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Abstract. Whole genome and whole exome sequencing technologies play a very important role in the studies of the ge-
netic aspects of the pathogenesis of various diseases. The ample use of genome-wide and exome-wide association study 
methodology (GWAS and EWAS) made it possible to identify a large number of genetic variants associated with diseases. 
This information is accumulated in the databases like GWAS central, GWAS catalog, OMIM, ClinVar, etc. Most of the va-
riants identified by the GWAS technique are located in the noncoding regions of the human genome. According to the 
ENCODE project, the fraction of regions in the human genome potentially involved in transcriptional control is many times 
greater than the fraction of coding regions. Thus, genetic variation in noncoding regions of the genome can increase the 
susceptibility to diseases by disrupting various regulatory elements (promoters, enhancers, silencers, insulator regions, 
etc.). However, identification of the mechanisms of influence of pathogenic genetic variants on the diseases risk is difficult 
due to a wide variety of regulatory elements. The present review focuses on the molecular genetic mechanisms by which 
pathogenic genetic variants affect gene expression. At the same time, attention is concentrated on the transcriptional level 
of regulation as an initial step in the expression of any gene. A triggering event mediating the effect of a pathogenic genetic 
variant on the level of gene expression can be, for example, a change in the functional activity of transcription factor bind-
ing sites (TFBSs) or DNA methylation change, which, in turn, affects the functional activity of promoters or enhan cers. Dis-
secting the regulatory roles of polymorphic loci have been impossible without close integration of modern experimental 
approaches with computer analysis of a growing wealth of genetic and biological data obtained using omics technologies. 
The review provides a brief description of a number of the most well-known public genomic information resources contain-
ing data obtained using omics technologies, including (1) resources that accumulate data on the chromatin states and the 
regions of transcription factor binding derived from ChIP-seq experiments; (2) resources containing data on genomic loci, 
for which allele-specific transcription factor binding was revealed based on ChIP-seq technology; (3) resour ces containing 
in silico predicted data on the potential impact of genetic variants on the transcription factor binding sites.
Key words: transcription regulation; genetic variability; pathogenic genetic variants; transcription regulatory regions; tran-
scription factor binding sites (TFBSs); genomic databases.
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Аннотация. Полногеномные и полноэкзомные технологии секвенирования играют важную роль в исследовани-
ях генетических аспектов патогенеза различных заболеваний. Широкое применение методов полногеномного и 
полноэкзомного анализа ассоциаций позволяет идентифицировать множество вариантов геномной изменчивости 
(ГИ), ассоциированных с заболеваниями. Эта информация накапливается в базах данных GWAS central, GWAS catalog, 
OMIM, ClinVar и др. Большинство вариантов, идентифицированных методикой полногеномного анализа ассоциаций, 
располагается в некодирующих областях генома человека. По данным проекта ENCODE, доля участков в геноме 
человека, потенциально задействованных в регуляции транскрипции, во много раз превышает долю кодирующих 
областей. Таким образом, геномная изменчивость в некодирующих областях генома может повышать предраспо-
ложенность к заболеваниям, нарушая функционирование различных регуляторных элементов (промоторов, эн-
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хансеров, участков, определяющих 3D структуру хроматина и т.  д.). Однако идентификация механизмов влияния 
патогенных вариантов ГИ на риск развития заболеваний затруднена ввиду большого разнообразия регуляторных 
элементов. В обзоре рассмотрены молекулярно-генетические механизмы влияния патогенных вариантов ГИ на экс-
прессию генов. При этом внимание сосредоточено на транскрипционном уровне регуляции как ключевой стадии, 
запускающей последовательность этапов экспрессии любого гена. Пусковым событием, опосредующим влияние па-
тогенного варианта ГИ на уровень экспрессии гена, может быть, например, изменение функциональной активности 
сайтов связывания транскрипционных факторов или уровня метилирования ДНК, что, в свою очередь, отражается 
на функциональной активности промоторов или энхансеров. Выявление регуляторных эффектов полиморфных ло-
кусов невозможно без тесной интеграции современных экспериментальных подходов с компьютерным анализом 
больших массивов генетических данных, получаемых на основе омиксных технологий. В обзоре кратко описаны 
наиболее известные открытые полногеномные информационные ресурсы, содержащие данные, полученные на ос-
нове омиксных технологий, в том числе: ресурсы, накапливающие сведения о состоянии хроматина и участках его 
связывания с транскрипционными факторами, выявленными с помощью технологии ChIP-seq; ресурсы по геном-
ным локусам, для которых на основе данных ChIP-seq выявлено аллель-специфичное связывание с транскрипцион-
ными факторами; а также ресурсы, содержащие предсказанные in silico данные о потенциальном влиянии геномной 
изменчивости на сайты связывания транскрипционных факторов.
Ключевые слова: регуляция транскрипции; геномная изменчивость; патогенные геномные варианты; районы, регу-
лирующие транскрипцию; сайты связывания транскрипционных факторов; геномные базы данных.

Introduction
At present, largely due to the widespread use of the technology 
of genome-wide and exome-wide association study (GWAS 
and EWAS), a large number of polymorphisms associated 
with diseases have been identified. For example, GWAS 
central (https://www.gwascentral.org/) contains information 
on more than 70 million associations between ~3.2 million 
SNPs and 1451 diseases or phenotypic characteristics (Beck 
et al., 2020). Experimental datasets of comparable volume 
have been accumulated in a number of other databases on 
genotype-phenotype associations (GWAS catalog, OMIM, 
ClinVar, HGMD, PheGenI, EGA, GAD, dbGaP).

