
Citation: Zhang, Z.; Lin, X.; Yu, X.;

Fu, Y.; Chen, X.; Yang, W.; Dai, Q.

Meibomian Gland Density: An

Effective Evaluation Index of

Meibomian Gland Dysfunction Based

on Deep Learning and Transfer

Learning. J. Clin. Med. 2022, 11, 2396.

https://doi.org/10.3390/jcm11092396

Academic Editors: Vito Romano,

Yalin Zheng, Mariantonia Ferrara and

Emmanuel Andrès

Received: 5 January 2022

Accepted: 22 April 2022

Published: 25 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Clinical Medicine

Article

Meibomian Gland Density: An Effective Evaluation Index of
Meibomian Gland Dysfunction Based on Deep Learning and
Transfer Learning
Zuhui Zhang 1, Xiaolei Lin 2, Xinxin Yu 1, Yana Fu 1, Xiaoyu Chen 1 , Weihua Yang 3,* and Qi Dai 1,4,*

1 School of Ophthalmology and Optometry, The Eye Hospital of Wenzhou Medical University,
270 Xueyuanxi Road, Wenzhou 325027, China; zhzhang@eye.ac.cn (Z.Z.); xinxinyu@eye.ac.cn (X.Y.);
fuyana@eye.ac.cn (Y.F.); xiaoyuchenny@163.com (X.C.)

2 Department of Ophthalmology and Visual Science, Eye, Ear, Nose, and Throat Hospital,
Shanghai Medical College, Fudan University, Shanghai 200126, China; 19111260013@fudan.edu.cn

3 Affiliated Eye Hospital, Nanjing Medical University, No.138 Hanzhong Road, Nanjing 210029, China
4 College of Mathematical Medicine, Zhejiang Normal University, Jinhua 321004, China
* Correspondence: benben0606@139.com (W.Y.); dq@mail.eye.ac.cn (Q.D.); Tel.: +86-13867252557 (W.Y.);

+86-18667127070 (Q.D.); Fax: +86-025-8667-7779 (W.Y.); +86-0571-8819-3999 (Q.D.)

Abstract: We aimed to establish an artificial intelligence (AI) system based on deep learning and
transfer learning for meibomian gland (MG) segmentation and evaluate the efficacy of MG den-
sity in the diagnosis of MG dysfunction (MGD). First, 85 eyes of 85 subjects were enrolled for AI
system-based evaluation effectiveness testing. Then, from 2420 randomly selected subjects, 4006 mei-
bography images (1620 upper eyelids and 2386 lower eyelids) graded by three experts according to
the meiboscore were analyzed for MG density using the AI system. The updated AI system achieved
92% accuracy (intersection over union, IoU) and 100% repeatability in MG segmentation after 4 h of
training. The processing time for each meibography was 100 ms. We discovered a significant and
linear correlation between MG density and ocular surface disease index questionnaire (OSDI), tear
break-up time (TBUT), lid margin score, meiboscore, and meibum expressibility score (all p < 0.05).
The area under the curve (AUC) was 0.900 for MG density in the total eyelids. The sensitivity and
specificity were 88% and 81%, respectively, at a cutoff value of 0.275. MG density is an effective index
for MGD, particularly supported by the AI system, which could replace the meiboscore, significantly
improve the accuracy of meibography analysis, reduce the analysis time and doctors’ workload, and
improve the diagnostic efficiency.

