
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) 
which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright © 2015. Anatomy & Cell Biology

animal experiments, sinus node dysfunction (SND) occurs in 
conditions of increased oxidative stress [11] and high amounts 
of circulating angiotensin II (Ang II) with hypertension [12] 
or structural heart disease [13]. Interestingly, right atrial 
tissue from patients with heart failure who required artificial 
pacemakers had more oxidized CaMKII compared to patients 
with heart failure alone or without heart failure [14].

Previous studies have reported that long-term Ang 
II induced SND in animal hearts. In this models, Ang II 
activated NADPH oxidase, leading to oxidation of two 
methionine residues of CaMKII [7], rendering the protein 
autonomously active. The excessive CaMKII activity showed 
sinus pauses, reducing sinus node mass which is source of 
depolarizing current. In gene-targeting approaches, CaMKII 
inhibitory peptide expression [15] or NADPH oxidase deple
tion abrogated the increased sinoatrial cells (SAN) due to Ang 
II infusion at sinus nodal tissue [14, 16]. The results suggested 

Introduction

A normal heart beat is started electrically at sinus nodal 
cells from right atrium [1, 2]. The electronic impulse is 
generated by Ca2+ based signaling pathways [3, 4]. Among 
these, calmodulin kinase II (CaMKII) is a core signaling 
molecules in pacemaking myocardial cells, because it regulates 
major Ca2+ homeostatic proteins [4-6]. Under oxidative stress 
conditions, oxidized CaMKII generates its autonomous acti
vity [7] and the excessive activity of CaMKII may lead to an 
abnormally slow heart rhythm or cardiac death [8-10]. In 
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that the selective blockade of NADPH oxidase or CaMKII 
activity would be a good approach to reducing SND. 

Epidemiological studies have demonstrated that some 
flavonoids may affect treatment for cardiovascular disease 
[17-19]. Kaempferol is a flavonoid which is abundant in a 
variety of plant derived food and leaves used in traditional 
medicines [20]. Numerous preclinical studies have docu
mented the pharmacological activities of kaempferol, such 
as antioxidant and cardioprotection activities [20, 21]. One 
of molecular mechanisms of kaempferol action is to bind 
p47phox directly, a cytosolic subunit of NADPH oxidase, and 
significantly inhibits NADPH oxidase activity [11, 22]. 

Our findings describe elucidating mechanisms linking 
kaempferol action to the control of sinus node function. 

Materials and Methods 

Isolated Langendorff heart and ex vivo electrocardio­
graphy (ECG) recording

Mice were anesthetized with avertin i.p., the thoracic cavity 
opened, and the heart carefully excised. After cannulation 
of the aorta, hearts were secured by tying below the bra
chiocephalic artery and perfused retrogradely by the nonre
circulating Langendorff technique with Krebs-Henseleit 
buffer containing 10 mmol/l glucose (pH 7.4). Perfusion fluid 
was controlled by a peristaltic pump continuously gassed with 
95% O2/5% CO2. ECGs were continuously recorded with Ag+/
AgCl electrodes, which were positioned around the hearts in 
an approximate Einthoven configuration.

Animals and mini-osmotic pump implantation
All in the C57BL/6 background, and corresponding wild 

type littermate controls, were used in experimental protocols 
approved by the Ewha Womans University Animal Care 
Committee. Mice were implanted with osmotic minipumps 
(ALZET) subcutaneously for delivery of saline (0.9% NaCl), 
Ang II (490 ng per kg body weight, A9525, Sigma-Aldrich, St. 
Louis, MO, USA), Ang II+kaempferol (0.5 mmol per kg) for 3 
weeks. 

Cell culture
Right atria were digested with collagenase II (0.1 g/1 ml, 

Worthington Inc., CA, USA) for 2 hours. Cells were plated on 
laminin-coated six-well culture plates with Leibovitz media (to 
a density of 200,000 cells/well). Cells were maintained using 
20% fetal bovine serum (FBS)–Dulbecco’s modified Eagle’s 

medium and incubated at 37oC under an atmosphere of 95% 
O2/5% CO2 for 5 days. Subsequently, and TBX3 (sinus node 
marker) and MLCA2 (cardiomyocyte marker) expression 
were determined using Western blotting. 