Currently, a large amount of experimental data has been 
obtained about the disease-associated genetic variants (GVs), 
but the molecular mechanisms underlying these associations 
are extremely poorly understood. This is due to the fact that 
only a relatively small proportion of pathogenic GVs is located 
in the coding regions of the human genome, changes in the 
nucleotide sequence of which disrupt the structure and func-
tion of proteins. A huge mass of polymorphic loci associated 
with diseases is located in non-coding regions of the genome 
(introns, 5′- and 3′-f lanking regions of genes, intergenic re-
gions). For example, according to GWAS data, ~90 % of the 
total number of variants associated with diseases are located 
in noncoding regions of the human genome (Maurano et al., 
2012; Farh et al., 2015).

It is known that non-coding regions of the genome contain 
regions that perform a wide range of regulatory functions: 
promoter regions, enhancers, negative regulatory elements, 
nuclear matrix attachment regions, regions that determine 
the structure of topologically associating domains (TADs), 
and other features of 3D organization of genome (Mathelier 
et al., 2015; Meddens et al., 2019; Ibrahim, Mundlos, 2020). 
The proportion of regions in the human genome potentially 
involved in the transcriptional regulation is extremely high. 
According to the ENCODE project, the chromatin regions 
corresponding to the peaks of transcription factor (TF) binding 
identified by the ChIP-seq occupy ~8.1 % of the total genomic 
DNA (ENCODE Project Consortium, 2012), which is sig-
nificantly higher than the proportion of coding regions of the 
human genome (~1.2 %). Considering that not all known TFs 

and not all cell lines were studied in the ENCODE project, 
an obviously larger fraction of genomic DNA is involved in 
the interaction with TFs. The total length of human genome 
regions with enhancer-associated chromatin features also 
significantly exceeds the total size of the coding regions: for 
example, in only one cell type studied (H1-ES), enhancer 
regions occupy ~3.2 % (Roadmap Epigenomics Consortium 
et al., 2015).

Studies aimed at identifying the mechanisms of the influ-
ence of pathogenic GVs on the predisposition to diseases are 
carried out very actively, which is reflected in a number of 
review publications (Mathelier et al., 2015; Merkulov et al., 
2018; Smith et al., 2018; Wang et al., 2019; Vohra et al., 2020). 
The most discussed effect of pathogenic GVs is a change in 
the binding activity of TFBSs (Lewinsky et al., 2005; Chen L. 
et al., 2013; Claussnitzer et al., 2015; Mathelier et al., 2015; 
Gorbacheva et al., 2018). It has also been shown that polymor-
phic loci can be associated with alteration of DNA methylation 
patterns (Howard et al., 2014; Kumar D. et al., 2017; Rahbar 
et al., 2018; Schmitz et al., 2019) and modifications of histone 
proteins (Kilpinen et al., 2013; Visser et al., 2015; Zhang et al., 
2018; Cong et al., 2019), with structural change in chromatin 
loops (Visser et al., 2015; Zhang et al., 2018) and, as one of 
the manifestations of this process, with changes in the TADs 
structure (Cong et al., 2019; Mei et al., 2019). Examples of 
such effects will be discussed below (Table 1).

The effects of genetic variants on the functional 
activity of transcription factor binding sites 
The key role in the transcriptional regulation is played by 
transcription factors – proteins that can specifically bind to 
DNA of the regulatory regions of genes and to initiate the tran-
scription complexes formation. The human genome contains 
more than 1500 genes encoding TFs (Wingender et al., 2013). 
TF binding sites, as a rule, have a length of 10–25 nucleotides 
(Levitsky et al., 2014; Kulakovskiy et al., 2018).

Nucleotide substitutions, as well as short insertions/dele-
tions at polymorphic loci, can disrupt TFBSs or create them 
de novo (see Table 1), and this, in turn, can have both negative 
and positive effects on the level of gene transcription (Chen L. 
et al., 2013; Gorbacheva et al., 2018). Such GVs (and the cor-
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Table 1. Examples of polymorphic loci associated with pathologies and mechanisms of their action on the gene expression level

Disease  
or pathology

Polymorphic locus Localization Mechanism Reference

Atopic asthma rs928413 
A→G

IL33 promoter region rs928413(G) allele creates a binding site for the 
transcription factor CREB1 leading to increased 
expression level of IL33

Gorbacheva et al., 
2018

Obesity rs1421085 
T→C

Intron of the FTO gene 
which contains the 
regulatory re gion of 
the IRX3 and IRX5 genes 
(the distance between 
rs1421085 and TSSs of IRX3 
and IRX5 is ~517,000 and 
~1,164,000 bases)

rs1421085(C) variant disrupts a conserved motif for 
the ARID5B repressor, which leads to derepression 
of a potent preadipocyte enhancer and a doubling 
of IRX3 and IRX5 expression

Claussnitzer et al., 
2015

Pancreatic 
cancer 

rs2001389 
A→G

The boundary of TAD  
located on chromosome 10

The allele G of rs2001389 weakens the CTCF bind-
ing activity of DNA, eliminating TAD boundary and 
altering 3D chromatin structure, and it is related to 
the lower expression of a putative antioncogene 
MFSD13A

Mei et al., 2019

Disturbances 
of lipid 
metabolism 

rs174537 
G→T

An enhancer region  
of the FADS cluster

Individuals that have rs174537(T) allele exhibited 
a higher level of DNA methylation at CpG sites 
located within regu latory region of FADS cluster, 
which led to a decrease in transcriptional activity of 
FADS1 and FADS2

