
ORIGINAL RESEARCH
published: 13 March 2018

doi: 10.3389/fnins.2018.00115

Frontiers in Neuroscience | www.frontiersin.org 1 March 2018 | Volume 12 | Article 115

Edited by:

Arindam Basu,

Nanyang Technological University,

Singapore

Reviewed by:

Guillaume Garreau,

IBM Research Almaden, United States

Subhrajit Roy,

IBM Research, Australia

*Correspondence:

Rohit Shukla

rshukla3@wisc.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 02 December 2017

Accepted: 13 February 2018

Published: 13 March 2018

Citation:

Shukla R, Khoram S, Jorgensen E,

Li J, Lipasti M and Wright S (2018)

Computing Generalized Matrix Inverse

on Spiking Neural Substrate.

Front. Neurosci. 12:115.

doi: 10.3389/fnins.2018.00115

Computing Generalized Matrix
Inverse on Spiking Neural Substrate

Rohit Shukla 1*, Soroosh Khoram 1, Erik Jorgensen 2, Jing Li 1, Mikko Lipasti 1 and

Stephen Wright 3

1Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, United States,
2Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States,
3Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, United States

Emerging neural hardware substrates, such as IBM’s TrueNorth Neurosynaptic System,

can provide an appealing platform for deploying numerical algorithms. For example, a

recurrent Hopfield neural network can be used to find the Moore-Penrose generalized

inverse of a matrix, thus enabling a broad class of linear optimizations to be solved

efficiently, at low energy cost. However, deploying numerical algorithms on hardware

platforms that severely limit the range and precision of representation for numeric

quantities can be quite challenging. This paper discusses these challenges and proposes

a rigorous mathematical framework for reasoning about range and precision on

such substrates. The paper derives techniques for normalizing inputs and properly

quantizing synaptic weights originating from arbitrary systems of linear equations, so

that solvers for those systems can be implemented in a provably correct manner on

hardware-constrained neural substrates. The analytical model is empirically validated

on the IBM TrueNorth platform, and results show that the guarantees provided by the

framework for range and precision hold under experimental conditions. Experiments

with optical flow demonstrate the energy benefits of deploying a reduced-precision

and energy-efficient generalized matrix inverse engine on the IBM TrueNorth platform,

reflecting 10× to 100× improvement over FPGA and ARM core baselines.

Keywords: spiking neural networks, TrueNorth, matrix inversion, Hopfield neural network, neuromorphic

computing, stochastic computing

1. INTRODUCTION

Recent advances in neuromorphic engineering (Schuman et al., 2017) have motivated the
development of neural hardware substrates that are tailored to loosely emulate computations
that happen in a human brain with extremely low power and efficiency. Examples include
IBM TrueNorth Neurosynaptic System (Merolla et al., 2014), NeuroFlow (Cheung et al., 2016),
Neurogrid (Benjamin et al., 2014), SpiNNaker (Furber et al., 2014), and the BrainScaleS project
(Schemmel et al., 2008), all of which are implemented using Si CMOS. While Si CMOS is the
prevailing technology, the slowdown in transistor scaling has led to broad interest in spiking
neural network substrates that exploit the unique properties of emerging nonvolatile memory
such as Narayanan et al. (2017) and RRAM (Goux et al., 2013). Due to the close match between
the algorithmic requirements and the underlying hardware architecture, such designs have the
potential to achieve much better computational efficiency than the conventional Si-CMOS based
designs.
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In spite of the radically differing hardware implementations of
these neural network substrates, many of them share an inherent
design principle: converting input signal amplitude information
into a rate-coded spike train and performing parallel operations
of dot-product computations on these spike trains, based on
synaptic weights stored in the memory array. These similarities
also result in a set of common challenges during practical
implementation, especially when using them as computing
substrates for applications with a mathematical algorithmic basis.
These challenges include a restricted range of input values and
the limited precision of synaptic weights and inputs. Since a
value is encoded in unary spikes over time (i.e., as a firing rate),
each individual input and variable must take a value in the
range [0, 1]. Furthermore, the precision of the encoded value is
directly proportional to the size of the evaluation window, which,
for reasons of efficiency, is typically limited to a few hundred
spikes. Finally, because of hardware cost, synaptic weights can be
implemented only by a limited number of memory bits, resulting
in limited precision. For instance, IBM’s TrueNorth supports 9-
bit weight values, where most significant indicates sign of the
weights.

Mapping existing algorithms to these substrates requires the
designer to choose a strategy for quantizing inputs and weights
carefully, so that the range limitations are not violated (i.e., values
represented by firing rates do not saturate), while maintaining
sufficient precision. Prior work notes these challenges, but
typically presents only ad hoc solutions that choose scaling factors
and quantization strategies based on empirical measurements
that can guarantee correct operation for the tested scenarios, but
provides no guarantees in the general case (Jin et al., 2008; Shukla
et al., 2017). Error analysis for feedforward networks appear in
Hopkins and Furber (2015), but omits recurrent networks and
range analysis.

In contrast, this paper develops a rigorous mathematical
model that enables a designer to map numerical algorithms to
these substrates and to reason quantitatively about the range
and precision of the computation taking place in the neural
substrate. Our mathematical framework can be applied to a
wide range of problems in linear optimization running on
neural substrates with diverse constraints. The model is validated
empirically by constructing input matrices with random values
and computing matrix inverse using a recurrent Hopfield neural-
network-based linear solver. Our results show that the scaling
factor and error bounds derived by the mathematical model hold
for this application under a broad range of input conditions. We
report the computing resources and power numbers for real-
time applications, and quantify how the errors and inefficiencies
can be addressed to enable practical deployment of the Hopfield
linear solver.

Prior work by authors in Shukla et al. (2017) showed
how these linear solvers can be used in a variety of robotic
applications, such as computing transformation matrices. They
have discussed how weights can be encoded on TrueNorth, as
in section 2.3.1 of this paper, and have reported experiments
using a weight-encoded scheme. However, Shukla et al. (2017)
does not show any mathematical model of the Hopfield linear
solver (section 2.2 of this paper) and does not contain results

about error bounds (section 2.5). There was no discussion about
Hopfield weights being encoded as spiking inputs (section 2.3.2)
and no description regarding algorithmic steps required to
implement the linear solver on a spiking neural substrate like
TrueNorth (section 2.4). All these issues are addressed in this
paper. Additionally, section 3 of this paper presents a more
thorough analysis of experiments with respect to dynamic inputs,
where the Hopfield network weights are represented as spiking
inputs.

2. MATERIALS AND METHODS

2.1. Background
This section describes how a system of linear equations can be
solved using a recurrent Hopfield neural network, and shows
how such a solver can be used in applications such as target
tracking and optical flow. These example applications have been
successfully deployed on TrueNorth (Shukla et al., 2017), by
applying the analytical framework presented in this paper to
probe its range and precision requirements.

2.1.1. Solving Linear Systems With a Hopfield

Network
A linear equations solver is used to solve matrix equations of
the form AX = B. More generally, to accommodate the case of
infeasible systems, we obtain X from the following linear least
squares problem:

min
X

1

2
‖AX − B‖2F , (1)

where A is an M × N matrix with M ≥ N, B is a matrix of
dimensionM×P, and ‖ · ‖F is the Frobenius norm. Note that the
problem decomposes by columns of B, so we can write Equation
(1) equivalently as

min
[X]·j

1

2
‖A[X]·j − B·j‖22, j = 1, 2, . . . , P, (2)

where [X]·j denotes the jth column of the matrix X. By setting
the the gradient of Equation (1) to zero, we obtain the following
“normal equations:”

ATAX = ATB. (3)

This system can be solved by the following stationary iterative
process:

Xk+1 = Xk + α(−ATAXk + ATB) (4)

= (I − αATA)Xk + αATB, (5)

where X0 := αATB, (6)

and α is a positive steplength. (This process can also be thought of
as a steepest descent method applied to the optimization problem
Equation (2). For convergence of this process, we require

0 < α <
2

λmax(ATA)
, (7)
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where λmax(A
TA) denotes the maximum eigenvalue ofATA. This

condition ensures that all eigenvalues of (I − αATA) lie in the
interval (−1, 1]. (If A is rank deficient, ATA is singular, so some
eigenvalues of (I − αATA) will be 1 in this case.) See Ben-Israel
and Charnes (1963) for a proof of convergence.

We can map this process Equation (4) to a recurrent Hopfield
network cleanly by rewriting it as follows:

Xk+1 = WhopXk +WffB, k = 0, 1, 2, . . . , (8)

where

Whop := I − αATA, (9a)

Wff := αAT . (9b)

The Hopfield neural network architecture for implementing
Equation (8) is shown in Figure 1.