Caspase-3 activity
Right atria or sinus nodal cells were homogenized in 

lysis buffer consisting of (50 mM Tris-HCl pH 7.5, 100 mM 
KCl, 1 mM ethylenediamine tetraacetic acid, 1 mM ethylene 
glycol tetraacetic acid, 1 mM dithiothreitol, 0.1 mM phenyl
methylsulfonyl fluoride, 0.5 mM benzamidine, 20 mg/l 
leupeptin, 20 mM sodium pyrophosphate, 50 mM NaF, and 50 
mM sodium b-glycerophosphate), and total protein content 
was determined by the Bradford assay. Caspase-3 activity was 
determined by EnzChek Caspase-3 Assay Kit (Invitrogen, 
Carlsbad, CA, USA).

Terminal deoxynucleotidyl transferase dUTP nick end 
labeling (TUNEL) assay

Cells were fixed with formalin for 1 hour and washed. 
Following permeabilization with 0.2% Triton-X 100, DNA 
fragmentation staining was performed with a TUNEL assay 
kit from Abcam Inc. (Boston, MA, USA). Apoptotic cells were 
counted using fluorescence microscopy. 

Knockout of p47phox by Cas9 KO plasmid
Cas9 KO plasmid transfection of p47phox in sinus nodal 

cell was performed using a Lipofectamine 3000 Kit (Life 
Technologies, CA, USA). Briefly, in six-well culture plates, 
0.1×106 cells were plated and subsequently exposed to the 
Cas9 KO plasmid (or empty vector control, Ctrl) solution 
for 8 hours at 37oC in a CO2 incubator. Then, the media was 
changed to Leibovitz and the cells incubated for another 18 
hours. Subsequently, ox-CaMKII, total-CaMKII, and p47phox 
(using Western blotting) were determined.

Western blot
Right atria (50 mg) or plated sinus nodal cells (0.4×106) 

were homogenized in ice-cold lysis buffer. After centrifu
gation at 20,000 ×g for 20 minutes, the protein content of the 
supernatant was quantified using a Bradford protein assay. 
Samples were diluted, boiled with sample loading dye, and 
100 mg used in sodium dodecyl sulfate polyacrylamide gel 
electrophoresis. After blotting, membranes were blocked 
in 5% skim milk in phosphate-buffered saline containing 
0.1% Tween-20. Membranes were incubated with rabbit 
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ox-CaMKII, total-CaMKII, and p47phox, TBX3, MLCA2 
antibodies and subsequently with secondary goat anti-
rabbit horseradish peroxidase–conjugated antibody. Reac
tion products were visualized using an enhanced chemilu
minescence detection kit and quantified by densitometry.

Materials 
Total CaMKII, TBX3, and MLCA2 antibodies were 

obtained from Abcam Inc. Ox-CaMKII was purchased 
from GeneTex Inc. (Irvine, CA, USA). Beta-actin was 
purchased from Cell Signaling Technology Inc. (Danvers, 
Ma, USA). Kaempferol was obtained from Sigma-Aldrich. 

Cas9 KO plasmid and antibody of p47phox were purchased 
from Santa Cruz Inc. (Dallas, TX, USA). The enhanced 
chemiluminescence detection kit was obtained from 
Amersham (Pittsburgh, PA, USA). 

Statistical analysis
Values are means±SEM. Wherever appropriate, one-way 

ANOVA followed by the Bonferroni test was used to deter
mine differences between group mean values. The level of 
statistical significance was set at P<0.05. 
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Fig. 1. CaMKII oxidization and sinus 
node dysfunction in Ang II-infused mice. 
(A) Representative ECG recordings from 
Langendorff-perfused hearts isolated from 
mice infused with Ang II or saline for 
3 weeks. (B) Ang II-infused mice have 
more sinus pauses than saline-infused 
mice. (C) Western blots shows ox-
CaMKII and T-CaMKII from right 
atrial tissue obtained from infused with 
Ang II or saline for 3 weeks. Ang II, 
angiotensin II; CaMKII, calmodulin 
kinase II; ECG, electrocardiography; 
ox- Ca M K I I ,  ox i d i z e d- Ca M K I I ; 
T-CaMKII, total CaMKII. Data are 
shown as the means±SEM of 3–6 mice 
per group. a)Significantly different 
(P<0.05) from saline infused control.
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Results

