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Abstract: Over the past few decades, the synthetic development of ultra-small nanoparticles has
become an important strategy in nano-medicine, where smaller-sized nanoparticles are known to be
more easily excreted from the body, greatly reducing the risk caused by introducing nano-theranostic
agents. Gold nanorods are one of the most important nano-theranostic agents because of their special
optical and electronic properties. However, the large size (diameter > 6 nm) of most obtained gold
nanorods limits their clinical application. In recent years, more and more researchers have begun to
investigate the synthesis and application of small gold nanorods (diameter < 6 nm), which exhibit
similar optical and electronic properties as larger gold nanorods. In this review, we summarize
the recent advances of synthesis of the small gold nanorods and their application for near-infrared
light-mediated bio-imaging and cancer therapy.
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1. Introduction

In recent years, near-infrared light-mediated multifunctional platforms based on inorganic
nanomaterials for cancer diagnosis and treatment have been explored widely [1-3], including carbon [4-6],
semiconductors [7-9], and noble metals [10-13]. Gold nanomaterials [10,11,14], especially gold
nanorods [15-17], attract more attention. Several intrinsic physicochemical properties make gold nanorods
a promising multifunctional platform for cancer theranostics. First, the strong surface plasma resonance
(SPR) absorption of the gold nanorods enables them to absorb more light even with tiny amounts of
gold nanorods [18,19]. Secondly, the SPR absorption of the gold nanorods can be easily tuned to the
near-infrared (NIR) window (650-1350 nm) [20,21] where light can penetrate more deeply because of
scarce absorption by tissues and blood [22]. Lastly, the gold nanorods can be more easily modified by the
thiol compounds via strong Au-S bonds, formed by the thiol group and the surface of gold nanorods [23].
Thus, the design of multifunctional theranostic platforms based on gold nanorods becomes very easy
by adding the targeting or imaging agents onto the gold nanorods’ surface [24,25]. These facts—strong
absorption, deep penetration, and easy modular functionality—show gold nanorods to be an attractive
NIR light-mediated multifunctional platform for cancer theranostics [26-28].

Great efforts have been made by the researchers to synthesize the high quality and yield gold
nanorods with tunable SPR absorption to investigate the great potential for cancer theranostics [15,29].
However, the commonly synthesized gold nanorods have a scattering cross-section, which is
comparable to their absorption cross-section, and which will reduce the photothermal conversion
efficiency [30]. On the other hand, these gold nanorods will accumulate in the reticuloendothelial
system (RES) organs and tissues rapidly after intravenous injection due to their relatively large size
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(a width greater than 8 nm and a length of about 40 nm) [31]. Thus, the large-sized gold nanorods
cannot be cleared out from the body in a timely manner, causing potential long-term toxicity [32].
Additionally, it is difficult to meet the requirements of the U.S. Food and Drug Administration
(FDA), limiting their clinical translation. All these facts will limit the application of large-sized gold
nanorods in near-infrared light-mediated bio-imaging and cancer therapy. Fortunately, it was found
that the absorption-to-scattering ratio of gold nanorods increases with a decrease in diameter, and gold
nanorods with diameters smaller than 10 nm were dominated by absorption, which could minimize
the impact of the scattering cross-section [33]. Therefore, small gold nanorods (diameter < 6 nm) which
can be quickly excreted from the body need to be developed urgently [34,35].

In order to obtain the small gold nanorods, several different methods have been developed, mainly
including the seed-mediated method and seedless method [36,37]. For example, high quality small
gold nanorods have been obtained by Wang’s group using the seed-mediated method by changing
the seed-to-Au(lll) molar ratio in the growth solution [38], while ultra-small size gold nanorods
were synthesized by El-Sayed et al. using the seedless method by adjusting the pH and NaBH4
concentrations [39]. Due to the excellent properties of the small gold nanorods, including strong
absorption, low toxicity and rapid clearance from body, the small size gold nanorods are recently widely
used for bio-applications, including photoacoustic imaging, photothermal therapy, and so on. Thus, it is
important to review the development of small gold nanorods for the further extending its application.

In this review, we first summarize the recent progress on the synthesis of the small gold nanorods
with three different methods. Then, the SPR absorption properties and the surface modification of
small gold nanorods were mainly discussed. Finally, we highlight the recent advances of small gold
nanorods for a NIR light-mediated multifunctional theranostic platforms, including bio-imaging and
cancer therapy.

2. Synthesis of Small Gold Nanorods

The synthesis of monodispersed small gold nanorods has attracted much attention for their optical
properties and biomedical applications. Many methods have been developed for the synthesis of
monodispersed small gold nanorods with different aspect ratios, including the seed-mediated method,
the seedless method, and the high-temperature seedless method.