Howard et al.,  
2014

Atopic  
dermatitis

rs612529 
T→C

VSTM1 promoter region The rs612529(T) allele facilitates binding of the tran-
scription factor PU.1, that acts as docking site for 
DNA deme thylases. In carriers of pathogenic vari-
ant C, the interaction of PU.1 with DNA is disrupted, 
as a result, the methylation level of the VSTM1 pro-
moter is elevated, and this is accompanied by a 
downregulation of VSTM1 expression

Kumar D. et al.,  
2017

Fragile X 
syndrome

CGG repeat expan-
sion. Healthy 
indi vi duals harbor 
between 5 and 
55 copies of the 
CGG repeats, 
 affected  patients 
harbor more than 
100 copies

The 5’-untranslated region  
of FMR1 gene 

CGG repeat expansion disrupts the structure of  
TAD, that includes FMR1. In individuals with muta-
tion-length CGG triplet repeats, the 5’-boundary 
region of TAD is ablated (this region is hypermethy-
lated and its CTCF occupancy is lost). As a result, 
one subTAD dissolves. FMR1, which is normally 
associated with the downstream TAD, shifts to 
the upstream TAD. In this case, FMR1 promoter is 
hyper methylated, and FMR1 expression is down-
regulated

Sun et al., 2018

Rheumatoid 
arthritis and  
type-2 
diabetes 
mellitus

rs7873784 
G→C

The 3’-untranslated region  
of TLR4 gene

rs7873784(C) allele creates a binding site for trans-
cription factor PU.1, a known regulator of TLR4 
expression. Func tional PU.1 binding site augments 
the enhancer activity of TLR4 3’-UTR that leads to 
increased TLR4 expression

Korneev et al.,  
2020

Breast cancer rs4321755 
C→T

Enhancer region of MRPS30 
and RP11-53O19.1 genes

The risk allele rs4321755(T) creates a GATA3 binding 
motif within an enhancer, resulting in stronger 
binding of GATA3 and chromatin  accessibility, 
thereby activating interaction between the enhan-
cer and MRPS30/RP11-53O19.1 divergent promoter 
and increasing the expression of MRPS30 and  
RP11-53O19.1 genes

Zhang et al., 2018

responding polymorphic loci) that affect the transcriptional 
activity of genes are usually called regulatory variants (Ku-
mar S. et al., 2017; Guo, Wang, 2018; Merkulov et al., 2018).

Pathological (that is, associated with a disease) can be both 
an allelic variant of the DNA sequence containing a disrupted 
TFBS (Lewinsky et al., 2005; Chen L. et al., 2013; Clauss-
nitzer et al., 2015; Kumar D. et al., 2017; Mei et al., 2019) 
and an allelic variant, leading to creation of TFBS de novo 

(Gorbacheva et al., 2018; Zhang et al., 2018; Korneev et al., 
2020) (see Table 1).

Pathological GVs, affecting the binding activity of TFBSs, 
can be located not only in promoter regions, but also in regula-
tory regions located at considerable distance from transcrip-
tion start sites (TSSs) of genes: enhancers (Lewinsky et al., 
2005; Zhang et al., 2018; Meddens et al., 2019), regulatory 
regions with repressive function (Claussnitzer et al., 2015), 
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Fig. 1. Disruption of the binding site caused by T→C substitution 
(rs1421085) weakens ARID5B repressor binding to the regulatory region 
of the IRX3 and IRX5 genes. As a result, the level of expression of IRX3 and 
IRX5 is increased.

Fig. 2. Disruption of the CTCF binding site caused by the nucleotide sub-
stitution (rs2001389) eliminates one of the boundary regions that deter-
mine the TAD structure. As a result, the tumor suppressor gene MFSD13A 
expression is downregulated.
The contacts between chromatin regions within the TAD are shown with 
brown lines. Interrogation points in the bottom figure indicate the lack of data 
on the new structure of TAD.

and TAD boundary regions (Mei et al., 2019) (see Table 1). 
For example, the rs1421085 T→C substitution associated 
with obesity impairs the functioning of the negative regula-
tory region controlling expression of the IRX3 and IRX5 genes 
(Claussnitzer et al., 2015). The rs1421085 locus is located in 
the intron of the FTO gene (Fig. 1) at a considerable distance 
from the transcription start sites of IRX3 and IRX5 (~520,000 
and ~1,164,000 bases). Normally, the DNA region containing 
allele T interacts with a repressor factor ARID5B, leading 
to a decrease in transcriptional activity of IRX3 and IRX5 
genes. In carriers of the mutant variant of the DNA sequence 
(allele C), the binding site of the ARID5B repressor factor is 
disrupted, which causes an excessively high expression of the 
IRX3 and IRX5 genes and activates adipogenesis (Claussnitzer 
et al., 2015).

Occasionally a nucleotide substitution at a polymorphic 
locus disrupts the TFBS and this, in turn, affects the functional 
activity of the TAD (see Table 1). This effect was found in 
the case of A→G (rs2001389), associated with the risk of 
pancreatic cancer (Fig. 2). The rs2001389 locus is located in 
the region that determines the structure of chromatin loops 
within the TAD. This TAD contains 91 genes and is formed 
by spatially adjacent chromatin regions (Mei et al., 2019). The 
DNA region containing the risk allele G is characterized by a 
reduced ability to interact with CTCF, which in this case acts 
as a structural protein of chromatin. Normally, CTCF binding 
ensures the functioning of one of the regions that determines 
the structure of chromatin loops within the considered TAD. 
The pathogenic allele G alters the activity of CTCF binding 
motif within TAD boundary disrupting the stability of corre-
sponding 3D structure of chromatin. As a result, the expres-
sion of the genes within this TAD is impaired. In this case, 
the greatest decrease in MFSD13A expression is observed.