This elementary derivation shows that we can solve arbitrary
systems of linear equations (which we refer to also as “matrix
division”) directly in a recurrent neural network by loading
synaptic weight coefficients Wff and Whop derived from A and
α into the neural network, and connecting the inputs b and
recurrent outputs Xk+1 appropriately. The weight matrix Wff

serves as the feedforward weight for the input matrix B, while
Whop serves as the weight for the recurrent part for the values Xk.

We have implemented prototypes for two different classes
of applications. The first prototype is for applications in which
Hopfield network weights are hard-coded on TrueNorth, while
the second prototype is for applications in which Hopfield
network weights are encoded as dynamic spike trains.

2.1.2. Hopfield Network Weights Hard-Coded on

TrueNorth
For the first class of applications, we consider a typical target
tracking scenario, shown in Figure 2A. We are repeating the
same steps that was published in Shukla et al. (2017) to replicate
the target tracking experiment. Here, the features do not change
often, remaining fixed for long time periods, during which the
matrix A in Equation (3) stays the same. The Hopfield network
weightsWff andWhop can be precomputed and hard-coded onto
TrueNorth board for use.

In target tracking, a real-time video input is preprocessed to
extract features (e.g., edges of particular orientations) to form
a feature set. This feature set is then compared against a set
of templates to identify objects of interest, with the goal of
tracking the objects in the image frame as they move in three
dimensions. As a proof of concept, we have chosen a very simple
image whose feature set consists of just three edges similar in
appearance to the letter H. To determine size and placement of
the bounding box for the tracked image, we utilize the theory
of affine transforms which shows that a current image B can be
matched to its template A via an affine transformation X using
a matrix multiplication AX = B, as long as the image has been
transformed only with respect to the template in scale, rotation,
or 2D translation. (A similar self-learning visual architecture
was investigated in Shukla and Lipasti, 2015). By employing
matrix division implemented in the recurrent Hopfield network

FIGURE 1 | Neural network architecture of Hopfield linear solver.

FIGURE 2 | Illustration of (A) target tracking and (B) optical flow.

(Equation 8), we can derive the affine transform X that maps the
current image input b to the template A, thus determining the
scale and the horizontal and vertical transformations from the
matrix X.

2.1.3. Hopfield Network Weights as Dynamic Spiking

Input
We investigated optical flow as our second application, shown
in Figure 2B. We are repeating the same steps that was
published in Shukla et al. (2017) to replicate the optical flow
experiment. In optical flow, the matrix Amight change at certain
(frequent and regular) time intervals, so it is not viable to hard-
code weight assignment on TrueNorth. To implement a more
dynamic pseudoinverse calculator, we make use of concepts from
stochastic computing (Gaines, 1967; Alaghi andHayes, 2013) and
demonstrate the versatility of spiking neural substrates.

Our demonstration is similar to the one reported in Esser et al.
(2013) where the horizontal bar is continuously moving upwards
and the vertical bars are moving to the left of the screen. In this
prototype, we demonstrate that the direction of movement of the
bars can be reported without any error, and the speed at which
the two bars move apart can be determined approximately. This
is done by solving forX in the equationAX = B, where thematrix
A contains partial derivatives of initial image frame with respect
to x and y directions, and the vector B contains partial derivatives
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of pixel positions between the initial image frame and the image
frame at time t. The solution matrix X indicates the speed and
direction of the image pixels.

2.1.4. Computing in Spikes
IBM TrueNorth is a biologically-inspired architecture that
performs computations using spiking neurons. Input values are
represented in a stochastic time-based coding, in which the
probability of occurrence of a spike at a particular time tick is
directly proportional to the input value. Since the computation
values are represented as spike trains, designers are faced with
two key issues in mapping algorithms to these spiking neural
substrate.

1. Signed computations on spiking neural network substrates
that have input values represented as rate based encoding
must be performed by splitting all numbers (and intermediate
results) into positive and negative parts.

2. Data representation is limited by maximum frequency of
spikes. To represent different values within a matrix, we
need to scale all quantities so that no number exceeds this
maximum frequency.

To repeat the argument presented in Shukla et al. (2017),
Figure 3 illustrates the importance of selecting a correct scaling
factor to represent multiple values in an input vector or an
input matrix. Three values are given as inputs to TrueNorth
(2, 4, and 5) and represented as spike trains. In Figure 3A, all
values have been scaled by the maximum-magnitude element
5, so all values can be represented within the available range
of spiking rate. In Figure 3B, the inputs are scaled by a value
smaller than the maximum magnitude, so saturation occurs:
two elements (4 and 5) are represented by the same spike rate.
Selecting the correct scaling factor is important when spike
based arithmetic operations may produce results that are larger
than any of the inputs. Figure 3C shows addition between two
values represented as spike trains. Although both operands can
be represented exactly with a scale factor of 4, the result of
the addition is greater than the chosen scale factor, so the
representation saturates and the result is inaccurate.

In implementating algorithms on TrueNorth, therefore, we
must choose a scale factor that ensures that the intermediate
computations never saturate. On the other hand, the scale factor
should not be much larger than necessary, as this will result in
loss of precision for the spike-train representations.

2.2. Range Analysis to Determine Input
Scaling Factor
AHopfield linear solver (Lendaris et al., 1999; Shukla et al., 2017)
can be used to compute the Moore-Penrose generalized matrix
inverse based on the mathematical principles proposed by Ben-
Israel and Charnes (1963). This section derives scaling factors
that must be applied to the inputs to the system to guarantee
that the vectors Xk that arise in the stationary iterative process
Equation (4) [equivalently, Equation 8] have no elements greater
than 1 in absolute value, for all k. This requirement is achieved
by means of a scaling factor η applied to the right-hand side B in
Equation (1).

For purposes of this section we define the max-norm of a
matrix to be its largest element in absolute value, that is,

‖Y‖max := max
i,j

|[Y]ij|. (10)

(Note that when Y is a vector, the max-norm is the same as the
∞-norm.) Suppose that the (i, j) element of Y is the one that
achieves the maximum norm. We have that

‖Y‖2 ≥
‖Yej‖2
‖ej‖2

≥ |[Y]ij|, for any i,

where ej is the vector whose elements are all zero except for a 1 in
position j. Thus

‖Y‖2 ≥ ‖Y‖max. (11)

We write the singular value decomposition of A as follows:

A = U6VT , (12)

where U is an M × N matrix with orthornormal columns, 6 is
an N × N diagonal matrix with nonnegative diagonals, and V is
an N × N orthogonal matrix. In fact, the diagonals of 6 are the
singular values of A:

6 = diag(σ1, σ2, . . . , σN), (13)

where σ1 ≥ σ2 ≥ . . . ≥ σN ≥ 0. We further use notation

σmax := σ1, σmin := min
σi>0

σi. (14)

In this notation, we have that λmax(A
TA) = σ 2

max, so that
condition Equation (7) becomes

0 < α <
2

σ 2
max

. (15)

Note too that ‖A‖2 = ‖AT‖2 = σmax.
The following claim shows how we can scale the elements of B

to ensure that ‖Xk‖max ≤ 1 for all k.

CLAIM 1. For the iterative process defined by Equation (4), and
supposing that condition Equation (15) holds, we have that

‖Xl‖max ≤
2

σmin

√
MN‖B‖max, for l = 0, 1, 2, . . . . (16)

Proof: By applying Equation (4) recursively, we have for all l that

Xl = α

l
∑

k=0

(I − αATA)kATB. (17)

From Equation (12) we have that, I − αATA = V(I − α62)VT ,

so that, Xl = α
∑l

k = 0 V(I − α62)k6UTB. By multiplying both
sides by VT , we have that

VTXl = α





l
∑

k=0

(I − ασ 2
i )

kσiU
T
·i B





i=1,2,...,N

,
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FIGURE 3 | Example illustrating the importance of proper scaling for spike-based computation. (A) All three values of a vector are scaled properly. (B) Inappropriate

scaling: two values (4 and 5) are represented by the same spike rate. (C) Addition of two numbers that are scaled properly, but the scale factor is too small to allow

proper storage of the result of the addition, leading to saturation.

where U·i is the ith column of U. By carrying out the summation,
we have

[VTXl]i· = α
1− (1− ασ 2

i )
l+1

1− (1− ασ 2
i )

σiU
T
·i B, i = 1, 2, . . . ,N,

so that

[VTXl]i· =

{

0 for σi = 0;
1
σi
[1− (1− ασ 2

i )
l+1]UT

·i B for σi > 0.

Since 1 − ασ 2
i ∈ (−1, 1) for all i = 1, 2, . . . ,N with σi > 0, we

have for such i that

‖[VTXl]i·‖max ≤
2

σi
‖UT

·i B‖max ≤
2

σi
‖U·i‖1‖B‖max

≤
2

σmin

√
M‖B‖max (18)

where the last inequality follows from ‖U·i‖2 = 1, the standard
inequality that relates ‖ · ‖2 to ‖ · ‖1, and the definition (14). By
considering VTXl one column at a time, we have

‖Xl‖max = ‖VVTXl‖max ≤ ‖V‖1‖VTXl‖max

≤
√
N

2

σmin

√
M‖B‖max,

and by applying Equation (14), we obtain the result.