2.1. Seed-Mediated Method

The seed mediated method is the typical and more commonly used method for preparing gold
nanorods due to the high quality and yield of nanorods, and their tunable size. Generally, two steps are
included for the seed-mediated method: the first step is to prepare a small-sized gold seed; the second step
is the growth of gold nanorods, which is initiated by the gold seed in the growth solution. The size, aspect
ratios, and yield can be tuned by controlling the size of the seed, seed amount, and reaction parameters in
the growth solution, including surfactant amount, gold precursor concentration, pH value, and so on.

The seed-mediated growth method was originated in 2001 by Jana et al. [36]. First, the
citrate-capped gold seed and growth solution which contained cetyltrimethyl ammonium bromide
(CTAB), acetone, hexane, and water, were prepared separately. Then, the growth of the gold nanorods
was started by adding the freshly-prepared ascorbic acid to the mixture of gold seed and growth
solution in the presence of AgNOs. However, the yield of gold nanorods for Jana’s method is very low,
and more spherical particles are produced. In 2003, El-Sayed et al. [39] improved Jana’s method by
two modifications. One uses the stronger CTAB stabilizer to cap the gold seed; the other introduced
silver nitrate to the gold solution before seed addition to facilitate the rod formation and also tune the
aspect ratio. For the developed method, the yield of the gold nanorods is about 99% and the aspect
ratios can be tuned from 1.5 to 4.5.

The seed-mediated method is a typical synthesized method for large size gold nanorods,
but it is not very good for Au nanorods smaller than 6 nm. Until now, only several reports use
the seed-mediated method to synthesize the small gold nanorods. Murphy’s group [40,41] developed
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a simple millifluidic reactor which can synthesize the small gold nanorods (diameter ca. 6.6 nm) at
the gram-scale, based on the seed-mediated method, but the yield of nanorods and size uniformity
are difficult to control. Wang’s group [38] obtained the best quality of small gold nanorods using the
seed-mediated method by changing the seed-to-Au(IIl) molar ratio in the growth solution (Figure 1).
They are named GmSn, G, and S, referring to the growth solution and the seed solution, respectively;
m is the volume of the surfactant solution used in preparing the growth solution, and n is the volume of
the seed solution. CTAB or cetyltripropylammonium bromide (CTPAB) was employed as the stabilizing
surfactant in the growth solution. They demonstrate that the molar ratio of the seed-to-Au(IIl) plays
an important effect on the size. When the seed concentration increased in a given growth solution,
the size of the obtained gold nanorods will decrease. However, it is difficult to obtain diameters less
than 6 nm by this method.
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Figure 1. Transmission electron microscopy (TEM) images of the small Au nanorods samples (GmSn)
obtained with different molar ratio of seed-to-Au(Ill) in the growth solution. (A-C) G1S9, G2S8,
and G456 were grown with cetyltripropylammonium bromide (CTPAB), and (D-F) G654, G8S2,
and G951 were grown with CTAB [38].

2.2. Seedless Method

Recently, the two-step seed growth method has been simplified as a seedless growth method,
and is used for the preparation of small-sized gold nanorods (diameter < 5 nm), which is difficult to
obtained by the seed-mediated method [42]. For the seedless growth method, no seed preparation step
is required for growth of the small-sized gold nanorods, due to nucleation and growth occurring in the
same solution. The seed for the growth of the gold nanorods is generated by adding NaBH, directly to
the growth solution, which is well known as the strong reducing agent that can reduce Au®* to Au’.
The small gold nanoparticles formed by adding NaBHy4 can play the role of seeds to prepare the gold
nanorods [43,44]. By this seedless method, the ultra-small gold nanorods (diameter < 5 nm) will be
easily obtained because the directly-formed seed is small enough in the growth solution [37].

The seedless method was discovered by Jana et al. firstly (Figure 2A) [42]. In the CTAB micellar
solution of the HAuCly, the strong (NaBH,4) and weak (ascorbic acid) reducing agents were introduced,
in which the CTAB micelle was the template for nanorod growth, strong reducing agent was used to
generate the seed in the growth solution directly and the weak reducing agent helped the nanoparticles
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to grow. They found that if the nucleation kinetics of nanoparticle formation are properly adjusted,
the elongated rod-like micelle surface can be a useful template, and the resulting nanoparticles would
be highly anisotropic and near-monodisperse. However, the nucleation kinetics of nanoparticle
formation is difficult to control and the preparation process is accompanied by a large number
of spherical gold nanoparticles, resulting in a low yield of gold nanorods. El-Sayed et al. [37]
further developed the seedless method (Figure 2B). They found that the pH plays a crucial role
in the monodispersity of the nanorods when the NaBH,4 concentration of the growth solution was
adjusted to control the reduction rate of the gold ions. The reducing power of ascorbic acid and NaBHy4
decreases with decreasing pH, and the homogeneity of the small gold nanorods increased. At the
optimized pH and NaBH, concentrations, smaller gold nanorods were produced by adjusting the
CTAB concentration in the growth solution. The higher concentration of CTAB in the growth solution
stabilized initial single crystalline nuclei and decreased the growth of rods more than usual, so the
gold nanorods were smaller compared to those prepared at a lower CTAB concentration. In addition,
the concentration of silver ions in the growth solution was found to be pivotal in controlling the aspect
ratio of the nanorods. The aspect ratio decreases as the silver ions concentration decreases. By this new
method, it is easier to prepare higher yield, high quality, and ultra-small gold nanorods.