The effects of genetic variability on DNA  
methylation and gene transcriptional activity
DNA methylation doesn’t change the nucleotide sequence 
and is the addition of a methyl group to the fifth carbon atom 
of cytosine (Angeloni, Bogdanovic, 2019). An increase in 
the level of DNA methylation, as a rule, leads to a long-term 
inactivation of the expression of genes lying in the methylated 
region, since, according to the generally accepted concept, 
methylation of a DNA region facilitates recruiting protein 
complexes, containing histone deacetylase (HDAC) (Jones 
et al., 1998; Nan et al., 1998). DNA methylation can also 
decrease the ability of some TFs to interact with DNA: it is 
known that CTCF factors and factors from the ETS family 
have such sensitivity to methylation (Wang et al., 2019). In 
contrast, another transcription factor, ZFP57, binds only to 
methylated DNA (Quenneville et al., 2011). Thus, cytosine 
methylation can activate different mechanisms of gene tran-
scription regulation, and not always an increase in the me thy-
lation level of the regulatory DNA region is associated with 
a decrease in the expression of the corresponding gene (Izzi 
et al., 2016; Wang et al., 2019).

Genetic variability affects significantly the methylation of 
DNA regions that have regulatory potential. Thus, a genome-
wide analysis of the methylation patterns of DNA collected 
from 24 subjects from Norfolk Island genetic isolate (Benton 
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et al., 2019), identified 12,761 regions containing at least two 
CpG dinucleotides and having an allele-specific methylation 
level. In most cases (98 %), regions with allele-specific me-
thylation level are co-localized with single nucleotide variants 
presented in dbSNP (Benton et al., 2019).

This study (Benton et al., 2019) also analyzed the location 
of allele-specific methylation regions relative to the set of 
polymorphic loci associated with human diseases extracted 
from the GWAS catalog database. It turned out that polymor-
phic loci associated with diseases overlap with regions of 
allele-specific methylation twice more often than it would be 
expected by chance. This means that the change in methyla-
tion levels due to genetic variability is one of the factors that 
increase the risk of disease.

As an example, consider the rs174537 (G→T) polymor-
phic locus located in the enhancer of the FADS1 and FADS2 
genes encoding fatty acid desaturases 1 and 2. The T variant 
of the rs174537 locus is associated with an increased risk of 
pathological disturbances of lipid metabolism (see Table 1). 
It was shown that individuals that have rs174537(T) allele 
had a higher methylation level of the regulatory region of the 
FADS1 and FADS2 genes in human liver (Howard et al., 2014), 
which led to the suppression of the transcriptional activity of 
FADS1 and FADS2.

Occasionally, in one of the allelic variants, DNA demethy-
lation occurs, initiated by TF binding to DNA (see Table 1). 
For example, such a mechanism was revealed for rs612529 
T→C. This locus is located in the promoter region of the 
VSTM1 (Fig. 3). The low expression of VSTM1 in monocytes 
provokes the development of atopic dermatitis. In this cell 
type, the promoter region containing the protective variant T 
interacts with the transcription factor PU.1 more actively 

than the other one containing variant C. PU.1 initiates DNA 
demethylation by recruiting DNA demethylases (for example, 
Tet2). As a result, carriers of the T allele have completely 
demethylated VSTM1 promoter, and VSTM1 expression is 
activated. In carriers of pathogenic variant C, the interaction 
of PU.1 with DNA is disrupted, as a result, methylation level 
of the VSTM1 promoter is elevated, and this is accompanied 
by a decrease in VSTM1 expression (Kumar D. et al., 2017).

The effects of the genetic variability  
on the chromatin states and chromatin  
spatial organization
Pathogenic GVs may impaire the chromatin state (Kilpinen 
et al., 2013). There are cases when the presence of a patho-
genic GV was accompanied by a change in the patterns of 
histone modification and the appearance (or disappearance) 
of DNase I hypersensitive sites (McVicker et al., 2013; Visser 
et al., 2015; Zhang et al., 2018; Cong et al., 2019). In these 
cases, allele-specific contacts between promoters and enhan-
cers were identified, the number of which correlated with the 
activity of the enhancer regions.

There are also known cases when structural variations of 
the genome (insertions, deletions, duplications, inversions, 
translocations longer than 50 nucleotides) lead to a change 
in the spatial organization of chromatin, thereby disrupt-
ing the expression of genes associated with pathological 
processes (Sun et al., 2018; Ibrahim, Mundlos, 2020). For 
example, the expansion of CGG trinucleotide repeats in the 
5′-untranslated region (5′-UTR) of the FMR1 gene, associated 
with the fragile X syndrome, disrupts the structure of TAD, 
that includes FMR1 (Fig. 4, see Table 1). Normally, FMR1 is 
very close to the 5′-boundary region of TAD (in Fig. 4, this is 
TAD1). The DNA region corresponding to this 5′-boundary 
is hypomethylated and is occupied by CTCF. In individuals 
with mutation-length CGG triplet repeats (more than 100), 
this boundary is ablated (this region is hypermethylated and 
its CTCF occupancy is lost). As a result, TAD1 dissolves and 
the boundary of the other TAD (in Fig. 4 it is designated as 
TAD2) shifts to the 3′-region of FMR1. Therefore, FMR1 is 
within the TAD2, which normally does not contain this gene. 
In this case, FMR1 promoter is hypermethylated, and FMR1 
expression is inactivated (Park et al., 2015; Sun et al., 2018).

