside from Class II MHC, there are no markers

that can be correlated with predicted APC activity. Resident tissue MPS cells, including cells

that are currently defined as DCs, belong to a closely related family of cells in which the tran-

scriptomic similarities are much greater than the differences. The cumulative function of the

population of MPS cells acting together within each tissue is likely to be more important to

homeostasis and immunity than the individual heterogeneity.
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S1 Fig. Spearman correlation coefficients. (A) Spearman correlation coefficients for expres-

sion patterns of different housekeeping genes compared with the Pearson correlation coeffi-

cients from Fig 1. (B) Spearman correlation coefficients for expression patterns of different

MPS genes compared with the Pearson correlation coefficients from Fig 2. MPS, mononuclear

phagocyte system.
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S2 Fig. Sample-to-sample 2D network analysis of gene expression in monocyte, macro-

phage, and DC populations. Each sphere (node) represents a sample, and lines between them

(edges) show Pearson correlations between them of�0.85. The network includes 458 samples.

(A) Samples coloured by tissue of origin. (B) Samples coloured by cell type. (C) Samples col-

oured by BioProject. DC, dendritic cell.

(PDF)

S3 Fig. Sample-to-sample 2D network analysis of gene expression in monocyte, macro-

phage, and DC populations. Each sphere (node) represents a sample, and lines between them

(edges) show Pearson correlations between them of�0.95. The network includes 418 samples.
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(A) Samples coloured by tissue of origin. (B) Samples coloured by cell type. (C) Samples col-

oured by BioProject. DC, dendritic cell.

(PDF)

S4 Fig. Sample-to-sample 2D network analysis of gene expression in monocyte, macro-

phage, and DC populations. Each sphere (node) represents a sample, and lines between them

(edges) show Spearman correlations between them of�0.85. The network includes 443 sam-

ples. (A) Samples coloured by tissue of origin. (B) Samples coloured by cell type. (C) Samples

coloured by BioProject. DC, dendritic cell.

(PDF)

S5 Fig. Sample-to-sample 2D network analysis of gene expression in monocyte, macro-

phage, and DC populations. Each sphere (node) represents a sample, and lines between them

(edges) show Spearman correlations between them of�0.9. The network includes 427 sam-

ples. (A) Samples coloured by tissue of origin. (B) Samples coloured by cell type. (C) Samples

coloured by BioProject. DC, dendritic cell.

(PDF)

S6 Fig. Graph size compared with correlation threshold for the analysis of the mouse mac-

rophage data set. The chosen correlation threshold of 0.75 resulted in inclusion of 12,775

nodes, making 1,113,125 edges (correlations of�0.75) between them.

(PDF)

S7 Fig. Average expression of genes in Cluster 12 during differentiation of monocytes to

KCs. Data from BioProject PRJNA528435. Clec4f-cre Rosa26iDTX mice were treated with

DTX to remove mature KCs. Livers were harvested at indicated time points after DTX treat-

ment. Control animals were treated with PBS and harvested at 72 hours. The experiment

shows the repopulation of the liver with cells derived from monocytes. DTX, diphtheria toxin;

KC, Kupffer cell.

(PDF)

S8 Fig. Graph size compared with correlation threshold for the analysis of the mouse mac-

rophage transcription factor data set. Red line shows the highest threshold to include all

1,103 nodes (r� 0.28). Black broken lines show the 3 correlation thresholds used in the analy-

sis: r� 0.5 (1,064 nodes), r� 0.6 (949 nodes), and r� 0.7 (714 nodes).

(PDF)

S1 Data. Excel spreadsheet containing gene expression data for all MPS samples expressed

as TPM. Separate sheet highlights genes of interest encoding surface markers and transcrip-

tion factors. Analysis includes means, standard deviation, CoV, and Mac:DC expression ratios.

CoV, coefficient of variance; DC, dendritic cell; Mac, macrophage; MPS, mononuclear phago-

cyte system.

(XLSX)

S2 Data. Cluster lists for the gene-centred network analysis of the complete MPS data set

including graphs of average expression profiles. Separate sheet shows the GO term enrich-

ment scores for each cluster. GO, gene ontology; MPS, mononuclear phagocyte system.

(XLSX)

S3 Data. Clusters lists for gene-centred network analysis of transcripts encoding transcrip-

tion factors at 3 r values: 0.5, 0.6, and 0.7.

(XLSX)
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