Figure 2. Typical TEM images of the small gold nanorods obtained by Jana et al. [42] ((A) 1 mM
HAuCly, 0.2 M CTAB, 0.2 mM AgNOj3, 2 mM ascorbic acid, 0.25 uM BHy), and El-Sayed et al. [37]
((B) 5.0 mL HAuCly, 5.0 mL CTAB, 270 uL. AgNO3, 8 uL HCl, 70 pL ascorbic acid, 15 pL. NaBHy).

2.3. High-Temperature Seedless Method

Many groups have reported methods for synthesizing gold nanorods at room temperature.
Perez-Juste et al. [45] indicated that reaction temperatures close to room temperature are more
beneficial for higher nanorod yields. However, Zijlstra et al. [44] synthesized gold nanorods at
temperatures varying between 25 and 97 °C, and presented a kinetics study of seedless nanorod
synthesis at high temperatures (Figure 3). They found a decrease in rod length when the temperature
was gradually raised to 97 °C. It demonstrates that three orders of magnitude increase in the growth
rate for Au nanorods synthesized at 97 °C and an average activation energy for growth on all facets
to be 90 + 10 k] mol~!. High-temperature gold nanorod synthesis opens the door to resolving two
important issues which have not been addressed in the literature so far. First, ultrafast high-temperature
synthesis presents a better system for rapid production of gold nanorods for potential commercial
applications. Second, the fact that gold nanorods form at high temperatures suggests that using
a thermally-activated reducing agent is possible. Most reports on gold nanorod synthesis utilize
NaBHy to initiate the formation of gold nanorods [39]. NaBHy4 reacts with water and has to be used
immediately after preparation, which compromises reproducibility. Using a thermally-activated
reducing agent would avoid the use of the unstable NaBHy, resulting in stock growth solutions that
are stable at room temperature.



Materials 2017, 10, 1372 5o0f 21

B T Y T Y T T T T T
4 length
vy e width

norm. abs. area

dimension (nm)
N
o
T

0 1 1 1 1 1
20 40 60 80 100 0.01 041 1 10 100 1000

T (°C) t(s)

Figure 3. (A) TEM images obtained from gold nanorods synthesized at 25 °C, 50 °C, and 97 °C from
left to right. The scale bars indicate 50 nm. (B) Particle dimension as obtained from TEM analysis.
The error bars represent the error in the mean value of the distribution of the respective dimension.
(C) Evolution of the integrated absorbance vs. time for nanorods synthesized at different temperatures.
The solid lines are sigmoidal fits to the experimental data points [44].

3. Surface Modification of Small Gold Nanorods

Even though CTAB is an almost necessary surfactant for the synthesis of the gold nanorods, the
high cytotoxity of CTAB limited its application in biochemistry and biomedicine [46]. Thus, the CTAB
must be removed from the surface of the gold nanorods before it is used for bio-applications. Until
now, several strategies have been investigated for solving these problems [18,47-52]. Among of them,
coating organic or inorganic materials on Au nanorods and replacing the CTAB by thiol-terminated
molecules have been proven to be the most effective approaches for improving their biocompatibility.

3.1. Surface Coating Method

For the surface coating method, SiO, or polymers (e.g., bovine serum albumin) were normally
used to directly coat on the surface of gold nanorods. Due to the effective and high hardness of SiO,
coating, the gold nanorods coated with SiO, can not only reduce the toxic effect, but also prevent them
from aggregating. In addition, the pores are generated in the SiO, coating, and the SiO;-coated gold
nanorods can also be used for drug delivery [47]. Bovine serum albumin (BSA) is one kind of low cost
biomacromolecules and is widely used for biomedicine. In order to improve the biocompatibility of
the gold nanorods, BSA has also been used to coat the surface of the gold nanorods. Due to strong thiol
binding sites on the BSA, the gold nanorods are easily been coated by the BSA when they mix together.
It was easily demonstrated if the BSA was coated on the gold nanorods by the extinction spectra,
the absorption maxima of the gold nanorods showed a distinct redshift after being covered by BSA.
It have been demonstrated that BSA-coated small gold nanorods exhibit better biocompatibility [48].