An immediate corollary of this result is that if we re place B by
B/(η ‖B‖max) in Equation (1), where

η :=
2

σmin

√
MN, (19)

then the matrices Xl produced by the iterative process Equation
(8) have ‖Xl‖max ≤ 1 for all l = 0, 1, 2, . . . . We note too that from
the definition Equation (9b) ofWff and Equation (19), we have by
setting B = I and l = 0 in Claim 1 that

‖Wff‖/η ≤ 1. (20)

By applying this scaling, and writing the solution X of Equation
(1) as an infinite sum, we have

X = (η ‖B‖max)

∞
∑

k=0

(I − αATA)kαAT B

η ‖B‖max

= (η ‖B‖max)

∞
∑

k=0

(I − αATA)kαATBn, (21)

where Bn := B/(η ‖B‖max). We use Hj to denote the jth scaled
partial summation in Equation (21), that is

Hj+1 =
j
∑

k=0

(Whop)
kWff

B

η ‖B‖max

(22a)

=
j
∑

k=0

(Whop)
kWffBn (22b)

= WhopHj +WffBn. (22c)

By setting j = 0 in Equation (22c), we obtain

H1 = WffBn. (23)

Note that Hl and Xl differ from each other only by the scaling
factor η‖B‖max, so we have from Claim 1 and Equation (19) that

‖Hl‖max =
1

η‖B‖max
‖Xl‖max ≤ 1, l = 1, 2, . . . , (24)

and thus

‖Hl‖2 ≤
√
NP, l = 1, 2, . . . . (25)

2.3. Weight Assignment
We present two techniques to encode weights for the Hopfield
neural network based linear solver of section 2.1. In the first
subsection, we consider hardcoding the Hopfield neural network
weights as TrueNorth neuron parameters. The extracted features
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of the image are used to compute weight matricesWhop andWff,
and these are converted further as TrueNorth neuron weight and
threshold parameters. This scheme is suitable when the initial
features do not change, as in 2-D image tracking. In the second
subsection, we see how the computations are performed when
weights are introduced as spikes. This scheme is appropriate for
scenarios in which the initial conditions may vary frequently,
such as optical flow and inverse kinematics.

2.3.1. Hopfield Neural Network Features Encoded as

TrueNorth Weights and Threshold
To perform matrix multiplication with weight matrices Wff and
Whop, the floating point values of these two weight matrices
are encoded as a ratio of TrueNorth weights to thresholds; see
Algorithm 1. Here, a single synapse is used for each term in the
dot product computation. In TrueNorth, each neuron can have
up to four axon types as input, each of which can be assigned
a unique synaptic weight in the range [−255, 255]. Figure 4A
shows the synaptic connections in TrueNorth that implement dot
product between the vector [Hk(1, 1);Hk(2, 1);Hk(3, 1)] and the
columns of the 3× 3 weight matrixWhop (which can have either
positive or negative values). Each of the three values in Hk have
been assigned a different axon type, so that they are multiplied
with a corresponding weight value to compute a dot product of
the form w1Hk(1, 1) + w2Hk(2, 1) + w3Hk(3, 1). Each neuron i,
has its reset mode set to linear reset (γi = 1) and rest of the
parameters of the LIF neuron have the default initial value.

Algorithm 1 Computes the weights and threshold values for
performing dot product on TrueNorth

Input: Floating point values in the ith row of weight matrices
(Wi,.)
Output: Assigned TrueNorth weight and threshold

1: procedureWEIGHTTHRESHOLDASSIGNMENT

2: Threshold = Round
(

255
maxi(|Wi,.|)

)

3: Weights = Round
(

255
maxi(|Wi,.|) ×Wi,.

)

4: end procedure

Figure 4A presents the scenario where all weights in the
Hopfield neural network (both Wff and Whop) can be encoded
on a single TrueNorth neuron. Using all of the four axon
types available in a single TrueNorth neuron, we can encode a
Hopfield neural network that has four Wff and Whop neurons.
For scenarios where the Hopfield neural network might have
more than four neurons in either Wff or Whop, then the matrix
multiplication would have to be divided as partial sums across
multiple TrueNorth neurons. Figure 4B presents the setup for
multiplying vector Hk by a single column of the matrix Whop.
Multiple neurons would be required to handle partial sums in
matrix multiplication. Partial summation of matrix dot product
are computed in neurons N1 and N2. Both of these neurons
have linear reset mode, and their weight and threshold values are
computed using Algorithm 1. Once the partial sums have been
computed, the results would go through a separate adder neuron

where all of the intermediate sums would be computed. LIF
neuron parameters for an adder neuron is shown in Figure 5C.

2.3.2. Hopfield Neural Network Features Using

Spiking Inputs
For applications such as optical flow and inverse kinematics,
where the initial input conditions may change dynamically,
the hard-coding of TrueNorth weights discussed in previous
subsection is not appropriate. We need an algorithm in which
TrueNorth neurons can be used as arithmetic computation units
and operate over spiking inputs. Cassidy et al. (2013) show that
when the data is represented as stochastic rate-based coding, the
theory of stochastic computing (as presented in the survey paper
of Alaghi and Hayes, 2013) shows that neurons can perform such
arithmetic operations as multiplication, addition, subtraction,
and division. Algorithm 2 shows the computation scheme for
representing the Hopfield neural network weight matrices Whop

and Wff using spikes. Figure 5A,C,D shows the LIF parameters
of TrueNorth neurons that needs to be set to perform arithmetic
operations such as multiplication, addition and subtraction,
respectively.

Algorithm 2 Computes weight matrices Wff and Whop using
spiking inputs

Input: Spiking coding of the elements in thematrices I
2 , (
√

α
2 )A

T ,

(
√

α
2 )A,

αAT

η
. Before giving these elements as input to Truenorth,

separate the elements into positive and negative domains.

Output: Assigned TrueNorth weight and threshold

1: procedure COMPUTEWEIGHTSUSINGSPIKES

2: (αATA)+ = max(αATA, 0);
3: (αATA)− = max(−αATA, 0);
4: (αAT)+ = max(αAT , 0);
5: (αAT)− = max(−αAT , 0);

6: P1 = max
(

I
2 −

(αATA)+

2 , 0
)

;

7: P2 = max
(

(αATA)+

2 − I
2 , 0
)

;

8: P3 =
(

(αATA)−

2

)

;

9: W+
hop

= 2(P1 + P3);

10: W−
hop

= 2(P2);

11: W+
ff
= (αAT)+/η;

12: W−
ff
= (αAT)−/η;

13: end procedure

Since the matrix computations for Whop and Wff will be
done in the hardware itself, we need to reconstruct the iteration
formula in such a way that every term that serves as an input to
the hardware has magnitude < 1, otherwise the computations
might saturate and give us the wrong result. We rewrite Equation
(22a) as follows, to ensure that each bracketed term has all its
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FIGURE 4 | Synapse connection showing the dot product between first column of Hk and the weight matrix Whop, and the corresponding threshold values for each

neuron. (A) Shows the matrix dot product for the scenario in which Wff and Whop can be encoded using a single neuron. (B) Shows the matrix dot product for the

scenario where Wff and Whop cannot be encoded using a single neuron. We would need multiple neurons to compute partial sums and later add them up together.

FIGURE 5 | Neuron parameters for (A) multiplier neuron that is modeled as AND gate, (B) an subtractor neuron that is meant to implement max-sub function, (C) an

adder neuron, and (D) decorrelator neurons.

elements in the range [−1, 1]:

Hj+1 =
j
∑

k=0

(

I

2
−
(
√

α

2
AT

)(
√

α

2
A

))k

2k

(

αAT

η

)

(

B

‖B‖max

)

.

(26)

We state the formal claim as follows.

CLAIM 2. All elements of the matrices
(√

α
2A
)

,
(√

α
2A

T
)

, Whop,

and
(

αAT

η

)

lie in the interval [−1, 1]. That is, the max-norms

Equation (10) of these four matrices are all less than 1.

Proof: Because of Equation (11), it suffices to show that ‖ · ‖2 ≤ 1
for all four of the matrices in question.

For the first matrix, note from Equation (15) that
√

α/2 ≤
1/σmax = 1/‖A‖2. Thus

∥

∥

∥

√

α
2A
∥

∥

∥

2
≤ 1, as required. The proof

for the second matrix is identical.
For the third matrix we note that Whop is a square

symmetric matrix with eigenvalues in the range [−1, 1]. Thus the
eigenvalues of W2

hop
will be in the range [0, 1], so ‖Whop‖2 ≤ 1,

as required.
For the fourth matrix, we have from Equation (15), the

definition of η in Equation (19), and the fact that ‖A‖2 = σmax

that

∥

∥

∥

∥

∥

αAT

η

∥

∥

∥

∥

∥

2

≤
2

σ 2
max

σmax
σmin

2
√
MN

=
σmin

σmax

√
MN

≤ 1.