Keywords: meibomian gland dysfunction; meibomian gland density; deep learning; transfer learning;
artificial intelligence

1. Introduction

Meibomian gland dysfunction (MGD) is a chronic, diffuse abnormality of the meibo-
mian glands (MGs), commonly characterized by terminal duct obstruction and/or qualita-
tive/quantitative changes in glandular secretion and also a major cause of dry eye [1,2]. It
can cause tear film instability and ocular surface inflammation, resulting in ocular irritation
symptoms, and may even damage the cornea and affect visual function in severe cases.
In the absence of a gold-standard diagnostic test, finding effective diagnostic parameters
for MGD is imperative. Currently, an intuitive index for assessing MGD is the degree of
MG atrophy, which is both common and subjective. In addition, morphological changes
in the MGs can also predict the severity of MGD [3,4]. Studies have also confirmed that
morphological indices of the MGs, such as their length, width, and tortuosity, are related
to their function [5,6]. Ban et al. found that MG morphology in the upper eyelid was
significantly correlated with the condition of the tear film or ocular surface epithelium [4].
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MG atrophy grading has been proven to be an effective diagnostic index for MGD [7–10].
Based on the findings of these studies, further studies used ImageJ and other software to
manually label the MG for a quantitative analysis. However, manual labeling of MGs is sub-
ject to insurmountable subjective errors and is time-consuming, resulting in low efficiency.

In subsequent studies, image-processing algorithms have become popular research
tools for MG image analysis. Some analytical methods showed superiority in MG mor-
phological analysis. Arita et al. reported an image processing system that could analyze
the MG morphology and obtain relatively accurate results [11,12]. Llorens-Quintana et al.
reported a new methodology for analyzing, in an automated and objective fashion, infrared
images of the MG [13]. Ciężar et al. reported that global 2D Fourier transform analysis of
infra-red MG images provides values of two new parameters: mean gland frequency and
anisotropy in gland periodicity. Their values correlate with MGD [14]. Yeh et al. reported a
nonparametric instance discrimination approach that automatically analyses MG atrophy
severity from meibography without prior image annotations and categorizes the MG char-
acteristics through hierarchical clustering [15]. However, traditional image algorithms still
have some limitations, such as unstable region detection and weak characterization of the
extracted features. In addition, the overall evaluation index is based on the dropout grade
classification of MGs, and it is impossible to extract and analyze each gland separately [16].

Previous studies on artificial intelligence (AI), such as convolutional neural networks,
have proven effective in the automatic evaluation of meiboscore [17–19]. However, these
studies focused on MG dropout grade classification and did not segment each MG. Conse-
quently, they could not be further analyzed.

The purpose of this study was to develop an AI-based evaluation system for MG
morphology based on deep learning and transfer learning for segmenting each MG and
evaluating MG morphological indices accurately. Furthermore, the study also aimed
to make it possible to diagnose MGD using MG density, an index that requires many
annotations and calculations.

2. Materials and Methods
2.1. Patients and Materials

The subjects used in the AI model training were the same as those in our previous
report [20], and a total of 60 randomly selected subjects were recruited. Sixty original
annotated meibography images of the upper eyelids were used in this study. Of these, 40
were used as the original training images. A total of 245,760 images were generated from
these 40 images as a training set using image enhancement software. Another 20 annotated
meibography images were used as validation sets. Subsequently, we adjusted the parame-
ters and trained the AI to apply it to the lower eyelid. Sixty original annotated meibography
images of the lower eyelids were used for the validation.

First, 85 eyes from 85 subjects (age, 8–83 years) were enrolled for the AI system
analysis and evaluation of the efficacy of MG density for MGD diagnosis. Only one eye of
each subject was randomly selected and included for the comprehensive dry eye and MG
examination. The exclusion criteria were as follows: (1) history of ocular trauma or surgery;
(2) systemic drugs or eye drops affecting MG function or tear film used in the last 2 weeks;
(3) contact lenses worn in the last 2 weeks; and (4) ocular or systemic diseases known to
affect tear film or MG function. A total of 53 subjects with obstructive MGD (20 males and
33 females; median age, 35.00 (30.00–50.00) years) were included in the MGD group, and
32 healthy subjects (13 males and 19 females; median age, 25.00 (16.25–32.75) years) in the
control group.