3.2. Ligand Exchange Method

The ligand exchange method is another commonly used method to remove the CTAB
on the surface of the gold nanorods. For this method, thiol-terminated molecules, such as
11-mercaptoundecanoic acid and thiol-terminated polyethylene glycol (SH-PEG) are used to replace
the CTAB due to the strong Au-S covalent bond. Several studies [49,50] have demonstrated that
11-mercaptoundecanoic acid can replace the CTAB on the Au nanorods effectively. The thiol of
the 11-mercaptoundecanoic acid can bind on the Au nanorods firmly via the Au-S bond, while
the carboxyl of the 11-mercaptoundecanoic acid can be used to conjugate with other biomolecules,
which is beneficial to the application of gold nanorods in biomedicine fields. However, the low
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water content of the 11-mercaptoundecanoic acid capped gold nanorods limits its wide usage in
bio-applications. Due to the ability of PEG to prevent undesired protein adhesion while at the same
time being nontoxic and having good water solubility [51], the thiol-terminated polyethylene glycol
(SH-PEG) with functional group (-NH; or -COOH) has been widely used in the surface modification of
gold nanorods. As shown in Figure 4, the CTAB can be removed completely once the SH-PEG is added
to the CTAB-capped gold nanorods solution via ligand exchange. Several reports have demonstrated
that the PEG-capped gold nanorods can improve biocompatibility effectively and they have been used
as imaging and photothermal therapy agents [18,52].
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Figure 4. Schematic illustration of the surface modification of small gold nanorods by surface coating
and ligand exchange methods.

4. Biological Imaging

In the field of non-invasive diagnostic and therapeutic fields for cancer, real-time imaging of
cancer is a goal that people have been pursuing [53-55]. Fluorescence imaging as a pure optical
imaging technology has been widely used for cancer detection [56-58]. Even though the sensitivity
of fluorescence imaging is very high, most of the fluorescence sensor is based on ultra-violet-visible
(UV-VIS) light [59] and the low penetration depth limits their applications in vivo. Therefore, it is
necessary to find a high-contrast and high-resolution non-destructive medical imaging method.

4.1. Photoacoustic Imaging

Photoacoustic tomography (PAT), which is based on the NIR laser, developed quickly recently as
a non-destructive medical imaging method [60-62], which combines the high contrast characteristics
of optical imaging and the high penetration depth characteristics of ultrasound imaging [63-65].
Photoacoustic (PA) imaging agents that show strong NIR absorption can effectively improve the
contrast and also be investigated widely by the researchers [62]. Among all of the photoacoustic agents
including organic dyes [66], semiconductors [67,68], and noble metal materials [69,70], gold nanorods
are the most widely used as the NIR absorption can be precisely regulated by adjusting the aspect ratio.

Pini et al. [71] investigate the influence of size on the photostability and reproducibility of
photoacoustic conversion of gold nanorods embedded in biomimetic phantoms. They tested
photostability of different sized Au nanorods by acquiring the PA response at the level of single
laser shots (Figure 5). PA signals with good signal-to-noise ratios were recorded from all samples
at fluences below the maximal permissible exposure limits. Within this test, Au nanorods suffered
from partial reshaping and sublimation or fragmentation, which changed their plasmon bands and
limited their value as a PA contrast agent. However, there is an interesting phenomenon in that smaller
nanoparticles provides better stable signals and have tolerate higher fluencies (Figure 5B). These
results provide new inspiration and indications for small Au nanorods for specific PA applications in
biomedical imaging. Subsequently, Song et al. [31] developed a small gold nanorods (AuNR) vesicles
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(=60 nm in size) coated with polyethylene glycol (PEG) and poly(lactic-co-glycolic acid) (PLGA) as a
PA imaging agents. In comparison with the PEGylated AuNR, the mice treated with the same amount
of the AuNR@PEG/PLGA vesicles showed a much stronger PA signal in the tumor region at the same
time points, suggesting higher uptake of the AuNR@PEG/PLGA vesicles in the tumor region.
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Figure 5. (A) Sketch of the setup used for the photoacoustic experiments (O, objective; L, focusing lens;
BS, beam splitter; EM, energy meter); (B) trend of Fy, as a function of effective nanoparticle radius
(reff). In the inset: comparison of PA response with a single pulse excitation at fluence F < Fy, for
samples containing gold nanorod (GNR)5 (black line), GNRS (green line), GNR11 (red line), GNR15
(dark blue line), and GNR22 (light blue line). GNR5, GNR8, GNR11, GNR15, and GNR22, with the
numbers denoting their average effective radii (radius of a sphere having the same volume as the rod)
in nanometers [71].