�

Frontiers in Neuroscience | www.frontiersin.org 7 March 2018 | Volume 12 | Article 115

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Shukla et al. Generalized Matrix Inversion on SNN

2.4. Implementation
The spiking neural substrates can operate only for values in the
range [0, 1]. Thus, to perform computation on numbers that can
be either positive or negative, the computations must be divided
into two separate domains, one working with the positive parts
of the matrices and one with the negative parts. Algorithms 3
and 4 implement the formula Equation (22b). Algorithm 3
performs the preprocessing step or the feedforward path of the
neural network architecture, while Algorithm 4 implements the
recurrent part of the Hopfield architecture. The steps shown in
Algorithms 3 and 4 ensure that the intermediate computation
values never saturate. This is managed by performing subtraction
of intermediate results followed by addition in the final step.
Since the input values were normalized by the scaling factor,
as shown in Equation (19), the addition of partial sums would
never saturate.We use the following definition of the positive and
negative parts of a matrix:

Y+
:= max(Y , 0), Y−

:= max(−Y , 0), (27)

where the max-operation is applied component-wise. The
proposed architecture ensures that nonzero elements in the
positive-part matrices have zeros in the corresponding elements
of the negative-part matrices, and vice versa. We do not have
to scale the values in Algorithm 4 while computing matrices M,
PS1, and PS2 because Claim 1 guarantees that no quantity will
exceed 1, by choice of scale factor η. The max function used in
Algorithms 2, 3, and 4 can be implemented with a LLIF (linear
leaky integrated fire) neuron.

Algorithm 3 Computes the scaled value of input features B based
on Wff and the normalizing factor. These scaled values serve as
the input for recurrent network

Input: Coordinates of the current input features B
Output: Scaled values of input features for the recurrent network.
These values are divided among four domains

1: procedure PREPROCESSING

2: ifWeights are hard-coded on TrueNorth then

3: Bn = Normalize(B, η ‖B‖max);
4: else ifWeights are given as spiking inputs then
5: Bn = Normalize(B, ‖B‖max);
6: end if

7: T〈+,+〉 = max(W+
ff
B+n −W+

ff
B−n , 0);

8: T〈+,−〉 = max(W+
ff
B−n −W+

ff
B+n , 0);

9: T〈−,−〉 = max(W−
ff
B−n −W−

ff
B+n , 0);

10: T〈−,+〉 = max(W−
ff
B+n −W−

ff
B−n , 0);

11: B
〈+,+〉
s = max(T〈+,+〉 − T〈−,+〉, 0);

12: B
〈−,+〉
s = max(T〈−,+〉 − T〈+,+〉, 0);

13: B
〈−,−〉
s = max(T〈−,−〉 − T〈+,−〉, 0);

14: B
〈+,−〉
s = max(T〈+,−〉 − T〈−,−〉, 0);

15: end procedure

To implement these arithmetic operations we set the
TrueNorth neuron parameters appropriately. A detailed

description of individual neuron parameters and their behavior
with respect to TrueNorth’s spiking neurons can be found in
Cassidy et al. (2013). Figure 5C shows the neuron parameters and
connections for implementing an adder function that is required
to compute variables such as M in Algorithm 4. Similarly,
Figure 5B shows the neuron parameters and connections for
max-subtractor neuron that is meant to compute variables such
as PS1, and PS2 in Algorithm 4, or, variable Bs in Algorithm 3.

Algorithm4 Solve for system of linear equations defined asAX =
B. Computations are divided into negative and positive parts

Input:Matrices A and B that have been divided into positive and
negative domains
Output: Solution for the system of linear equation, matrix X

1: procedureHOPFIELDSOLVER_SPLIT

2: while δ ≥Minimum Error do
3: M〈+,+〉 = (B

〈+,+〉
s )+ (W+

hop
H+
k
);

4: M〈+,−〉 = (B
〈+,−〉
s )+ (W+

hop
H−
k
);

5: M〈−,−〉 = (B
〈−,−〉
s )+ (W−

hop
H−
k
);

6: M〈−,+〉 = (B
〈−,+〉
s )+ (W−

hop
H+
k
);

7: PS
〈+,+〉
1 = max(M〈+,+〉 −M〈+,−〉, 0);

8: PS
〈+,−〉
1 = max(M〈+,−〉 −M〈+,+〉, 0);

9: PS
〈−,−〉
1 = max(M〈−,−〉 −M〈−,+〉, 0);

10: PS
〈−,+〉
1 = max(M〈−,+〉 −M〈−,−〉, 0);

11: PS
〈+,+〉
2 = max(PS

〈+,+〉
1 − PS

〈−,+〉
1 , 0);

12: PS
〈−,+〉
2 = max(PS

〈−,+〉
1 − PS

〈+,+〉
1 , 0);

13: PS
〈−,−〉
2 = max(PS

〈−,−〉
1 − PS

〈+,−〉
1 , 0);

14: PS
〈+,−〉
2 = max(PS

〈+,−〉
1 − PS

〈−,−〉
1 , 0);

15: H̃
+
k+1 = (PS

〈+,+〉
2 + PS

〈−,−〉
2 );

16: H̃
−
k+1 = (PS

〈+,−〉
2 + PS

〈−,+〉
2 );

17: ifWeights are hard-coded on TrueNorth then

18: H+
k+1

= H̃
+
k+1;

19: H−
k+1

= H̃
−
k+1;

20: else ifWeights are given as spiking inputs then

21: H+
k+1

= Decorrelate(H̃
+
k+1);

22: H−
k+1

= Decorrelate(H̃
−
k+1);

23: end if

24: δ =
∥

∥

∥
(H+

k+1
−H−

k+1
)− (H+

k
−H−

k
)
∥

∥

∥
;

25: k = k+ 1;
26: end while

27: Xk = Rescale(Hk, η ‖B‖max);
28: end procedure

2.4.1. Computation With Spiking Weights
For applications in which matrix Amight change dynamically, it
is not possible to hard-code the weights on TrueNorth. Instead,
we borrow concepts from stochastic computing (Gaines, 1967;
Alaghi andHayes, 2013) to performmultiplication between input
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streams using a single neuron. In stochastic computing, if the
inputs are represented as independent streams of bits, then the
multiplication between these two values can be implemented
with just one AND gate. In our implementation, the values are
represented as stochastically rate coded spikes, similar to bit
streams mentioned earlier. The AND gate can be modeled with
an LLIF neuron as shown in Figure 5A.

Since the computation involves sending the values through a
recurrent path, it is crucial to maintain independence of spike
occurrence between the inputs from feedforward path and inputs
from recurrent path. Therefore, the inputs that are fed back
need to be passed through a decorrelator, as shown in Figure 1.
The decorrelator (presented in Chen and Hayes, 2014) preserves
the spiking rate of the input signal, but makes the occurrence
of spikes independent of the randomly generated feedforward
values. This is done by incrementing the membrane potential
when it receives a spike, let the neuron firing threshold vary
stochastically and once the neuron fires decrease the membrane
potential by the same magnitude as it was increased. Parameters
for modeling a decorrelator using TrueNorth neurons are shown
in Figure 5D.

2.5. Precision
Computations on the neural network substrate generally have
limited precision, producing accumulated error in the output.
The two main sources of computation error are (1) quantization
of the weights and the input, and (2) stochastic computations,
when computations are performed using spiking weights. In this
section, we first find the upper bound for the output error for
the case where weights are hard-coded into the neural network
substrate, considering only quantization errors in the weights and
the input. We then update the upper bound for the case in which
weights are represented using spikes, so that further stochastic
errors arise in the computations.