Ang II infusion causes SND with CaMKII oxidization
Previous studies have reported that significantly higher 

oxidized CaMKII promoted sinus dysfunction from heart 
failure patients and hypertensive animals [14]. In order to 
determine whether our model of Ang II infusion promoted 
SND, we measured ECG in Langendorff-perfused hearts 
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Fig. 2. Effect of Ang II on apoptosis with CaMKII oxidation. Cells were isolated from right atria and incubated with FBS for 1 day or 3 days. (A) 
Following the indicated days, protein was extracted to determine TBX3 (sinus node marker) and MLCA2 (cardiomyocyte marker) using Western 
blotting. Cells with dominant TBX3 expression were isolated and maintained using 20% FBS-DMEM. Subsequently, Ang II (20 mM) was added 
to the culture medium for 5 days. (B) Apoptotic cells were counted using TUNEL assay. Protein was extracted to measure caspase-3 activity 
(C) and determined ox-CaMKII and T-CaMKII using Western blotting (D). Ang II, angiotensin II; CaMKII, calmodulin kinase II; DMEM, 
Dulbecco’s modified Eagle’s medium; FBS, fetal bovine serum; ox-CaMKII, oxidized-CaMKII; PBS, phosphate buffered saline; T-CaMKII, total 
CaMKII; TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling. Data are shown as the means±SEM of 3–6 mice per group.  
a)Significantly different (P<0.05) from PBS treated control. b)Significantly different (P<0.05) from right atrial cells at 1st day. Scale bar=50 mm.
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isolated from Ang II or saline infused mice for 3 weeks (Fig. 
1A). Ang II–infused hearts exhibited frequent sinus pauses, 
similar to patients who required artificial pacemakers (Fig. 
1B). An approximately 3.5-fold increase of cardiac CaMKII 
oxidization was observed from right atrium following Ang 
II infusion (Fig. 1C). In contrast to the changes in oxidized 
CaMKII, total right atrial CaMKII expression was equivalent 
in Ang II- and saline-infused mice.

Ang II induces sinus nodal cell death with CaMKII 
oxidization

It has been reported that an excessive sinus nodal cell 
death contributed to SND [23]. Therefore, we hypothesized 
that elevated Ang II results in sinus nodal cell death. To 
determine this, we prepared primary cell cultures of the sinus 

node cells from right atrium. Initially, the isolated right atria 
cells had both Tbx3 (sinus node marker) [24] and MLC2A 
(atrial cardiomyocyte marker) (Fig. 2A) [25, 26]. Following 
FBS incubation for 3 days, only Tbx3 expressed cells were 
occupied and incubated with Ang II or phosphate buffered 
saline (PBS) for 5 more days. We found that Ang II treated 
cells had significantly increased DNA fragmentation (Fig. 2B) 
and caspase-3 activity (Fig. 2C), compared with PBS treated 
sinus nodal cells. And an approximately 3.5-fold increase 
of CaMKII oxidization was observed from sinus nodal cells 
following Ang II (Fig. 2D). 

CaMK II oxidization requires to Ang II-induced sinus 
nodal cell apoptosis

To confirm the relationship between CaMKII oxidization 
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and sinus nodal cell death, we used Cas9 KO plasmid to 
deplete p47phox expression in isolated sinus nodal cells. In 
sinus nodal cells in which p47phox was deleted, Ang II had 
no influence on total p47phox, which remained low and was 
unable to oxidize CaMKII (Fig. 3A) or increase apoptosis (Fig. 
3B, C).

Kaempferol attenuates CaMKII oxidization and sinus 
nodal cell death

Given the observation that kaempferol decrease reactive 
oxygen species (ROS) by directly bound NADPH oxidase [22], 

we hypothesized that kaempferol prevents Ang II-induced 
sinus nodal cell death by lowering CAMKII oxidization. 
Indeed, following kaempferol, a drop of CaMKII oxidization 
was observed in Ang II-treated sinus nodal cells (Fig. 4A). 
Moreover, sinus nodal cell apoptosis was decreased due to the 
deoxidized CaMKII by kaempferol (Fig. 4B, C). 