All 53 subjects with obstructive MGD were diagnosed by two experienced ophthal-
mologists when any two of the three scores were abnormal: (I) ocular symptom score
≥ 3; (II) lid margin abnormality score ≥ 2; and/or (III) meiboscore ≥ 3 [21]. Subjects
diagnosed with obstructive MGD by both ophthalmologists were included in this study.
If the ophthalmologists provided different diagnoses, the subjects were excluded from
the study.
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A total of 4006 meibography images (including 1620 upper eyelids and 2386 lower
eyelids) from 2420 randomly selected subjects (age ≥18 years) were used for MG density
analysis using the AI system. All 4006 meibography images were graded according to
the meiboscore (range, 0–3) by three experienced ophthalmologists, and their majority
opinion was obtained. A qualified meibography image needed to meet two requirements:
(1) the tarsal plates must be entirely exposed, and (2) the meibography image must be
focused correctly and clearly. Unqualified meibography images would interfere with the
meiboscore and MG density results. The correlation between MG density obtained by the
AI system and meiboscore from ophthalmologists was analyzed.

All subjects were from the Eye Hospital, Wenzhou Medical University. The study
was conducted in accordance with the Declaration of Helsinki and was approved by
the Research Ethics Committee of the Eye Hospital, Wenzhou Medical University (ap-
proval number: 2020-209-K-191). This study is registered on http://www.chictr.org.cn
(ChiCTR2100052575, 31 October 2021). Informed consent to publish was obtained from all
participants before their inclusion in the study.

2.2. Methods
2.2.1. Data Collection and Processing of Samples

Samples were collected, optimized, and processed using the previously reported
method [20]. First, images of both the upper and lower MGs were captured using the
Oculus Keratograph 5M (K5M; Oculus, Wetzlar, Germany). Second, these images were
optimized, converted to grayscale, and then standardized and normalized.

2.2.2. Network Structure and AI Training

The tarsus segmentation model was based on Mask R-CNN [22]. Based on the pre-
trained Mask R-CNN model (https://github.com/matterport/Mask_RCNN, 20 March
2018), we used 100 annotated images of upper and lower tarsus for fine-tuning and obtained
fine-tuned model parameters after iterating 200 epochs. Another 20 sample images were
used to test the fine-tuned model. Finally, we used the fine-tuned Mask R-CNN model to
segment the tarsus.

Transfer learning was used to apply the pretrained model and parameters on Im-
ageNet [23] to our previously reported deep learning model (Figure 1A). The residual
neural network (ResNet) exhibits excellent performance in image classification and target
detection [24]. The 50-layer ResNet (ResNet50) was replaced with the max-pooling layers
of the previous U-net model; however, the upsampling layer remained the same (Figure 1B).
We call this the ResNet50_U-net.

Forty annotated meibography images of the upper eyelids were included as the
basis for the training set. In each iteration of training, four images of these 40 original
meibography images were randomly selected. The data enhancement model (https://
github.com/aleju/imgaug#citation, 6 February 2020, Figure 2) was used to enhance the
input of four images with random use of algorithms and parameters, with four new images
generated. The final version of the model was iterated a total of 61,440 times in all training
and generated 245,760 new images as the training set. The amount of data can preliminarily
meet the needs of training a deep convolutional neural network.

The original meibography (Figure 3A) was preprocessed to show the glands more
clearly (Figure 3B). Compared to the manually annotated result (Figure 3C), the AI system
exhibited superior recognition ability (Figure 3D). Figure 4 shows a sample of the original
meibography, manual annotation, and AI segmentation of the MGs.

http://www.chictr.org.cn
https://github.com/matterport/Mask_RCNN
https://github.com/aleju/imgaug#citation
https://github.com/aleju/imgaug#citation
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We used another 20 annotated original upper eyelid meibography images apart from
the training set as the validation set. We used the intersection of unions (IoU) to evaluate the
accuracy of the MG recognition model (Figure 5). It can be simply understood as the ratio
of the intersection of the ground truth (manual annotation) and AI result (AI segmentation)
to their union.
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2.2.3. Clinical Parameters