2.5.1. Quantization Error
Given that the elements in the input and weight matrices
contain quantization errors, we examine quantization errors in
the output.We denote the errors inWhop,Wff, and Bn by1Whop,
1Wff, and 1Bn, respectively. If δhop, δff, and δbn represent upper
bounds on the individual elements of 1Whop, 1Wff, and 1Bn,
respectively, we have by the dimensions of A (M × N) and B
(M × P) that

‖1Whop‖2 ≤ ‖1Whop‖F ≤ Nδhop, (28a)

‖1Wff‖ ≤
√
NMδff, (28b)

‖1Bn‖ ≤
√
MPδbn. (28c)

These errors produce an error 1H in the final output matrix
H resulting from iterative application of the formula Equation
(22c) (or its equivalents). Assuming we know the exact values of
the input matrices A and Bn and weight matrices Wff and Whop

without quantization, we can find an upper bound on the norm
of the output error 1HQ. This result requires a condition on the
singular values of the modified iteration matrixWhop + 1Whop,

without which the output errors 1Hj at successive iterations j
may diverge. We define

σ̄max := σmax(Whop + 1Whop), (29)

and require the following condition to hold:

σ̄max < 1. (30)

By using the definition Equation (9a), together with Equations
(12), (13), (28), and the Wielandt-Hoffmann inequality, we have

σ̄max ≤ σmax(Whop)+ ‖1Whop‖F ≤ max
(

|1− ασ 2
1 |, |1− ασ 2

N |
)

+ Nδhop. (31)

Thus a sufficient condition for Equation (30) is

max
(

|1− ασ 2
1 |, |1− ασ 2

N |
)

+ Nδhop < 1. (32)

Note that this condition can be satisfied only if A has full rank,
that is, σN > 0. If we assume that in addition to Equation (15), α
also satisfies the (not very restrictive) condition

0 < α <
1

σ 2
N

, (33)

then |1− ασ 2
N | = 1− ασ 2

N > 0, and Equation (32) can hold only
if 1− ασ 2

N + Nδhop < 1, that is,

δhop <
1

N
ασ 2

N . (34)

This condition bounds the allowable error in the elements of
Whop in terms of the steplength α and the spectrum of A.

Recall for the following result that the dimensions of matrices
A and Bn areM × N andM × P, respectively.

CLAIM 3. Suppose that Equation (30) holds. Then the upper
bound on 2-norm of accumulated error is as follows:

‖1HQ‖2 ≤
1

(1− σ̄max)
EQ,

where EQ is defined by

EQ :=
(

δff
√
NM‖Bn‖ + ‖Wff‖δbn

√
MP + δffδbn

√
NM

√
MP

+δhopN
√
NP
)

. (35)

Proof: We rewrite Equation (22c) to include the errors in the
constituent quantities:

Hk + 1HQ
k

= (Wff + 1Wff)(Bn + 1Bn)+ (Whop + 1Whop)

(Hk−1 + 1H
Q
k−1

). (36)

By subtracting Hk from both sides of Equation (36), we obtain

1H
Q
k

= 1H
Q
1 + 1WhopHk−1 + (Whop + 1Whop)1H

Q
k−1

,

k = 2, 3, ... (37a)

1H
Q
1 = 1WffBn +Wff1Bn + 1Wff1Bn. (37b)
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By taking norms in Equation (37a) and applying standard norm
inequalities, we obtain

‖1H
Q
k
‖2 ≤ ‖1H

Q
1 ‖2 + ‖1Whop‖2‖H

Q
k−1

‖2 + ‖Whop

+1Whop‖2‖1H
Q
k−1

‖2 (38)

≤ ‖1H
Q
1 ‖2 + N3/2P1/2δhop + σ̄max‖1H

Q
k−1

‖2,

where we used Equations (25) and (28) to bound the second term.
By applying this formula recursively for k − 1, k − 2, . . . , 1, we
obtain

‖1HQ
k
‖2 ≤

k−1
∑

l=0

σ̄ l
max

(

‖1HQ
1 ‖2 + N3/2P1/2δhop

)

≤
1

1− σ̄max

(

‖1H
Q
1 ‖2 + N3/2P1/2δhop

)

. (39)

We now obtain a bound on ‖1H
Q
1 ‖2. By taking norms in

Equation (37b) and using Equation (28), we obtain

‖1H
Q
1 ‖2 ≤ ‖1Wff‖2‖Bn‖2 + ‖Wff‖2‖1Bn‖2 + ‖1Wff‖2‖1Bn‖2

≤
√
MNδff‖Bn‖2 + ‖Wff‖2

√
MPδbn +

√
MNδff

√
MPδbn,

giving the result. �

This claim can be used to find the amount of resources needed
to generate an output H + 1HQ in which the error satisfies a
specified bound, for example, ‖1HQ‖2 ≤ ǫ. Note that the values
of δhop, δff, and δbn can be manipulated in various ways to meet
these goals. For instance, in a neural substrate like TrueNorth,
δbn can be reduced by increasing the number of time ticks at the
cost of increased execution time. On the other hand, reductions
in δhop can be achieved by using multiple neurosynaptic cores
at the cost of increased area and power. The validation of the
model is discussed in section 3. We leave exploration of such
optimizations to future work.

2.5.2. Stochastic Error
As mentioned earlier, stochastic computation is the second key
source of error in the Hopfield network. Computation in the
stochastic domain is performed not on the exact values of
inputs and outputs, but on their expected values. However,
the random errors present in the inputs to the computations
performed in the network lead to random errors in the output,
which accumulate during execution of Hopfield network. In this
section, we seeks bounds on stochastic error. Claim 4 shows a
bound on the output error for the entire computation in terms
of error bounds for a single stochastic matrix multiplication. We
complement this claim by estimating the bound on stochastic
error in a single stochastic matrix multiplication. It is important
to note that there are no useful error bounds that hold with
absolute certainty! It is possible—though highly unlikely under
reasonable assumptions—for stochastic errors to overwhelm
the computation. However, we can use information about the
distribution of the errors to give some insight into how these
errors propagate through the computation, showing conditions
under which we can reasonably expect the results to be acceptably
accurate.

Claim 3 defines the error bound due to quantization error,
in terms of a quantity EQ defined in Equation (35). We can use
this definition as part of the upper bound for stochastic error.
For this analysis we assume that the only stochastic computation
performed in the Hopfield network is stochastic multiplication—
we assume that additions are exact. Each matrix multiplication
yields some stochastic error that propagates through subsequent
iterations.

CLAIM 4. Suppose that Equation (30) holds. We denote by
EM a bound on the stochastic multiplication error caused by
multiplication of Wff and Bn, and denote by EN a bound on
stochastic multiplication error caused by multiplication of Whop

and Hk. Let EQ be defined as in Claim 3. Then the error bound for
1H can be estimated as follows:

‖1H‖ ≤
1

1− σ̄max
(EQ + EM + EN),

Proof: We rewrite the Hopfield equation, introducing stochastic
error terms into Equation (36), as follows:

Hk + 1Hk = (Wff + 1Wff)(Bn + 1Bn)+ 1Mk
+ (Whop

+1Whop)(Hk−1 + 1Hk−1)+ 1Nk
,

where 1Mk
and 1Nk

represent the stochastic multiplication
errors for WffBn and WhopHk−1. Our assumptions yield the
following bounds on these error quantities:

‖1Mk
‖ ≤ EM , ‖1Nk

‖ ≤ EN . (40)

By comparing the formula above, and denoting by 1HQ
k

the
quantization error Equation (37), we obtain the following
recursive formula for total error 1Hk:

1Hk = 1H
Q
k
+

k
∑

j=0

(Whop + 1Whop)
j1Mk−j

+
k−1
∑

j=0

(Whop

+1Whop)
j1Nk−j

. (41)

This formula represents a closed-form expression for the
stochastic error, similar to the closed form equation that was used
to derive quantization error in Equations (37a) and (37b). By
taking norms, and using Equations (29) and (30) together with
Equation (40), we have

‖1Hk‖ ≤ ‖1HQ
k
‖ +

k
∑

j=0

‖(Whop + 1Whop)
j1Mk−j

‖

+
k−1
∑

j=0

‖(Whop + 1Whop)
j1Nk−j

‖

≤ ‖1H
Q
k
‖ +

k
∑

j=0

σ̄
j
max‖1Mk−j

‖ +
k−1
∑

j=0

σ̄
j
max‖1Nk−j

‖

≤ ‖1H
Q
k
‖ +

1

1− σ̄max
(EM + EN).

The result now follows from the bound on ‖1H
Q
k
‖ in Claim 3.�
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We complete the error analysis by obtaining bounds EM
and EN on the stochastic matrix multiplication error norms.
Instead of finding a certain value for these upper bounds, we
find estimates based on the distribution of the elements of the
stochastic error matrices that arise in the computations. (It is
possible to find a certain bound, but it is too loose to be useful,
and the error that actually appears during computation rarely
approaches this certain bound.)

Before describing the stochastic errors that arise from amatrix
multiplication, we examine the error in multiplying two scalars
in the range [0, 1]. Let y1 and y2 be two such scalars, and let
z = y1y2 be their product. On the spiking substrate, y1 and y2
are represented by spike trains of length L, and we denote by Y1

and Y2 (respectively) their represented values, which are random
variables. Since each spike can be thought of as a binary random
variable, the expected value and variance of Y1 and Y2 are as
follows:

E(Y1) = y1, Var(Y1) =
y1(1− y1)

L
(42a)

E(Y2) = y2, Var(Y2) =
y2(1− y2)

L
. (42b)

Denoting by Z the random variable resulting from the
multiplication of Y1 and Y2, we have that E(Z) = z = y1y2 and

σ 2
Z = Var(Z) =Var(Y1)E(Y2)+ Var(Y2)E(Y1)+ Var(Y1)Var(Y2).