4.2. Two-Color Photothermal Imaging Microscopy

Photothermal imaging (Phl) microscopy technology displays extremely stable signals and has
unprecedented sensitivities for detecting tiny absorbers with an absorption cross-section as small as a
few 10716 cm? [72-74]. Several types of nanoparticles including gold nanoparticles, carbon nanotubes,
and quantum dots [75,76] have been studied for ultrasensitive photothermal imaging applications.
However, these nanoparticles have to be excited at their plasmon resonance at around 530 nm which is
similar with background signal from endogenous cellular components. The use of gold nanorods as
small probes absorbing in the near infrared is a promising strategy for single-particle level detection,
as they would combine good subcellular accessibility, low contribution from intrinsic cellular signals,
and perfect photostability [77]. Concerning this, Lounis et al. [78] developed a new strategy for
photothermal imaging based on small gold nanorods. Photothermal imaging microscopy (Figure 6A)
is constructed with a two-color excitation beam and a near infrared probe beam that can resonate the
nanorods in its transverse or longitudinal plasma resonance. Due to the strong optical absorption
tunable from the red to the near infrared, the use of small gold nanorods based on this imaging
technology can minimize background signals from the cell organelles. As shown in the Figure 6B,
the cellular (mitochondrial) structures are clearly visible under 532 nm excitation (Figure 6B(b)), which
complicates the identification of nanorods around the mitochondria at this excitation wavelength.
By contrast, background signals originating from mitochondria are notably reduced under 640 nm
excitation (Figure 6B). In addition, individual nanorods display notably higher Phl signals under
640 nm excitation compared with 532 nm excitation, facilitating their detection in cellular environments.
This small gold nanorod-based photothermal imaging microscopy technology will constitute next
generation photothermal probes for studying complex molecular dynamics in biological systems
owing to their small size, tunable NIR-absorption, absolute photostability, and chemical suitability for
surface functionalization and bioconjugation.
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Figure 6. (A) Schematics of the two-color photothermal imaging microscopy with a near infrared probe
beam at 785 nm and excitations beam at 532 or 640 nm; (B) White light (a) and Phl images of COS 7 cells
incubated with nanorods under (b) 532 and (c) 640 nm excitation. Photothermal imaging microscopy
recorded under red excitation shows very weak mitochondrial background signals compared to those
acquired under green excitation [78].

4.3. NIR-Absorbing Imaging

NIR light (700-1000 nm) for NIR optical imaging [79] can penetrate several centimeters into
tissue, because hemoglobin and water, the primary absorbers of visible and infrared light, experience
their lowest absorptions in the NIR region. Thus, NIR-absorbing imaging could offer a potentially
non-invasive and real-time characterization method for disease using NIR imaging probes [80]. Among
the reported NIR imaging probes, including quantum dots, fluorescent dye-doped nanoparticles, etc.,
gold nanorods are a potential direct NIR absorption imaging probe because the main absorption band
is located in the NIR region due to longitudinal surface plasmon. Haam et al. [81] functionalized the
Au nanorods with cyclic Arg-Gly-Asp peptides (cRGD). Figure 7 shows the selective NIR-absorbing
imaging using cRGD-conjugated PEGylated GNRs (PGNRs). After intravenously injecting with the
cRGD-conjugated PGNRs and cRAD-conjugated PGNRs into mice with orthotopic glioma xenografts
(n = 4), the mice were imaged by NIR absorption imaging for 12 h. Consequently, specific targeting
of cRGD-PGNRs to the tumor region was observed via a significant increase in the absorption signal
(high absorbance, blue color) that was maintained for 12 h. However, when control cRAD-PGNRs
were injected into the tumor-bearing mouse model, the absorption at the tumor site did not change for
12 h. This method is more efficient and simple to determine the localized surface plasmon resonances
(LSPR) absorption intensity in molecular imaging.
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Figure 7. In vivo non-invasive near-infrared (NIR) absorption images of real-time tumor specificity
of cRGD-PGNRs. (A) Invivo time-dependent brain region biodistribution of cRGD-PGNRs and
cRAD-PGNRs as a control; (B) relative photon counts of invivo tumor target specificity of
cRGD-PGNRs (square) and cRAD-PGNRs (circle) was recorded; and (C) relative quantification of
in vivo biodistribution of cRGD-PGNRs and cRAD-PGNRs in different tissues [81].
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5. Cancer Therapy

5.1. Photothermal Therapy

NIR laser-driven photothermal therapy, which converts NIR laser energy to heat energy, has attracted
much interest due to its minimally invasive and potentially effective results compared with the conventional
approaches, such as surgery, radiation therapy, chemotherapy, hormone therapy, immunotherapy, etc. [3,82].
In order to promote the photothermal conversion efficiency and particularly improve laser discrimination
for targeted cancers, the photothermal agents are generally indispensable [83-85]. Among various
photothermal therapy agents, the strong absorption properties of the gold nanorods from the visible
region to the near-infrared region allows light energy to be efficiently converted to thermal energy under
near-infrared laser irradiation, making it possible to perform laser-selective heating at a local range [52,86].
Moreover, the gold nanorods with diameters smaller than 10 nm are dominated by absorption, which
could minimize the impact of the scattering cross-section [30,33]. Thus, the small gold nanorod-assisted
laser thermal method has great applications in bio-imaging and cancer therapy, which can selectively
destroy cancer cells and not damage benign cells [87,88].