To study molecular-genetic mechanisms of the effect of ge-
nome variability on the 3D chromatin structure, it is necessary 
to reconstruct the spatial genome organization. The following 
basic levels of the 3D genome organization have been identi-
fied: (1) regulatory DNA loops that bring together promoters 
and enhancers; (2) topologically associating domains (TADs), 
within which DNA regions have more contacts with each 
other than with neighboring domains; (3) A and B compart-
ments corresponding to transcriptionally active and condensed 
chromatin; and finally (4) chromosome territories (Fishman 
et al., 2018; Hansen et al., 2018). Disruption of 3D contacts 
between promoters and enhancers within the TAD, caused, for 
example, by chromosomal rearrangements, can significantly 
affect the transcriptional activity of a gene, increasing risk of 
diseases (Lupiáñez et al., 2015).

The Institute of Cytology and Genetics SB RAS has de-
veloped an experimental computer approach for prediction 
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Fig. 4. With an increase in the number of CGG triplet repeats in the 5’-un-
translated region of the FMR1 gene, the DNA region corresponding to 
the TAD1 boundary region is hypermethylated. This leads to impaired 
binding of CTCF factors and disrupts a barrier function of the boundary 
region.
The brown lines show the contacts between chromatin loops within TADs.

physical contacts between promoters and enhancers within 
the 3D chromatin structure (Fishman et al., 2018; Belokopy-
tova et al., 2020; Belokopytova, Fishman, 2021). The ap-
proach is based on the following information: (1) cell type; 
(2) cell-specific localization of enhancers in the linear genome 
(from the ENCODE database); (3) transcriptional activity of 
promoters (from RNA-seq experiments); (4) boundaries of 
chromatin loop extrusion (based on ChIP-seq mapping of 
CTCF occupancy in a definite cell type); (5) orientation of 
CTCF binding motifs (based on motif prediction pipeline); 
(6) A or B chromatin compartment (according to Hi-C experi-
ments). Analysis of these data using the original 3DPredictor 
program (Belokopytova et al., 2020), developed on the basis 
of machine learning algorithms, allows to predict the frequen-
cies of physical contacts between promoters and enhancers in 
the 3D genome structure with an accuracy that exceeds the 
accuracy of other known prediction methods.

The 3DPredictor was used to analyze the 3D genome struc-
ture in homozygous DelB/DelB mice that have a deletion of 
the 1.5 Mb genomic region containing Epha4. This deletion 
is accompanied by the appearance of additional contacts be-
tween Pax3 gene and Epha4 enhancer region, altering Pax3 
expression and leading to brachydactyly. Mice with the DelB/
DelB genotype are a genetic model of human pathology ac-
companied by limb malformations (Lupiáñez et al., 2015). 
Testing 3DPredictor on this model has demonstrated the high 
efficiency of the program: in homozygous DelB/DelB mice, 
ectopic contacts between the Pax3 gene and Epha4 enhan-  

cers cluster were predicted (Belokopytova et al., 2020), and 
these predictions were in good agreement with the experi-
mental data. 

Genetic variability: combined analysis  
of heterogeneous big biological and genetic data
As noted above, many polymorphic loci associated with dis-
eases are located at a considerable distance from the coding 
regions of genes (ENCODE Project Consortium, 2012; Mau-
rano et al., 2012). Additional studies are needed to identify the 
molecular-genetic mechanisms of the influence of such GVs 
on the predisposition to diseases. The purpose of such studies 
is to clarify the regulatory role of GVs. A typical example is 
the work (Zhang et al., 2018), which made it possible to find 
a functionally active regulatory variant rs4321755 associated 
with the risk of breast cancer. The rs4321755 locus is located 
in a distant enhancer that regulates the expression of the 
MRPS30 and RP11-53O19.1 genes (see Table 1). It turned out 
that in the presence of the pathogenic variant rs4321755(T), 
a new GATA3 binding site is created. The transcription factor 
GATA3 increases the functional activity of the enhancer, this 
leads to the formation of more contacts between the enhancer 
and the divergent promoter of the MRPS30 and RP11-53O19.1 
genes, and increased expression level of these genes. To iden-
tify this functionally significant regulatory variant, the authors 
developed an integrated experimental computer method based 
on a combined analysis of  heterogeneous big biological and 
genetic data, including: (1) data on allele-specific expres-
sion obtained from RNA-seq in combination with data on 
haplotypes; (2) expression quantitative trait loci (eQTL); 
(3) genomic distribution of DNAse I hypersensitive sites; 
(4) localization of ChIP-seq peaks from ENCODE and GEO 
databases; (5) localization of regulatory motives predicted by 
computer programs. Similar scenarios for integrated experi-
mental computer research have been implemented in the other 
studies (Chen C.-Y. et al., 2014; Claussnitzer et al., 2015; Zhao 
et al., 2019; Li et al., 2020).

This kind of research became possible due to (1) the deve-
lopment of modern high-throughput experimental approaches 
that allow producing data of different types on a genome-wide 
scale (parallel high-throughput sequencing, ChIP-seq, 3C, 
Hi-C, ChIA-PET techniques, DNAse I footprinting, bisulfite 
sequencing, etc.); (2) development of public information 
resources accumulating such experimental data. Table 2 pro-
vides a brief description of information resources containing 
genomic data obtained on the basis of omics technologies and 
used to study the mechanisms by which GVs alter the level of 
transcription. These resources present (1) the human genome 
an notation (GENCODE); (2) genome variability in human po-
pulations (HapMap, 1000 Genomes Project, IGSR, dbSNP); 
(3) GVs associated with diseases (GWAS central, GWAS 
ca talog, ClinVar, HGMD, OMIM, etc.); (4) modifications 
of  the chromatin (ENCODE, NIH Roadmap Epigenomics 
Mapping Consortium); (5) expression quantitative trait loci 
(GTEx pro ject, eQTL databases, exSNP, etc.); (6) profiling 
of transcription factor binding events by ChIP-seq (Cistrome 
Data Browser, GTRD, ReMap); (7) allele-specific binding 
of  TFs, identified using ChIP-seq data in combination with 
the data on the genotypes of the studied cells (AlleleDB, 
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Table 2. Information resources on genomic data obtained on the basis of the modern high-performance experimental methods