(43)

The value of σ 2
Z approaches its minimum value of 0 when Y1 and

Y2 are close to 0 or 1. A closed form solution can be calculated for
themaximum value of σZ over all possible y1, y2 ∈ [0, 1].

CLAIM 5. For large L, σ 2
Z reaches its maximum when y1 = y2 ≈

2
3 , and this maximum value is approximately 0.296/L.

Proof: From Equations (43) and (42), we have that:

σ 2
Z =

y1(1− y1)y2

L
+

y1y2(1− y2)

L
+

y1(1− y1)y2(1− y2)

L2
.

As L increases, the third term is dominated increasingly by the
first two terms, so we can omit it from consideration. By taking
the gradient and Hessian of the resulting approximation of σ 2

Z
with respect to (y1, y2), we obtain

gradient =
1

L

[

y2(1− 2y1)+ y2(1− y2)
y1(1− y1)+ y+ 1(1− 2y2)

]

,

Hessian =
1

L

[

−2y2 2− 2y1 − 2y2
2− 2y1 − 2y2 −2y1

]

.

It is easy to check that when y1 = y2 = 2/3, the gradient is
zero and the Hessian is negative definite. Thus y1 = y2 = 2/3
is an approximate maximizer, and the value of σ 2

Z at this point is
approximately 8/(27L) ≈ 0.296/L. �

Note that each element of the matrix 1Mk
in the proof of

Claim 4 is the stochastic error that arises from taking the inner
product of two vectors: one row ofWff + 1Wff and one column

of Bn + 1Bn. These two vectors have length M, and the product
matrix has dimension N × P. Since we assume that no stochastic
error occurs inmatrix additions, the accumulated stochastic error
in each element of 1Mk

is the sum of M random variables,
each with expectation 0 and variance bounded by 0.296/L (for
large L). Since the variance of a sum of uncorrelated random
variables is the sum of the variances, we can reasonably say that
each element of 1Mk

is a random variable with expectation 0
and variance bounded by 0.296M/L. An appropriate value of
EM in Equation (40) can be obtained by taking the Frobenius
norm of an N × P matrix whose elements are all equal to
the standard deviation (the square root of this variance), and
multiplying by a “safety factor” greater than 1. If we choose
the value 4 for this safety factor, we obtain the following
value for EM :

EM := 4
√

NP(0.296M/L) ≈ 2.176
√

MNP/L.

A similar calculation involving 1Nk
and EN , using the fact that

Whop is N × N and H is N × P results in the following estimate
for EN :

EN := 4
√

NP(0.296N/L) ≈ 2.176N
√

P/L.

This derivation of suitable values for the bounds EM and EN is
informal, but it suffices to give insight into how these bounds vary
with the dimensions of the matrices involved, and with the length
of the spike train representation L.

3. RESULTS

This section presents the validation results and observations for
the mathematical models for scaling factor and the precision
analysis. For all experiments, we set α = 1.9/trace(ATA);
Equation (7) guarantees convergence of the iterative process for
this value of the parameter.

3.1. Experiments
A TrueNorth-based Hopfield linear solver was applied in the
context of real-time robotics applications in Shukla et al.
(2017). This article looked at three different applications—
target tracking (Figure 2A), optical flow (Figure 2B), and inverse
kinematics—and reported relative error and absolute error of
these experiments. Each of these experiments required a different
input matrix dimension, and results were reported for over 500
different input matrix values. However, Shukla et al. (2017) did
not include a mathematically complete architecture, nor did it
study the effects of computational limitations, both of which have
been examined in this paper.

Table 1 shows the results for 15 different types of matrices,
with each matrix repeated 20 times. These experiments were
conducted using spike based weight representation scheme on
the TrueNorth system. In total, 712 TrueNorth neurons were
required to implement the proposed algorithm (just 0.067% of
available hardware neurons) and we needed just 11 cores of
the 4,096 available cores. In the notation of section 2.1, the
dimensions areM = 25, N = 2, and P = 1. Thus, A is 25× 2, B
25× 1 and Hj in Equation (22a) is 2× 1.

Frontiers in Neuroscience | www.frontiersin.org 11 March 2018 | Volume 12 | Article 115

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Shukla et al. Generalized Matrix Inversion on SNN

TABLE 1 | Results for Hopfield linear solver with spike based weight representation.

Experiment

number

Properties of matrices A and B Additional comments Time ticks

(in millions)

MSE for

‖1H‖ (%)

SDSE for

‖1H‖ (%)

1 Each element chosen uniformly in [−1, 1] Most basic test for Hopfield linear solver 1.05 0.0004 0.0013

2 Each element is an integer chosen uniformly in

[−100, 100]

Observe the behavior of linear solver as the input range is

increased

3.5 0.0025 0.008

3 Each element chosen uniformly in [−100, 100] Each element can have fractional values 3.5 0.0014 0.0028

4 Each element chosen uniformly in [1, 100] All elements of A have the same sign 4 0.0353 0.19

5 Each element chosen uniformly in [0.001, 1] Analyzing the convergence when the values are small 4 0.0038 0.008

6 Each element chosen uniformly in [0.0001, 1] Analyzing the convergence when the possible values are

smaller than previous experiments

4.25 0.0068 0.0234

7 Each element chosen uniformly in [−1000, 1000] Higher precision is required for calculation 4 0.0186 0.0413

8 Each element chosen uniformly in [−10, 000, 10, 000] Testing for the cases when even more precision is

required for calculation

4 0.32 0.83

9 Each element chosen uniformly in [1, 10, 000] Matrix A has elements with same sign; requires higher

precision for convergence

4 1.16 2.97

10 Each element chosen uniformly in [−1000, 1000] except

that 50% of elements in A and B are 0

Effect of sparsity on final result and convergence 4 0.024 0.0488

11 Each element chosen uniformly in [1, 10, 000] except for

50% zeros

Effect of sparsity on final result and convergence 4 0.24 0.94

12 Each element chosen uniformly in [0.0001, 1] except for

45% zeros in A and B

Effect of sparsity on final result and convergence when

elements of A are small

4.25 0.0038 0.0114

13 Each element chosen uniformly in [0, 50]. For matrix A,

ratio of smallest to largest singular values is about 0.25

Both the eigenvalues of Whop will have magnitude close

to 1, but will have opposite signs

4.25 0.37 1.01

14 Each element chosen uniformly in [−5× 105, 5× 105] Testing for the cases when up-to 10−6 precision would

be required for calculation

4.25 5.11 9.54

15 Each element chosen uniformly in [1, 5× 105] Precision of better than 10−6 would be required for

calculation and all matrix input values have the same sign

4.25 96.48 316.54

Column 2 describes how the values of matrices A and B were generated, while Column 3 explains why these matrices were chosen. Column 4 presents the number of clock ticks (or

the spike duration) for each experiment. Columns 5 and 6 show the percentage mean (MSE) and percentage standard deviation (SDSE) of the squared error of the Hopfield linear solver

output relative to double-precision MATLAB quantity (‖1H‖).

In Table 1, Columns 5 and 6 show the percentage mean
(MSE) and percentage standard deviation (SDSE) of the squared
error of the Hopfield linear solver output relative to double-
precision MATLAB quantity (‖1H‖). The results of Hopfield
linear solver (matrix H) were compared against the results that
were obtained using MATLAB’s double precision pseudoinverse
function. Per the error analysis in section 2.5.2 and the principles
of stochastic computing (Alaghi and Hayes, 2013), progressive
precision holds true for the proposed Hopfield solver. That
is, as the number of clock ticks increases, the stochastic error
asymptotically approaches zero. We can say from the results of
Table 1 that the output matrix has a value which is quite close to
its double-precision pseudoinverse counterpart in many cases.

Inputs that require low precision for computations
(Experiments 1, 2, and 3 in Table 1) converge faster and
show lower MSE in comparison to inputs that require higher
precision (Experiments 9, 14, and 15 in Table 1). Note that the
scenarios in which the Hopfield linear solver algorithm shows
high MSE occur because the algorithm requires considerably
more iterations to converge and precision greater than or
equal to 10−6 to reach a solution. Since the proposed work is
using stochastic computing, it would require at least 1 million
ticks in the best-case scenario to represent a precision of
10−6 for a single value, as well as requiring more iterations
to converge. While implementing the Hopfield solver on

spiking neural substrate such as TrueNorth, the developer
would have to consider this speed-accuracy tradeoff. For low-
precision values, the Hopfield solver would converge faster,
but many more ticks may be required for for high precision
values.

3.2. Implementation Analysis
When the firing rates of TrueNorth neurons saturate, the actual
outputs of the Hopfield linear solver algorithm may no longer
match the expected output; in fact, the difference may be quite
large. However, for a large enough input scaling factor, the firing
rates of neurons will be low enough so that they will never
saturate.