Utilizing the prepared absorption-dominant small gold nanorods, Jia et al. [38] compared their
photothermal performance with larger-sized gold nanorods. The cellular uptake efficiencies of the
two nanorods samples in three cell lines (U-87 MG, MDA-MB-231, and MDA-MB-435S cells) were
evaluated by inductively coupled plasma optical emission spectrometer (ICP-OES) in comparison
to addition of the same concentration of Au. They found the internalized number of large Au
nanorods was much larger than that of small nanorods in U-87 MG lines. However, both samples
showed similar cellular uptake abilities in MDA-MB-231 and MDA-MB-435S cell lines (Figure 8A).
These results indicate that both the particle size and cell type influence the cellular uptake of gold
nanorods. Subsequently, the photothermal performance was performed on three different cell
lines under the irradiation of 809 nm laser with a power density of 12 W-cm~2 for 3 min, then
evaluated and compared by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
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assay (Figure 8B). The photothermal therapy (PTT) efficiency per unit amount of the internalized Au
nanorods was defined as the cell viability reduction divided by the intracellular Au content in each
cell line. Compared with the values of 0.95, 1.7, and 1.2% per pg of Au in U-87 MG, MDA-MB-231,
and MDA-MB-435S cells of large gold nanorods, the absorption-dominant small gold nanorods exhibit
much higher values (1.7%, 3.0%, and 2.4%). These results demonstrate that the small Au nanorods
show a higher photothermal therapeutic efficacy on these cancer cells than the large Au nanorods at
the same internalized Au amount, and suggest that the absorption-dominant small Au nanorods are
promising for plasmonic photothermal conversion-based biomedical applications.
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Figure 8. (A) Intracellular Au contents of the small (white) and large (pink) silica-coated Au
nanorods samples in U-87 MG, MDA-MB-231, and MDA-MB-435S cells; and (B) cell viability upon
photothermal therapy with small (white) and large (pink) silica-coated Au nanorod samples in U-87
MG, MDA-MB-231, and MDAMB-435S cells [38].

El-Sayed et al. [86] synthesized the small gold nanorods (average size: ~25 nm X 6 nm)
functionalized with methoxy polyethylene glycol thiol (mPEG-SH), Arg-Gly-Asp (RGD) peptides
and nuclear localization signal (NLS) peptides. The uptake of gold nanorods was observed through
dark-field (DF) microscopy (Figure 9A). Human oral squamous cell carcinoma (HSC-3) cells were
incubated with AuNRs of 2.5 nm for 24 h. Compared with pure cells and cells incubated AuNRs
without NLS, clearly internalization was observed by DF microscopy for cells exposed to AuNRs-NLS.
The effect of plasmonic photothermal therapy (PPTT) was confirmed by cell viability assays and
apoptosis/necrosis assays (Figure 9B,C). A 808 nm NIR laser with power of 5.8 W/cm? was used
to irradiate the cells at different times. Compared with cells without laser irradiation, and cells
only incubated with AuNRs-NLS, the AuNRs-NLS with laser groups has an obvious effect of PPTT
after exposure to the laser for 3 min. The percentage of viability for the HSC cells incubated with
AuNRs-NLS after laser irradiation decreased to 60%, and the number of apoptotic cells also increased.
These results indicated that the AuNRs-NLS can accurately target the nucleus and enhance plasmonic
photothermal therapy.
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Figure 9. (A) Dark-field images of pure HSC-3 cells, cell incubated AuNRs@PEG, and cells incubated

in AuNRs@NLS for 24 h. Scale bar = 20 um; cell viability (B) and apoptosis/necrosis assay (C) for the
HSC-3 cells treated with PPTT at different times; Q1 (necrosis), Q2 (apoptosis), Q3 (early apoptosis)
and Q4 (early apoptosis) [86].