The clinical assessments were performed sequentially as follows [20]. All subjects
completed the Ocular Surface Disease Index (OSDI) questionnaire and were asked whether
they had any of the 14 MGD-related ocular symptoms (symptom score) [25]. Images of
both the upper and lower MGs were captured using the Keratograph 5M. The central
tear meniscus height (TMH) of the lower eyelid was measured 5 s after blinking using
the Keratograph 5M. Tear break-up time (TBUT) was measured and corneal fluorescein
staining (CFS) was performed after the instillation of fluorescein. TBUT was measured three
times, and the mean value was recorded. CFS was graded according to the Baylor grading
scheme from 0 to 4 [26]. Four lid margin abnormalities (irregular lid margin, vascular
engorgement, plugged meibomian gland orifices, and anterior or posterior replacement of
the mucocutaneous junction) were scored from 0 to 4, according to the number of these
abnormalities present in each eye [21]. The MG expressibility scores ranged from 0 to 45 by
assessing the meibum quality and quantity of the 15 glands on each lower eyelid [27].

2.2.4. MG Indices

To assess the degree of MG dropout, we used the method described by Arita et al. to
calculate the meiboscore: 0, no loss of MGs; 1, the lost area was less than one-third of the
total area of the MGs; 2, the lost area was between one-third and two-thirds of the total area
of the MGs; and 3, the lost area was over two-thirds of the total area of the MGs [9]. The
total meiboscore of the upper and lower eyelids ranged from 0 to 6.

MG density was automatically calculated by the AI system using the following for-
mula [28]: the sum of the area of MGs divided by the total area of the tarsus in pixels.
∑n

i=1 SMGi = the sum of pixels of all MGs, St = the total pixels of the tarsus.

MG density =
∑n

i=1 SMGi

St

2.2.5. Statistical Analysis

The normality of data distributions was analyzed using the Kolmogorov–Smirnov test,
and the abnormal data distributions were analyzed using the non-parametric statistical
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analyses. Values are expressed as the mean ± standard deviation (SD) or (range) or median
(interquartile range [IQR]). Either the independent samples t-test or the Mann–Whitney
U-test was used to compare differences between MGD subjects and normal control subjects.
The generalized estimating equation was used to adjust the age difference. Kruskal–Wallis
H-test was used to compare the MG density and the severity score of the meiboscore
scale. The correlations between various MG morphological parameters and MG function
parameters (i.e., OSDI, TBUT, CFS, lid margin score, meiboscore, and meibum expressibility
score) were determined using Pearson’s or Spearman’s correlation analysis. The χ2 test was
used to compare the sex ratios between the two groups. Receiver operating characteristic
(ROC) curve analysis was used to determine the predictive value of MG density for the
diagnosis of MGD. A two-sided p < 0.05 was considered statistically significant. All
statistical analyses were performed using SPSS Statistics 23.0 (IBM, Armonk, NY, USA).

3. Results
3.1. AI Training and Testing

The AI system of Mask R-CNN achieved 93% accuracy (IoU) and 100% repeatability
for tarsus segmentation. The AI system of ResNet50_U-net training lasted for 4 h, a signifi-
cant reduction from the duration of our previous U-Net model training (15 h). Additionally,
the ResNet50_U-net model achieved 92% accuracy (IoU) and 100% repeatability for MG
segmentation. Subsequently, we adjusted the parameters and trained the AI to automati-
cally segment the lower MGs and achieved the same level of IoU. The processing time of
each meibography was 100 ms with a GTX 1070 8G GPU.

3.2. Characteristics

A total of 85 eyes from 85 randomly selected subjects were enrolled for AI system
effectiveness testing. These included 53 subjects with obstructive MGD (20 males and
33 females, median age, 35.00 (30.00–50.00) years) and 32 normal volunteers (13 males and
19 females, median age, 25.00 (16.25–32.75) years). Because the age difference between pa-
tients with MGD and the normal control group was significant, the generalized estimating
equation was used to adjust for age. No significant difference in sex was observed between
patients with MGD and normal controls. The baseline characteristics of the 85 subjects are
summarized in Table 1.