We refer to cases 1, 2, and 3 in Table 2 for range analysis.
Figures 6A–C show the plots for number of neurons that are
saturating at maximum frequency vs. the scaling factor that was
assigned to normalize the values of input. The neuron firing
rates were collected using the corelet filter API which is a part
of IBM TrueNorth’s corelet programming environment (Amir
et al., 2013). The firing rate of neurons was gathered for matrices
A and B with different set of values, as shown in Table 2. The
factor η (the scale factor bound calculated in section 2.2) proves
that the computed values never saturate, irrespective of whether
the computations are happening in the positive or negative
domain. The bounds shown are high because themaximum value
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TABLE 2 | Sample matrices for worked out examples.

Case 1 Case 2 Case 3 Case 4 Case 5

A =









0.1 0 0

0 0.1 0

0 0 0.1









A =









0.1 0.1 0.1

0.1 0.1 0.1

0.1 0.1 0.1









A =









0.1 −0.1 0.2

−0.2 0.1 0.1

0.1 0.4 −0.1









A =





0.08 8

−1 0.01



 A =





0.8 1.25

1 0.00008





B =









1 0 0

0 1 0

0 0 1









B =









1 1 1

1 1 1

1 1 1









B =









1 −1 1

−1 1 1

1 1 −1









B =





−4

0.2



 B =





1

1





η = 60 η = 20 η = 30 δhardcoded = 0.025%

δspiking = 3.39%

δhardcoded = N/A

δspiking = 0.8%

that every element in the matrix can have after the geometric
series summation would be a multiple of σ−1

min. If the matrix
A contains elements with very small magnitude then the term
σmin will be small as well; as a result we get a larger scale
factor. The scenarios where η is close to the desired bound is
when all of the elements in a matrix are the same and each
element has values of highmagnitude, similar to Case 2 inTable 2
(Figure 6B).

Cases 4 and 5 of Table 2 show the comparison of absolute
errors when the same matrices are given as inputs, where
Wff and Whop are either hard coded on TrueNorth or
are supplied as spike train inputs. As per case 4, absolute
error for hardcoded weights (δhardcoded) is less than spiking
weights (δspiking) for same number of spike ticks. This is
because hardcoding the weights gives us more control over
precision when compared with spiking weights. In Case 5,
δhardcoded cannot be computed because TrueNorth neuron’s
threshold parameter has a limited number of bits, so Wff

cannot be mapped onto the board using the technique of
Algorithm 1. This problem does not occur with the spike train
representation, as higher precision can be represented with
longer duration.

3.3. Precision Analysis
The goal of this section is to analyze the quantization error bound
and stochastic error bound with the worst-case erroneous output
of the Hopfield linear solver. We do so by injecting errors into
the weight and input matrices and measuring the resulting error.
We are evaluating whether the bounds are tight enough so that
they are close to the worst-case erroneous Hopfield linear solver
output. Initially, quantization error is introduced in the weight
and input matrices and its effect is analyzed for the linear solver.
Next, stochastic error is added to weight and input matrices,
and the linear solver simulation results are compared with the
stochastic bound that was derived in section 2.5.2. Despite
being hard to predict, our simulations show that the stochastic
error can reach an average of 70% of the bound demonstrating
sufficient agreement between the analysis and simulated
data.

In order to evaluate the effect of quantization error, the
output of the Hopfield network is compared for two cases. In
the first case, we provide the exact input and weights to the

Hopfield network and calculate the output. In the second case,
we introduce some error to the input and the weights equal to the
maximum quantization error, and again evaluate the output of
the network. Finally, we compare these two outputs and calculate
the output error.

The error evaluation results are shown in Table 3 for the
cases presented in Table 2. These results show that for all cases,
the error remains below the estimated bound. In addition, the
error in Case 1 is close to the estimated (91%) bound, which
indicates that the bound is tight enough to be useful. It is also
important to note that in Case 2, where the matrix A has singular
values equal to 0, the error remains below the bound. Thus, even
though there are scenarios where our analytical approach does
not provide a guarantee, in practice, the estimated error bound
holds.

Later, we evaluate the stochastic error bound using a similar
method as was used for quantization error. However, due to the
randomness of the stochastic error, we repeat each test 100 times
and report both the average over all repetitions as well as their
maximum. As mentioned in section 2.5.2, the calculated bound
does not define an absolute upper limit for each repetition, but
rather a bound for their average. In other words, we expect the
average error over multiple runs to be smaller than the estimated
bound, but the maximum value of the error could exceed the
bound.

The results for three representative cases (Cases 1, 2, and 3,
from Table 2) are shown in Figure 7 for different spike train
lengths. The average error always remains below the bound,
but the maximum error for Case 2 exceeds the bound at
some points. Furthermore, the gap between the bound and
the average error is larger than when we only consider the
quantization error. This is due to the unpredictable nature
of the stochastic error resulting in a looser stochastic error
bound.

Simulations of the quantization and stochastic errors show
that the proposed bounds can provide reasonable upper limits
for the error of the Hopfield network implemented on a neural
network hardware. Therefore, these bounds can be used to gain
insight into the precision results of this network for any set of
input and weights, before running the algorithm. In addition,
they can be used to allocate appropriate resources in order to
achieve a specific output precision.
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FIGURE 6 | Comparison of scaling factor for different matrix structures. Table 2 lists the three different input matrices A and B. (A) Plot for fraction of neurons that are

saturating vs. scaling factor for case 1. (B) Plot for fraction of neurons that are saturating vs. scaling factor for case 2. (C) Plot for fraction of neurons that are

saturating vs. scaling factor for case 3.

TABLE 3 | Quantization error simulation results.

Error relative to the bound (%)

Case 1 90.75

Case 2 5.13

Case 3 38.63

Case 4 13.89

Case 5 24.86

3.4. Architecture-Application Analysis
Prior work Shukla et al. (2017) showed how these linear solvers
can be used to compute transformation matrices for applications
such as inverse kinematics, object tracking and optical flow.
To analyze the proposed Hopfield linear solver in a practical
implementation scenario, we tested the proposed work for Lucas-
Kanade based optical flow application that has a setup similar to
the one shown in Figure 2B and described in the prior works
(Esser et al., 2013; Shukla et al., 2017). The image in Figure 2B is
a grayscale image in which high intensity pixels are represented
with a value of 1 and low-intensity pixels are represented with 0.
The two black bars in the figure have a pixel width of 5 pixels. the
resolution of the image was set at 240-by-360 pixels which is same
as QVGA format videos. The horizontal and vertical bars were
initially positioned at the center along height and width of the
image, respectively. The two lines intersected at the center of the
image. The sequences of images are streaming in to the hardware
at 30 frames per second. For the first set of frames, the horizontal
bar is moving upwards, and the vertical bar is moving toward left.
In the implementation, the frame size of QVGA video was first
reduced by a factor of 4 to 120-by-180 pixels, then a 5-by-5 pixels
convolutional operation was applied to it.

The implementation of a Hopfield linear solver in such a
setup is challenging since the Hopfield neural network (Wff

and Whop) weights change continuously. Also, in this setup
there is no training or testing data involved. The goal here is
to compute the results online by just looking at the streaming
input values without any prior knowledge of the experiment or
scenario. We observe additional benefits by deploying multiple
linear solvers in parallel since we have to calculate pseudoinverse
for multiple different locations on the image at the same time.

These experiments give us better insights with respect to selecting
TrueNorth as a potential substrate for deployment of such
algorithms, and provides a vehicle for energy analysis when
compared with more traditional approaches. In this experiment
wemeasure the motion vector error against the baseline, but have
also utilized an approximately correct metric: as long as the solver
correctly detects flow in one of eight possible ordinal and cardinal
directions, we count it as correct. The velocity of the movement
of two bars is calculated by solving for X in the equation AX =
B. Matrix A contains partial derivatives of initial image frame
with respect to directions x and y around pixel qi. This is
represented by terms Ix(qi) and Iy(qi), in Equation (44). Matrix
B contains partial derivatives of pixel positions between initial
image frame and image frame at time t around pixel qi. This is
represented by terms It(qi), in Equation (45). After implementing
matrix division, output matrix X will report the speed and
direction of the image pixels, by computing the pseudoinverse of
matrix A.

A =











Ix(q1) Iy(q1)
Ix(q2) Iy(q2)

...
...