Information resource URL Description

The human genome annotation 

GENCODE* https://www.gencodegenes.org/ Reference quality human gene annotations created by merging the 
results of manual and computational gene annotation methods

Genetic diversity in human populations

HapMap (Haplotype Map) https://www.genome.gov/10001688/
international-hapmap-project
ftp://ftp.ncbi.nlm.nih.gov/hapmap/

A map of haplotype blocks of the human genome and the specific 
SNPs that identify the haplotypes (tag SNPs)

1000 Genomes Project 
(1KGP)

https://www.ncbi.nlm.nih.gov/ 
variation/tools/1000genomes/

Genetic variants (single nucleotide polymorphisms, insertions/dele-
tions, structural variants) and genotypes identified in individuals 
from 26 populations

International Genome 
Sample Resource (IGSR) 

https://www.internationalgenome.org Combining 1000 Genomes Project data with the other large 
datasets generated on 1000 Genomes samples by projects such as 
GEUVADIS, who generated RNA-Seq data on the 1000 Genomes 
European samples and the YRI population, and ENCODE, who have 
carried out extensive assays on the NA12878 cell line

dbSNP https://www.ncbi.nlm.nih.gov/snp/ Human single nucleotide variations, microsatellites, and small-
scale insertions and deletions along with population frequency, 
publication, molecular consequence, and genomic and RefSeq 
mapping information for both common variations and clinical 
mutations. The human data in dbSNP include submissions from the 
SNP Consortium, variations mined from genome sequence as part 
of the human genome project, and individual lab contributions of 
variations in specific genes, mRNAs, ESTs, or genomic regions

Disease-associated genetic variants

GWAS central (Genome-wide 
association studies central)

https://www.gwascentral.org/ Allele and genotype frequency data, genetic association significance 
findings. GWAS central gathers datasets from public domain projects, 
and also encourage direct data submission from the community

GWAS catalog (Genome-wide 
association studies catalog)

https://www.ebi.ac.uk/gwas/home Data on associations between polymorphic loci and phenotypic 
traits extracted from the published GWA studies

OMIM (Online Mendelian 
Inheritance in Man)

https://www.ncbi.nlm.nih.gov/omim A compendium of human genes and genetic disorders and traits, 
with particular focus on the molecular relationship between genetic 
variation and phenotypic expression. OMIM is based on the peer-
reviewed biomedical literature

ClinVar (Clinical Variations) https://www.ncbi.nlm.nih.gov/clinvar/ A public archive of reports of the relationships among human varia-
tions and phenotypes

HGMD (The Human Gene 
Mutation Database)

http://www.hgmd.cf.ac.uk/ac/ 
index.php

All published gene lesions responsible for human inherited disease

PheGenI (The Phenotype-
Genotype Integrator)

https://www.ncbi.nlm.nih.gov/gap/
phegeni

Phenotype-oriented resource that merges GWAS catalog data with 
several other databases (Gene, dbGaP, OMIM, eQTL and dbSNP)

EGA (The European 
Genome-phenome Archive)

https://ega-archive.org/ Data on the relationship between genotypes and phenotypes 
obtained by various experimental methods (GWAS, exome 
sequencing, whole-genome sequencing, single-cell sequencing, 
genotyping)

dbGaP (The database of 
Genotypes and Phenotypes)

https://www.ncbi.nlm.nih.gov/gap/ Data and results from studies that have investigated the interaction 
of genotype and phenotype in humans. Such studies include 
genome-wide association studies, medical sequencing, molecular 
diagnostic assays, as well as association between genotype and 
non-clinical traits

Chromatin modifications and chromatin states

ENCODE (The Encyclopedia 
of DNA Elements)

http://genome.ucsc.edu/ENCODE/
https://www.encodeproject.org/

Genome-wide profiles of histone modifications, genome-wide DNA 
methylation profiles, regions of  TF binding derived from ChIP-seq 
experiments, interactions between genomic loci, genomic distribu-
tion of DNAse I hypersensitive sites, expression data for more than 
300 cell types

NIH Roadmap Epigenomics 
Mapping Consortium

http://www.roadmapepigenomics.
org/

Human epigenomic data (DNA methylation profiles, histone modi-
fications, chromatin accessibility, etc.). Annotation of the human 
genome in accordance with the classifications of chromatin states 
(15, 18, 25-state models) 

https://www.internationalgenome.org
http://www.hgmd.cf.ac.uk/ac/index.php
http://www.hgmd.cf.ac.uk/ac/index.php
https://www.ncbi.nlm.nih.gov/gap/phegeni
https://www.ncbi.nlm.nih.gov/gap/phegeni
https://ega-archive.org/
https://www.ncbi.nlm.nih.gov/gap/
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End of  Table 2 

Information resource URL Description

Expression quantitative trait loci (eQTL)