Table 1. Clinical parameters of the 85 subjects.

Parameter Normal (n = 32) MGD (n = 53) p p *

Age (years), Median (IQR) 25.00 (16.25–32.75) 35.00 (30.00–50.00) <0.001 -

Sex (n, male/female) 13/19 20/33 0.794 -

OSDI (0–100), Median (IQR) 4.47 (0.30–12.35) 25.00 (13.24–37.80) <0.001 <0.001

Symptom score (0–14), Median (IQR) 2.00 (0–4.00) 7.00 (5.00–8.00) <0.001 <0.001

TBUT (s), Median (IQR) 5.00 (5.00–7.75) 2.50 (1.33–3.67) <0.001 <0.001

CFS (0–20), Median (IQR) 0 (0–0) 0 (0–0) 0.058 0.021

TMH (mm), Median (IQR) 0.19 (0.16–0.23) 0.20 (0.17–0.24) 0.461 0.871

Lid margin score (0–4), Median (IQR) 0 (0–1.00) 2.00 (1.00–2.00) <0.001 <0.001

Meiboscore (0–6), Median (IQR) 2.00 (1.00–2.00) 3.00 (2.00–4.50) <0.001 <0.001

Meibum expressibility score (0–45), Median (IQR) 38.50 (30.00–45.00) 18.00 (5.50–34.50) <0.001 <0.001

MGD = meibomian gland dysfunction; IQR = interquartile range; OSDI = Ocular Surface Disease Index;
TBUT = tear break-up time; CFS = corneal fluorescein staining; TMH = tear meniscus height; Values are ex-
pressed as the median (IQR). Mann–Whitney U-test was used to compare differences between MGD subjects and
normal control subjects. * p values adjusted for age by generalized estimating equation.
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3.3. MG Density and Functions

The MG density in the upper eyelid was significantly correlated with OSDI (r = −0.320,
p = 0.003), TBUT (r = 0.484, p < 0.001), lid margin score (r = −0.350, p = 0.001), meiboscore
(r = −0.749, p < 0.001), and meibum expressibility score (r = 0.425, p < 0.001). The MG
density in the lower eyelid was significantly correlated with OSDI (r = −0.420, p < 0.001),
TBUT (r =0.598, p < 0.001), lid margin score (r = −0.396, p < 0.001), meiboscore (r = −0.720,
p < 0.001), and meibum expressibility score (r = 0.438, p < 0.001). The MG density in the
total eyelid was significantly correlated with OSDI (r = −0.404, p < 0.001), TBUT (r = 0.601,
p < 0.001), lid margin score (r = −0.416, p < 0.001), meiboscore (r = −0.805, p < 0.001),
and meibum expressibility score (r = 0.480, p < 0.001). However, there were no significant
correlations between MG density and CFS or TMH in upper eyelid, lower eyelid and total
eyelid (all p > 0.05). These results are shown in Table 2.

Table 2. Correlations of MG density with tear film functions and MG status in 85 subjects.

OSDI TBUT CFS TMH Lid Margin
Score Meiboscore Meibum

Expressibility Score

MG density
Upper eyelid −0.320 † 0.484 ‡ −0.162 −0.059 −0.350 † −0.749 ‡ 0.425 ‡
Lower eyelid −0.420 ‡ 0.598 ‡ −0.177 −0.058 −0.396 ‡ −0.720 ‡ 0.438 ‡
Total eyelid −0.404 ‡ 0.601 ‡ −0.166 −0.070 −0.416 ‡ −0.805 ‡ 0.480 ‡

MG = meibomian gland; OSDI = Ocular Surface Disease Index; TBUT = tear break-up time; CFS = corneal
fluorescein staining; TMH = tear meniscus height; Spearman’s rank correlation coefficient test. † p < 0.005.
‡ p < 0.001.