Ix(qn) Iy(qn)











(44)

B =











−It(q1)
−It(q2)

...
−It(qn)











(45)

In the proposed setup, we can have multiple input matrices A
and B (see Equation 3), that are independent of each other,
since the convolution operation can operate on separate and
independent patches of image at the same time. The results of
these independent convolutions can be streamed as different
input matrices A and B. As a result, we can have multiple
independent linear solvers running in parallel to compute
different pseudo-inverses for these different input matrices. For
a frame of size 120-by-180 pixels, linear solver implementation
processed 9,800 pixels of a single frame to predict the motion
vectors.
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FIGURE 7 | Stochastic error for different spike train lengths. Table 2 lists the three different input matrices A and B. (A) Error relative to bound for case 1. (B) Error

relative to bound for case 2. (C) Error relative to bound for case 3.

Using the optical flow implementation described above, we
compare the power and energy consumption of TrueNorth based
linear solver implementation with more traditional approaches
like QR inverse algorithm on Virtex-7 FPGA (xc7vx980t) and on
an ARM cortex A15 mobile processor.

On TrueNorth we can implement 392 instances of the
Hopfield linear solver that operate in parallel independent from
one another. These 392 instances required 4,092 cores of the
available 4,096 cores and can process roughly 9,800 pixels for
predicting the motion vectors. Therefore, we would need to
compute optical flow motion vectors in the specified scenario
in batches of two streaming input pixels for a single 120-by-180
pixels frame.

To maintain the throughput of 30 FPS for 9,800 pixels we
needed an 8-core ARM chip operating at 2.5 GHz. For the
same FPS and pixel count instantiate 32 instances of QR inverse
algorithm on Virtex-7. A detailed discussion about each of the
implementation technique is presented as follows:

TrueNorth: We have implemented 392 instances of the
Hopfield linear solver which operate in parallel, independent
from one another. These 392 instances required 4,092 cores
of the available 4,096 cores. The power consumption values
were reported from IBM’s test and development board. For a
supply voltage of 0.8 V and 1KHz operating frequency, the
scaled leakage power of our implementation is 46.31 mW
and the scaled active power 18.67 mW. Since the goal is to
implement optical flow at 30 FPS, we increase the operating
frequency of TrueNorth NS1e hardware to 9KHz and report
a linearly scaled active power of 168.03 mW for these
experiments.
Virtex-7 FPGA: The QR inverse algorithm was implemented
using the matrix algebra libraries present in Xilinx Vivado
HLS (Xilinx, 2014) and the frequency of the platform was set
at 20 MHz. Power analysis of the following implementations
were done using Xilinx Power Estimator tool (Xilinx, 2017).
For 32 parallel instances of QR inverse solver the total power
consumption is 1.881W with a static power consumption of
383 mW.
8-core ARM A15 processor: The QR inverse algorithm
was implemented using the C++-based eigen library

(Guennebaud et al., 2010). Simulations for matrix inversion
were done using gem5 (Binkert et al., 2011) in the system
emulation mode and the power consumption details were
collected using McPat (Li et al., 2009). We used the ARM
A15 configurations for Gem5 and McPat simulations that
have been presented in (Endo et al., 2015). For processing the
QR inverse algorithm, an octa-core ARM Cortex A-15 chip
consumed 2.55 W of power which includes 93.5 mW of static
power.

Figure 8 shows the comparison of energy consumption and time
elapsed for computation on three different hardware platforms.
Since TrueNorth can perform computations on 9,800 pixels at
a time, it would have to time-multiplex 120-by-180 pixels into
two batches to perform the linear solver operation. At 9 KHz
frequency each time multiplexed batch would need a maximum
of 150 time ticks for computing the inverse on a portion of the
image. After 150 ticks, the accuracy of predicting the direction in
optical flow is 99.33% and the speed of motion can be estimated
with an accuracy of 80.9%. As per the plots in Figure 8A,B,
the TrueNorth-based linear solver is more energy efficient than
the ARM or FPGA implementations. For both the FPGA- and
ARM-based QR inverse solvers, the accuracy is 100% as they are
using floating point units for computation. The TrueNorth-based
linear solver consumes 0.0575 J of energy per frame, the FPGA
consumes 0.4074 J of energy per frame and, the ARM processor
consumes 4.986 J of energy per frame. On the other hand, the
accuracy of TrueNorth depends on how many ticks it requires.
As a result, if TrueNorth is operated for more ticks, the solution
achieves higher accuracy but consumes more energy.

4. DISCUSSION

To the best of our knowledge, this paper is the first attempt
to formalize a mathematical framework for determine scaling
factors and error bounds when deploying a recurrent numerical
solver on limited-precision neural hardware. The proposed
research developed a mathematical and algorithmic framework
for calculating generalized matrix inverses on this hardware
platform. Apart from using the proposed algorithm for real-time
robotics applications, it could also be used for on-chip training of
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FIGURE 8 | This figure shows a comparison between three different implementation techniques for matrix inversion. Y-axis of the plot shows the percentage accuracy

in predicting the motion of bars for optical flow. And, X-axis of the plot shows the energy consumed per frame (in Joules) for optical flow. (A) Comparison of power

consumed between FPGA and TrueNorth hardware. (B) Comparison of power consumed between ARM, FPGA and TrueNorth hardware.

multi-layered perceptrons and extreme-learning machines (Tang
et al., 2016) for a variety of classification and regression based
tasks. We validate the mathematical model using a Hopfield
network-based linear solver that has been implemented on the
IBM TrueNorth spiking neural substrate. Our empirical results
show that the analytic bounds are never violated for the scenarios
evaluated.

4.1. Summary of Experiments and Results
First, section 3.1 compares the results of proposed linear
solver against MATLAB’s double precision pseudo-inverse
function. Results presented in Table 1 suggests that a stochastic-
computing implementation can produce an output matrix
that are quite close to their double-precision pseudoinverse
counterparts in many cases. However, the developer would
have to keep in mind speed-accuracy tradeoff. For low
precision values, the Hopfield solver would converge faster,
while many more ticks would be required for high precision
values.

Second, section 3.2 presents the range analysis of Hopfield
linear solver. We can guarantee that the proposed scaling factor
will keep the firing rates of neurons low enough that they never
saturate. Similarly, in section 3.3, we validate the bounds that
were proposed in precision analysis. For quantization error,
the experimental errors can get very close to estimated (91%)
bound, indicating that the bound is tight enough to be useful.
For stochastic errors, the average of experimental error always
remains below the bound.

Finally, section 3.4 compares the TrueNorth-based Hopfield
linear solver against standard QR inverse algorithms that
were implemented on the ARM processor and in FPGA.
Experiments with the optical-flow application showed the energy
benefits of deploying a reduced-precision and energy-efficient
generalized matrix inverse engine on the IBM TrueNorth
platform. Since TrueNorth architecture was designed to be
low power, deployment of multiple linear solvers running in

parallel could give a 10× to 100× improvement in terms
of energy consumed per frame over FPGA and ARM core
baselines.

4.2. Extending Hopfield Neural Network
Based Linear Solver to Other Hardware
Substrates
Sections 2.3.2 and 2.4 present algorithms that can
compute matrix inverses using concepts from stochastic
computing (Gaines, 1967). The proposed algorithms can be
extended to other spiking and non-spiking hardware substrates
that have the ability to perform stochastic computing and
provides the capability to have recurrent neural network
connections. Prior work such as Smithson et al. (2016), Thakur
et al. (2016), and Cassidy et al. (2013) show that digital spiking
neural substrates can perform stochastic computing. We can
also perform stochastic computing on non-spiking hardware
substrates such as FPGAs (Li et al., 2016), FinFETs (Zhang et al.,
2017), and magnetic-tunnel-junction (Lv and Wang, 2017).
These technologies provide us with a promising opportunity
to implement linear solvers based on Hopfield neural networks
while being energy-efficient and operate at a higher frequency.
Developers would have to keep in mind that the proposed
linear solver is performing lossless addition (Figure 5C). When
a neuron receives spikes from multiple inputs at the same,
its membrane potential increases by the same amount as
the number of input spikes it has received at that time tick.
The membrane potential decreases by one after the neuron
fires. Scaling factor η that was derived in Equation (19) and
Claim 1 guarantees that even with a lossless addition present
in the equations, the intermediate computation will never
saturate.

4.3. Future Work
In future work, we will look into speeding up the computation by
using a population coding scheme for encoding values to spikes.
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Our current implementation uses a rate coding technique for
encoding values with a single neuron. Considering the resources
that we have available on TrueNorth board, a population coding
scheme could perform computations in parallel, hence reducing
the time to solution.

Large scaling factor values may end up resulting in longer
computation time, since we end up requiring more ticks to
represent the scaled values accurately. Alternatively, tight scaling
factors that still avoid saturation require computation of the
matrix pseudoinverse, using external hardware. This complicates
deployment of the Hopfield solver in scenarios where the
matrix changes over time. Developing tighter bounds, especially
ones that are easier to compute online, would avoid these
problems.

Finally, in the proposed architecture in this paper the term α

was precomputed. As part of our future work, we would like to
create a TrueNorth based framework where α could be computed
dynamically via spikes.
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