Kaempferol protects against SND
As normal sinus node function requires a critical mass of 

sinus nodal cells to form impulses and electrical signals, we 
hypothesized that kaempferol improves the recovery of Ang 
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II-induced SND by increasing cell survival. To confirm this, 
we infused Ang II or Ang II with kaempferol subcutaneously 
for 3 week and measured ECG and Langendorff-perfused 
hearts. Ang II-infused mice exhibited frequent sinus pauses 
(Fig. 5B) and the P-P wave interval was greater than the base
line sinus cycle length (Fig. 5A), compared with saline-infused 
control mice. In contrast, kaempferol produced a significant 
reduction of sinus pauses and turned back into normal sinus 
cycle length from Ang II-induced abnormal wave (Fig. 5A). 
In addition to this, kaempferol had no effect on saline-infused 
sinus node function. Moreover, kaempferol significantly 
decreased the Ang II-induced CaMK II oxidization (Fig. 5C). 

Discussion

A large portion of mortality in hospitalized heart failure 
patients (∼40%) may be secondary to SND [27, 28]. Patients 
with SND may due to genetic syndromes. For instance, defects 
of HCN4 or ankyrins promotes SND [29, 30]. However, these 

genetic deficiency is rare in SND and it is very little known 
about the common molecular pathways leading to SND. In 
severe SND human hearts, ROS is elevated [7, 31] and then 
CaMKII is highly oxidized with an increase in plasma Ang 
II levels [7, 14]. ROS causes damage to the cell membranes, 
organelles, proteins in heart, subsequently causes structural 
failure and cell death [15]. As sinus node requires a critical 
size to maintain stable rhythm and adapt its beating rate, ROS 
can initiate SND. 

Given the observation that sinus node cell pacemaker 
activity is depressed by the CaMKII inhibitor in a dose-
dependent manner, CaMKII is major molecule in Ca2+ based 
signaling pathways to regulate sinus node function [3, 8]. 
Interestingly, following its oxidization, over-activated CaMKII 
promotes cell death, it may contributes to arrhythmia, heart 
failure, and sudden death [14, 16]. Indeed, Ang II infusion 
accelerated SND in wild type mice but failed to induce SND 
in CaMKII inhibitory peptide treated mice or transgenic mice 
[14]. Taken together, the results suggest that selective CaMKII 
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inhibitors will protect sinus node and prevent SND under 
oxidative stress. However, at present there are no biological 
therapeutics to arrest or prevent SND in high-risk patients.

Among antioxidants, it has been known that kaempferol 
is protective against common causes of cardiomyopathy, in
cluding myocardial infarction and ischemia [32]. But kae
mpferol has not previously been considered as a clinical mole
cule in SND. In this study, using in vitro and ex vivo models, 
we investigated whether kaempferol required to protect the 
heart against sinus nodal cell death and subsequently prevent 
severe SND. To mimic SND animal models, sinus nodal cells 
were isolated and incubated with Ang II for 5 days. Although 
Ang II evoked cell death with CaMKII oxidation, kaempferol 
decreased the CaMKII oxidation and apoptotic cell death. 
It has been known that CaMKII oxidation is accelerated by 
NADPH oxidase in vivo and kaempferol inhibits NADPH 
oxidase activity through directly binding in the subunit 
(p47phox) [11, 14, 22]. In vitro, for the first time, sinus nodal 
cells were isolated and p47phox gene was deleted. Ang II 
was not capable to induce apoptosis in the p47phox knock 
out cells. Furthermore, Ang II induced frequent sinus pauses 
and abnormal electronic impulse cycles were normalized 
by kaempferol in Langendorff heart (Fig. 5). These isolated 
SAN cells and ex vivo models are suggesting that Ang II-
induced SND is primarily due to a loss of SAN cell density 

and kaempferol protects sinus node function by reducing the 
apoptotic cell death (Fig. 6). Therefore, we speculated that 
kaempferol is a good antioxidant to protect sinus node. 
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