3.4. MG Density with Meiboscore

After analyzing 4006 random meibography images using the AI system, it was ob-
served that the MG density in the upper eyelid was significantly negatively correlated
with the meiboscore (r = −0.707, p < 0.001), as was that in the lower eyelid (r = −0.472,
p < 0.001). The corresponding relationship between the MG density and meiboscore is
shown in Figure 6.
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Figure 6. Corresponding relationship between MG density and meiboscore. (A) The corresponding re-
lationship between the upper eyelid MG density and meiboscore. (B) The corresponding relationship
between lower eyelid MG density and meiboscore. The “hot” red areas represent data-intensive areas.
The maximum number was 80 and 60 meibography images on the upper eyelid and lower eyelid,
respectively. The “cold” green areas are the opposite. The minimum value is 1 meibography image.
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3.5. MG Density to Meiboscore

We compared the correspondence between the MG density and meiboscore, as shown
in Table 3. The MG density distribution in the upper eyelid on each meiboscore scale
was not the same, and the difference was significant (H = 882.932, p < 0.001). The MG
density distribution in the lower eyelid on each meiboscore scale was not the same, and the
difference was significant (H = 596.815, p < 0.001). Figure 7 depicts meibography images
with varying MG densities and corresponding meiboscores to help readers gain insight
into the relationship between MG density and meiboscore.

Table 3. Comparison table of MG density and meiboscore.

MG Density

Upper Eyelid (1620) Lower Eyelid (2386)

Median (IQR) H-Value p Median (IQR) H-Value p

Meiboscore 0 0.30 (0.25–0.33)

882.932 <0.001

0.19 (0.14–0.23)

596.815 <0.001
Meiboscore 1 0.25 (0.21–0.29) 0.17 (0.13–0.21)

Meiboscore 2 0.15 (0.12–0.18) 0.13 (0.10–0.17)

Meiboscore 3 0.10 (0.06–0.12) 0.07 (0.04–0.11)

MG = meibomian gland; IQR = interquartile range; p: compare distributions across groups; H-value: test statistic.
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Figure 7. Meibography images with MG densities and meiboscores. Rows 1 to 4 refer to meibography
images with meiboscore 0 to 3, respectively. MG density was calculated from the meibography
images by our AI system.
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3.6. Sensitivity and Specificity of MG Density

Figure 8 shows the results of the ROC curve analyses, which indicated the sensitivity
and specificity of MG density for the diagnosis of MGD. The area under the curve (AUC)
was 0.836 for MG density in the upper eyelid. The sensitivity and specificity were 73% and
81%, respectively, at a cut-off value of 0.265. The AUC was 0.888 for MG density in the
lower eyelid. The sensitivity and specificity were 82% and 88%, respectively, at a cut-off
value of 0.255. The AUC was 0.900 for MG density in the total eyelids. The sensitivity and
specificity were 88% and 81%, respectively, at a cut-off value of 0.275.
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4. Discussion

Diagnosis of MGD is difficult because most of the diagnostic criteria are subjective
and are usually based on a combination of a high meiboscore, dry eye symptoms, and
lid margin abnormalities [29]. A comprehensive analysis of MG morphology is the key
for determining the severity of MGD. Currently, the most widely used MG morphology
criterion is a qualitative MG dropout grading index similar to the meiboscore, and its
effectiveness has been proven by a large number of studies. However, the meiboscore and
other qualitative grading indices also have the limitations of strong subjectivity and poor
repeatability, especially regarding the results adjacent to the grading transition zone. For
example, when the MG dropout ratio is 1/3 or 2/3, the meiboscore becomes unstable. This
study proposes a novel MG dropout index, the MG density. It is a linear quantitative index
that extracts the image of each MG gland and calculates the ratio of the precise gland area
relative to the tarsus area. This novel index greatly improves the accuracy compared with
the traditional MG atrophy grade method, but it also shows instability and inaccuracy
owing to anthropogenic annotation errors, limiting its effectiveness when using manual
calculations. This MG density index requires many calculations, which limits its clinical
application. AI has a quick mathematical calculation ability and high reliability, which is
suitable for calculating MG density. There was no need to control between-group variance
and repeatability, such as within-subject SD (SW), within-subject coefficient of variation
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(CVw), and intraclass correlation coefficient (ICC), as in our previous study [20,28]. In this
study, the AI system achieved a 92% IoU and 100% repeatability.