5.2. Image-Guided Photothermal Therapy

Recently, theranostic nanomaterials for real-time diagnosis and cancer PTT has been an attractive
method for the treatment of solid tumors as it has the advantages of high efficiency, concurrent accurate
diagnosis and efficient in situ therapy of tumors [89]. In this regard, absorption-dominant small-sized
gold nanorods (GNR) with diameters smaller than ~6 nm have been investigated for photo-activated
cancer therapy. To make the GNR-based PTT visualization, various imaging agents were employed
to be integrated with GNRs. However, these imaging-guided therapy patterns still suffer from a
low signal to noise ratio [90]. Based on this background, Zhang et al. [28] successfully fabricated
an original activatable theranostic agent (AUGNRs) for “off-on” fluorescence imaging guiding PTT
(Figure 10). The CTAB-coated ultrasmall GNRs were first placed in cysteamine, and a near-infrared
dye (Cy5) conjugated onto the ultrasmall gold nanorods as the fluorescent component. Cy5 was highly
quenched by the GNRs in a normal tissue, while being activated in the tumor cells. For the existence
of glutathione (GSH), a highly reactive thiol were found in the cytoplasm of tumor cells. GSH can
competitively replace the Cy5 and conjugate with the gold nanorods, and the fluorescence of Cy5 can
recover rapidly. The study provided a new strategy for clinical tumor theranostics with image-guided
photothermal cancer therapy.
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Figure 10. Schematic illustration of the whole procedure for the activatable ultrasmall GNR-based
“off-on” fluorescence imaging-guided PTT in tumor cells [28].

Concerning the balance of higher tumor accumulation efficiency and rapid clearance from the
body after therapy [91-93], a vesicle assembled by ultra-small gold nanorods was developed by
Chen et al. [31] to improve the photothermal therapeutic effect (Figure 11). As shown in Figure 11B,
the temperature of the tumor for the mice injected with AuUNR@PEG/PLGA vesicles (AuNR Ve)
increased up to 20 °C after 5 min of irradiation with an 808 nm laser (0.8 W cm’z), which was
much higher than the mice treated with AuNR@PEG (AulNR, ~5 °C temperature increase) and
phosphate-buffered saline (PBS) (negligible temperature increase). The higher temperature will induce
irreversible tissue damage, which is necessary for the photothermal therapy. The tracked curative
effect (Figure 11D) further supports this conclusion, as all the tumors were completely ablated and
no reoccurrence was observed when treated with AuNR Ve with a 808 nm laser, compared with the
AuNR and laser irradiation group. The tumor sections stained with hematoxylin and eosin for the
AuNR Ve plus laser-treated group showed an intensive necrosis area, while highly pleomorphic nuclei
and many mitoses, which are the features of the infiltrating tumor cells, was observed for the PBS
or laser-only treatment group. Most importantly, most of the vesicles were cleared from the body
after ten days post-injection, due to most of the vesicles being disassembled into single polyethylene
glycol-modified Au nanorods as triggered by the hydrolysis of PLGA, which is very essential and
beneficial for meeting the requirements of the US Food and Drug Administration [94]. These results
suggest that the newly-developed ultra-small gold nanorod vesicles provide opportunities for further
clinical translation.
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Figure 11. In vivo photothermal ablation of tumor after intravenous injection of Au nanorod vesicles
followed by laser irradiation. (A) Infrared thermographic maps and (B) temperature changes of the
tumor region treated with small AuNRs and AuNR Ve and irradiated with a 808 nm laser at different
power densities; (C) tumor growth curves and (D) survival curves of tumor-bearing mice treated with
phosphate-buffered saline (PBS), small AuNRs and AuNR Ve and laser irradiation; (E) photographs
of the tumor-bearing mice at days 0, 1, 5, and 8 d after being treated with the AuNR Ve; and (F)
hematoxylin and eosin (H&E) staining of the tumor tissue after different treatments [31].

5.3. Cell-Mediated Photothermal Therapy

In order to overcome the drawback that the injected nanoparticles cannot penetrate the tumor
mass, leading to incomplete ablation and disease recurrence [95], the cell-mediated delivery of
nanoparticles, which can cross the nearly-impermeable biological barriers to reach many areas in
the body [96-98], was developed to improve agent delivery in vivo and enhance photothermal agent
efficiency. Based on this, the macrophage delivery system was used by Chu et al. [99] to transport
7 nm diameter Au nanorods for cancer therapy (Figure 12). They first investigated macrophage
uptake, which is important for photothermal conversion. Compared with the commonly used 14 nm
diameter gold nanorods, the small gold nanorods showed much higher macrophage uptake and
negligible cytotoxicity due to their small size. Then, the photothermal therapeutic effect was studied by
intratumoral injection of 50 pL of PBS (control), free small gold nanorods (105 pg Au) dispersed in 50 pL
of PBS, or small gold nanorod-laden macrophages (105 pg Au in ~1 x 10° RAW264.7 macrophages)
dispersed in 50 uL of PBS. The macrophages could deliver small gold nanorods to the entire tumor
after intratumoral injection, resulting in photothermal conversion being greatly improved almost
everywhere in the tumor, with tumor recurrence rates minimized compared to free BSA-coated small
gold nanorods. Their findings not only provided an effective approach to improving photothermal
therapy efficiency by delivering the agents to whole tumors, but also expedited the clinical application
of nanotechnology for cancer treatment.
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Figure 12. (A) Diagram highlighting the difference between the treatment of free small gold nanorods
and macrophage-loaded small gold nanorods; (B) temperature profile of tumor under 808 nm light
irradiation for 10 min; and (C) growth of tumors in the different groups of mice after the irradiation
treatments [99].