Genotype-Tissue Expression 
(GTEx) project

https://www.gtexportal.org/home/ Expression and eQTL data in 54 human cell types with a healthy 
phenotype

eQTL databases https://www.hsph.harvard.edu/
liming-liang/software/eqtl/

Expression quantitative trait loci derived from lymphoblastoid cell lines

exSNP http://www.exsnp.org/ eQTL data from six cell types (LCLs, B cells, monocytes, brain, liver, and 
skin) integrated with SNPs in disease risk loci from GWA studies of seven 
common human diseases

eQTL Catalogue https://www.ebi.ac.uk/eqtl/ Cis-eQTLs and splicing QTLs from all available public studies on human 
(including GTEx project data)

eQTL Browser http://eqtl.uchicago.edu/cgi-bin/
gbrowse/eqtl/

eQTLs identified in recent studies in multiple tissues

Profiling of transcription factor binding events by ChIP-seq

Cistrome Data Browser http://cistrome.org/db/#/ The ChIP-seq, DNase-seq and ATAC-seq data: (1) genomic regions inter-
acting with TFs, (2) DNase I hypersensitive sites, (3) the binding locations 
of modified histone proteins. The data has been assigned statuses accord-
ing to six quality control criteria

Gene Transcription  
Regulation Database (GTRD)

https://gtrd.biouml.org/#! A collection of ChIP-seq experiments aimed at finding TF binding sites  
in the human and mouse genomes

ReMap (Global map  
of regulatory elements)

http://remap.univ-amu.fr/ A collection of ChIP-seq, ChIP-exo, DAP-seq experiments from public 
resources (GEO, ENCODE, ENA). Chromatin regions in contact with TFs, 
transcriptional coactivators, and chromatin remodeling factors

Allele-specific binding of TFs, identified using ChIP-seq data in combination with the data on the genotypes of the studied cells

AlleleDB http://alleledb.gersteinlab.org/ Genomic annotation of cis-regulatory SNVs associated with allele-specific 
binding and expression derived from RNA-seq and ChIP-seq data  
of 383 individuals from the 1000 Genomes Project

AlleleSeq http://alleleseq.gersteinlab.org/ Allele-specific binding of six TFs (cFos, cMyc, JunD, Max, NfκB, CTCF) 
identified using variation data for NA12878 from the 1000 Genomes 
Project as well as matched, deeply sequenced RNA-Seq and ChIP-Seq data 
sets generated for this purpose

The effects of genetic variants on TFBSs predicted in silico by computer programs

HaploReg https://pubs.broadinstitute.org/ 
mammals/haploreg/haploreg.php

Annotation of polymorphic loci within haplotype blocks that were de-
fined using LD information from the 1000 Genomes Project. Annotation 
includes: (1) chromatin state and protein binding annotation from the 
Roadmap Epigenomics and ENCODE projects, (2) sequence conservation 
across mammals, (3) the effect of GVs on regulatory motifs, (4) the effect 
of GVs on expression from eQTL studies

SNP2TFBS http://ccg.vital-it.ch/snp2tfbs/ Genetic variants from 1000 Genomes Project, which, according to in silico 
predictions, affect the similarity of TFBSs with weight matrices

rSNPBase http://rsnp3.psych.ac.cn/index.do SNP-related regulatory elements (TF binding regions, TADs, mature 
miRNA regions, predicted miRNA target sites, etc.), SNP-related regulatory 
element-target gene pairs, SNP-based regulatory networks

rVarBase http://rv.psych.ac.cn/ Annotation of polymorphic loci (including copy number variations). Anno-
tation includes (1) chromatin state, (2) related regulatory element (CpG is-
lands, matched TF binding sites, miRNA target sites, etc.), (3) target genes

Information resources integrating or accumulating diverse types of data

UCSC Genome Browser https://genome.ucsc.edu/ Data is integrated based on a graphical interface that allows  visualizing 
genome sequences along with a large number of annotations and features 
(positions of transcripts, GC percent, chromatin states, histone marks, con-
tacts between chromatin regions, expression, genetic variability, etc.). Data 
can be retrieved in text format via special Table Browser program

Ensembl Genome Browser https://www.ensembl.org/ 
index.html

Data is integrated based on a graphical interface that allows visualizing 
genome sequences along with a large number of annotations and 
features (positions of transcripts, GC percent, chromatin states, genetic 
variability, etc.). Tables of Ensembl data can be downloaded via the highly 
customizable BioMart data mining tool

GEO (Gene Expression 
Omnibus) 

https://www.ncbi.nlm.nih.gov/gds The largest public repository that archives and freely distributes compre-
hensive sets of microarray, next-generation sequencing, and other forms 
of high-throughput functional genomic data submitted by the scientific 
community

* GENCODE reference gene annotations for the human and mouse genomes are also available through the UCSC Genome Browser (https://genome.ucsc.edu/) 
and the Ensembl genome browser (https://www.ensembl.org/index.html).

http://ccg.vital-it.ch/snp2tfbs/
https://genome.ucsc.edu/
https://www.ensembl.org/index.html
https://www.ensembl.org/index.html
https://www.ncbi.nlm.nih.gov/gds
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Fig. 5. The view of the human genomic region (chromosomal coordinates chr9: 117,703,000–117,725,000) displayed by the 
Genome Browser of the University of California, Santa Cruz, USA (UCSC Genome Browser, https://genome.ucsc.edu/).
(1) transcripts of the TLR4 gene, displayed according to the GENCODE v32 release; (2) DNase I hypersensitivity peak clusters derived from 
assays in 95 cell types (as a part of the ENCODE project); (3) transcription factor binding derived from a large collection of ChIP-seq experi-
ments performed by the ENCODE project; (4) levels of enrichment of the H3K27Ac histone mark across the genome as determined by a 
ChIP-seq assay on 7 cell lines from ENCODE (H3K27Ac is the acetylation of lysine 27 of the H3 histone protein, and it is often found near 
regulatory elements); (5) short genetic variants from dbSNP release 153. The yellow vertical line marks the position the SNP rs7873784 
located in the 3’-UTR of TLR4 gene and associated with development of rheumatoid arthritis and type 2 diabetes (see Table 1). According 
to (Korneev et al., 2020), the G→C substitution at the rs7873784 locus creates PU.1 binding site, that increases the activity of the enhancer 
located in the 3’-UTR of the TLR4 gene.