The AI model used in this study is the latest iteration of the CNN model used in
our previous study [20]. To further improve the recognition accuracy of AI systems, a
large training dataset is required. To overcome the dilemma of fewer MG images, we
selected a data enhancement model to manipulate MG images and a combination of deep
and transfer learning for AI model building. Transfer learning techniques attempt to
transfer knowledge from previous tasks to a target task when the latter has less high-
quality training data. This can be accomplished using a network that has already been
pretrained on millions of general-purpose images (ImageNet [30]) without any additional
retraining needed for the deep convolutional neural networks on our specific dataset. Using
transfer learning, we were able to use a pretrained neural network in our image recognition
network, which greatly reduced the dependence on training data and improved the training
speed (from 15 h for the U-Net model to 4 h for the ResNet50_U-net model) and accuracy.
Transfer learning has been used to study ophthalmic diseases, such as age-related macular
degeneration [31] and glaucoma [32]. Although a small number of subjects were used to
train AI in this study, the detection accuracy was very high owing to the combination of
deep learning and transfer learning.

After comparing the relationship between the MG morphological indices extracted by
the AI system and clinical parameters, as previously reported [3,33,34], the AI system in
this study revealed that MG dropout was significantly correlated with MGD symptoms,
tear film stability, lid margin abnormality, and meibum expressibility. One step further
than previous research [7,9,18,19,35,36], our study used MG density instead of meiboscore
to evaluate the degree of MG dropout successfully. ROC curve analysis revealed that MG
density showed high diagnostic efficiency for MGD. MG density in the total eyelids showed
good efficiency, sensitivity, and specificity for the diagnosis of MGD, with a sensitivity and
specificity of 88% and 81%, respectively, at a cut-off value of 0.275.

Furthermore, regarding MG atrophy evaluation, a quantitative index based on the con-
tinuous numerical result of MG density is a better criterion than a qualitative index based
on the MG dropout grade of the meiboscore. It is difficult to provide precise meiboscores
when MG atrophy is near the grading transition limits (0%, 33%, and 66%), whereas MG
density can be used in such situations. MG density can be used to effectively assess the
atrophy condition of the MG in each grading transition area. Simultaneously, we also pro-
posed the corresponding and conversion relation between the MG density and meiboscore
by analyzing 4006 meibography images. There was a significant linear correlation between
the MG density and meiboscore, especially in the upper eyelid. The MG density of the
lower eyelid was slightly less correlated with the meiboscore, which may be related to the
fact that the lower palpebral conjunctiva was mistakenly identified as the tarsus by the
AI system because of the excessive turnover of the lower eyelid. In the future, based on
AI assistance, the quantitative index of MG density can be used to replace the qualitative
index of MG dropout, such as the meiboscore.

This study has some limitations. The sample size for AI training was small. Even
though we used imgaug, a data enhancement library, which could partially obtain a large
amount of information from the original meibography used for AI training and greatly
reduce the workload of annotation, it still could not change some basic information of the
meibography, such as the number of glands. Therefore, it could not completely replace the
newly annotated images. In addition, the sample size for evaluating the diagnostic efficacy
of MG density was small. In future studies, the author’s team will recruit more subjects for
AI system training and testing.

5. Conclusions

MG density is an accurate and effective evaluation index that can completely replace
the meiboscore for the quantitative diagnosis of MG dropout. We propose MG density as a
novel quantitative index for AI-based diagnosis of MGD. Simultaneously, the AI system
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can reduce the subjective bias of the observer and doctors’ workload, improve efficiency,
and assist nonprofessional doctors with MGD diagnosis.
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