5.4. Photothermal-Chemo Combination Therapy

Reduced graphene oxide (rGO) nanoparticles with a large surface area for drug loading
and photothermal effects for photothermal therapy have been widely explored for theranostic
applications [100]. Although rGO can absorb light from the UV to NIR and subsequently release it
as heat by nonradioactive decay, the broad absorption spectrum and low quantum efficiency of rGO
means that it has relatively low photothermal conversion efficiency [101]. rGO-conjugated doxorubicin
(DOX) also led to potential toxicity while circulating in a physiological environment. In a recent study,
a new kind of carbon-metal hybrid rGO-conjugated DOX (rGO-DOX)-loaded ultrasmall plasmonic
gold nanorod vesicle (rGO-AuNRVe-DOX) (Figure 13) for integrated chemo-photothermal therapy
was successfully fabricated by Chen et al. [102]. The gold nanorod vesicle was prepared by assembling
amphiphilic small gold nanorods (~9 nm x 2 nm) grafted with poly-(ethylene glycol) (PEG) and
poly(lactic-co-glycolic acid) (PLGA). The nanorod vesicle can avoid rGO-DOX to interact with normal
tissue and also enhance the photothermal effect. Additionally, the inside of a plasmonic metal shell
can behave as a cavity where electromagnetic radiation is concentrated, leading to increased light
absorption efficiency of the encapsulated rGO [103]. Furthermore, the nanovesicles will break and
release the rGO-DOX and DOX from the vesicle, improving cancer therapy efficacy.
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Figure 13. Schematic illustration of sequential DOX release triggered by (i) remote NIR laser irradiated
photothermal effect and (ii) acidic environment of the cancer cell [102].

6. Cytotoxicity and Metabolizable Ability of Small Gold Nanorods

The safety profile of gold nanorods remains largely undefined. Generally speaking, it is considered
biocompatible. Several studies [104,105] have indicated no significant short-term toxicity of gold
nanoparticles over three months. However, there are also some other studies [106] that have reported
that the presence of gold nanoparticles causes cytotoxicity or inflammation in mouse livers [104].
Particularly, gold nanorods may cause cytotoxicity if they are not completely purified of surfactant
CTAB. Additionally, the ideal agents in diagnosis and therapy should be completely cleared from the
human body within a reasonable period. Therefore, it is essential to understand the organ uptake,
biodistribution, longer-term fate, and toxicity of AuNRs, and to provide a strong framework for their
clinic translation. El-Sayed et al. [88] studied the 15-month toxicity and fate of small gold nanorods
in a mouse model. The histopathology of tissues from the liver, spleen, lung, and kidney of mice
was evaluated by a pathologist at one month and 15 months after single intravenous injection of
AuNR@PEG. There were no histopathological abnormalities in any of the mouse organs. AuNRs@PEG
remained inside the cells without any structure over a long period, from visual observation of the
organ tissue microstructure. During the whole treatment, gold nanorods accumulated in mouse organs
without any evidence of toxicities. Similarly, Yu et al. [34] studied the size of gold nanorod impact
on cytotoxicity from in vivo biodistribution. Compared to the large-sized gold nanorods (bAuNRs),
the small-sized gold nanorods (sAuNRs) were cleared much more rapidly than bAuNRs (Figure 14).
Therefore, small-sized gold nanorods are more suitable for in vivo imaging and tumor therapy.
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Figure 14. In vivo biodistribution and clearance of (A) BSA-bAuNRs and (B) BSA-sAuNRs together
with Au concentrations at the different time points of 1, 5, 10, 15, and 30 days after intravenous injection
(5 mg Au/kg). The inset are typical TEM images of the bAuNRs and sAuNRs, respectively [34].

7. Future Challenges and Prospects

The unique surface plasma optical properties and their ultra-small size make ultra-small gold
nanorods able to be widely used in the bio-imaging and cancer treatment. At the same time, ultra-small
gold nanorod synthesis, surface modification, and functional applications have also made great
progress. However, two aspects still need to be further improved: first, the yield of ultra-small
gold nanorods needs to be improved, which may require further understanding of the process of
growth of gold nanorods in solution; and, second, the extinction coefficient, which is related with the
photothermal conversion efficiency, of small gold nanorods prepared by the seedless method is smaller
than those prepared using the seeded technique. Thus, it is necessary to develop new methods to
modify the small gold nanorods, thus, obtaining higher extinction coefficients and subsequently higher
photothermal conversion efficiencies, which is of benefit to cancer treatment. With the advancement
of modern science and technology, greater drawbacks for small gold nanorods will be overcome.
We believe that the clinical application of small gold nanorods will be achieved in the future.
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