 AlleleSeq); (8) the effects of genetic variability on TFBSs 
predicted in silico by computer programs (HaploReg,   
SNP2TFBS, rSNPBase, rVarBase).

A separate category of information resources includes: 
(1) the genome browser of the University of California, Santa 
Cruz, USA (UCSC Genome Browser, https://genome.ucsc.
edu/) and (2) the genome browser of the Ensembl database 
which is a joint research project of the European Bioinforma-
tics Institute and the Wellcome Trust Sanger Institute (Ensembl 
Genome Browser, https://www.ensembl.org/index.html). 
These genome browsers integrate data on genome sequences 
and its features obtained by different research groups using 
a wide range of experimental methods (Lee et al., 2020; Yates 
et al., 2020). The websites of these browsers provide access to 
the primary DNA sequences and genome annotations for many 
organisms (including vertebrates and several other model spe-
cies). Browser’s graphical interfaces allow to obtain scalable 
maps of genomic regions and to visualize interactively a large 
number of annotations and features (for example, positions 
of transcripts, positions of GVs, chromatin regions interact-

ing with TFs detected by ChIP-seq experiments, data on ge-
nome-wide mapping of DNase I hypersensitive sites, etc.)  
(Fig. 5).

The websites of the UCSC Genome Browser and Ensembl 
Genome Browser provide access to software tools for extrac-
tion data as text files: UCSC table browser (https://genome.
ucsc.edu/cgi-bin/hgTables) and BioMart data mining tool 
(https://www.ensembl.org/info/data/biomart/index.html).

Information resources on allele-specific binding  
of transcription factors and on the effects 
of genetic variants on TFBSs predicted in silico
As noted above, the influence of pathogenic GVs on gene 
expression is often mediated through a change in the func-
tional activity of TFBSs. In this regard, information resources 
that include whole genome data on allele-specific binding of 
TFs, identified based on the ChIP-seq method, can be ex-
tremely useful. A range of approaches have been deve loped 
to identify allele-specific binding of TFs (Rozowsky et al., 
2011; Reddy et al., 2012; Waszak et al., 2014; Younesy et 
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al., 2014). These approaches are based on the analysis of the 
ChIP-seq data in combination with the sequencing data, which 
allow to find heterozygous loci within a single genome and to 
phase genotypes of the studied cells. Thus, for each type of 
cells examined, its own set of genomic loci interacting with 
a specific transcription factor in an allele-specific manner 
can be identified. For example, in (Cavalli et al., 2016a), the 
ChIP-seq data for 55 TFs in the HepG2 cells and 57 TFs in the 
HeLa-S3 cells were analyzed. In HepG2 cells, 3001 genomic 
loci with allele-specific signals were found, and 712 loci were 
found in HeLa-S3 cells. The authors note the pronounced 
tissue-specific nature of allele-specific TF binding: of the 
entire set of identified loci, only 34 were found in both cell 
lines (Cavalli et al., 2016a).

The data on allele-specific binding of TFs are collected in 
the following information resources: AlleleDB (http://alleledb.
gersteinlab.org/) (Chen J. et al., 2016), AlleleSeq (http:// 
alleleseq.gersteinlab.org/) (Rozowsky et al., 2011) (see Table 2), 
as well as in the supplemental files to publications (Cavalli et 
al., 2016a, b, 2019; Shi et al., 2016).

Studies aimed at identifying allele-specific TF binding 
made it possible to estimate the number of genetic variants 
that affect the binding of a particular transcription factor to 
DNA in a particular cell type. The average number of such 
events registered for a single transcription factor can range 
from 19 to 37 for cells with a normal karyotype (GM12878, 
H1-hESC) and from 12 to 55 for cancer cell lines (SK-N-SH, 
K562) (Cavalli et al., 2016a, b).

When generating hypotheses on the mechanisms that medi-
ate the effect of GVs on disease risk, one can also use the data 
on the effects of genetic variants on the functional activity of 
TFBSs predicted in silico. Such information is accumulated in 
specialized databases: HaploReg (https://pubs.broadinstitute.
org/mammals/haploreg/haploreg.php) (Ward, Kellis, 2012), 
SNP2TFBS (http://ccg.vital-it.ch/snp2tfbs/) (Kumar S. et al., 
2017), rSNPBase (http://rsnp3.psych.ac.cn/index.do) (Guo, 
Wang, 2018), rVarBase (http://rv.psych.ac.cn) (see Table 2).

Conclusion
A significant proportion of pathogenic genetic variants asso-
ciated with diseases are located in non-coding regions of the 
human genome. Such genetic variants can with a high degree 
of probability disrupt functional activity of regulatory regions 
that control the transcriptional activity of genes. The examples 
of the mechanisms of influence of pathogenic genetic variants 
on gene expression considered in this review confirm this 
possibility. The studies that have made it possible to identify 
these mechanisms are complex and are based on the analysis 
of big heterogeneous genetic data. The online omics data re-
sources provide ample opportunities for such research. Further 
development of experimental techniques and bioinformatics 
methods for analyzing the data obtained with the help of this 
techniques, as well as an increase in the set of investigated cell 
types, will significantly expand these possibilities.
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