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Background. Shenmai injection (SMI) has been used in the treatment of cerebrovascular diseases and cardiovascular diseases.
However, the underlying mechanism of SMI for neuroprotection after acute ischemic stroke (AIS) remains unclear. -is study
aimed to explore the potential molecular mechanism of SMI in treating reperfusion injury after AIS and its protective effect on
PC12 cells against oxidative stress through in vitro experiments based on network pharmacological predictions. Methods. -e
network pharmacology method was used to collect the compounds in SMI and AIS damage targets, construct the “drug-disease”
target interaction network diagram, screen the core targets, and predict the potential mechanism of SMI treatment of AIS. In
addition, the oxidative stress model of PC12 cells was induced by H2O2 to evaluate the neuroprotective effect and predictive
mechanism of SMI on PC12 cells. Results. A component-targeted disease and functional pathway network showed that 24
components from SMI regulated 77 common targets shared by SMI and AIS. In PC12 cells damaged by H2O2, SMI increased cell
survival, alleviated oxidative stress injury, prevented cell apoptosis, and increased the expression of APJ, AMPK, and p-GSK-3β.
After Si-APJ silenced APJ expression, the above protective effect of SMI was significantly weakened. Conclusion. SMI is
characterized by multiple components, multiple targets, and multiple pathways and inhibits oxidative stress and alleviates nerve
injury induced by H2O2 through regulating the APJ/AMPK/GSK-3β pathway.

1. Introduction

AIS is recognized as the most common cerebrovascular
disease and a major public health problem [1, 2]. At present,
early restoration of blood supply is considered to be themain
treatment strategy for AIS [3]. However, the reperfusion
process following an ischemia attack may further exacerbate
brain damage, which is called cerebral ischemia/reperfusion
(I/R) injury [4, 5]. -e pathological mechanism of I/R is
complex, involving a variety of pathophysiological pro-
cesses, such as oxidative stress, inflammatory response,
neuronal death, and apoptosis [6, 7]. -erefore, treatment
based on the mechanisms described above is considered to
be a promising strategy for reducing the consequences of
stroke and brain I/R injury.

SMI is a herbal injection approved by China’s State Food
and Drug Administration (CFDA) in 1995 [8]. It is widely
used as an organ protective agent in China for the treatment
of cerebral infarction, coronary heart disease, and malignant
diseases [9–11]. It consists of aqueous extracts of two tra-
ditional Chinese medicine (TCM): Red ginseng (Hong Shen)
and Ophiopogonis Radix (Mai Dong). Recent studies have
shown that SMI has antioxidant activity and can improve
cardiac microcirculation by scavenging oxygen free radicals
[12, 13]. It attenuates reperfusion injury in H9c2 cells by
modulating mitochondrial dynamics [8]. By reducing the
generation of ROS and regulating intracellular calcium and
inhibiting cell apoptosis, it has a protective effect on cardiac
dysfunction and I/R injury [14–16]. However, due to the lack
of in-depth molecular biology studies and the complexity of
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its chemical components, the mechanism of action of SMI
remains unclear.

-e orphan receptor APJ and its endogenous ligand
apelin are widely distributed in the central nervous system
and participate in the pathophysiological regulation of some
brain diseases, including AIS [17]. -ere is increasing evi-
dence that the Apelin/APJ system inhibits apoptosis or death
and improves behavioral performance through various
mechanisms, including inhibition of excitatory toxicity,
inflammatory response, endoplasmic reticulum, and oxi-
dative and nitrifying stress; it also regulates autophagy and
promotes angiogenesis, thus showing neuroprotective effects
[18, 19]. Studies have shown that Apelin can reduce oxi-
dative stress, autophagy, and apoptosis in PC12 cells by
activating PI3K and ERKs while reducing the expression of
Beclin-1 and LC3-II [20, 21]. -erefore, targeting APJ sig-
naling pathway may have a protective effect on I/R injury.

Network pharmacology combines chemoinformatics,
bioinformatics, and network biology to help reveal the
complex pharmacological mechanisms of several TCM
preparations [22, 23]. It advocates changing the single-target
mode of drugs acting on diseases into a multitarget mode
[24]. -e interaction pathways between diseases and drug
targets can be explained by mining core targets, integrating
targets, and analyzing core targets at the molecular level of
targets, genes, and pathways [25, 26].

In summary, SMI is a multicomponent, multitarget drug
that exerts a protective effect against oxidative stress by
regulating molecular networks. -erefore, this study aims to
explore and verify the intervention mechanism of SMI on
oxidative stress damage in I/R through network analysis and
cell experiments.

2. Materials and Methods

2.1. Effective Ingredients and Targets Collection of SMI.
Since 2004, the CFDA has promulgated the “Drug Speci-
fications,” requiring all TCM injections to be standardized
through chromatographic fingerprints before being mar-
keted [27].

-e National Drug Standard (WS3-B-3428-98-2010Z)
issued by CFDA includes the revised standard of SMI.
-erefore, the main ingredients of SMI have strict quality
control. High-performance liquid chromatography (HPLC)
fingerprint and pattern recognition technology were used to
identify the quality of SMI produced by different manu-
facturers, and it was found that the components of samples
from different manufacturers had great similarities [28].
HPLC fingerprint and pattern recognition technology have
previously been used to analyze the SMI components used in
this study, and the results showed that its main chemical
components include ginsenosides Rb1, Re, and Rg1,
ophiopogonins D and D′, and methylophiopogonanones A
and B [29].

-en, the ingredients were screened with OL ≥ 0.18
as the standard. In addition, those main therapeutic
target which were mentioned in the multiple studies
but less than 0.18 still retain. -en, the included
compounds were input into Swiss Target Prediction

(https://www.swisstargetprediction.ch/) [30] to stan-
dardize the target information, and the target with
probability ≥0.1 was screened.

2.2. AIS Genes Collection. -e keyword “acute ischemic
stroke” was used to explore the potential targets of diseases
in the GeneCards (https://www.genecards.org) [31] and
Online Mendelian Inheritance in Man (OMIM) (https://
omim.org/) [32] databases. In GeneCards, the higher the
score is, the more closely the target is associated with the
disease. If there are too many targets, the target whose
Relevance Score is greater than 10 is set as the potential
target of the disease. After the combination of two database
targets, the duplication is deleted to obtain the disease
targets.

2.3. Network Construction and Analysis. Cytoscape software
(Version 3.8.0) [33] was used to visualize the drug com-
ponent target network. -e core target used the Metascape
database (https://metascape.org/gp/index.html) [34] for
KEGG pathway enrichment analysis, and the results are
visualized through the online mapping tool Bioinformatics
(https://www.bioinformatics.com.cn/) to study whether
Chinese herbal medicine may participate biologically.

2.4. Materials. Highly differentiated PC12 cells (ZQ0150)
were purchased from Zhongqiao Xinzhou Biotechnology
Co., Ltd. (Shanghai, China). SMI (Lot: Z33020018) was
purchased from Zhengda Qingchunbao Pharmaceutical Co.,
Ltd. (Hangzhou, China). One-Step TUNEL Apoptosis Assay
Kit (C1089), Lipid Peroxidation MDA Assay Kit (S0131S),
Total Superoxide Dismutase (SOD) Assay Kit with WST-8
(S0101S), and Reactive Oxygen Species (ROS) Assay Kit
(S0033S) were provided by Beyotime (Shanghai, China).
Anti-AMPK alpha (#5831), phospho-AMPKα (-r172)
(40H9) (#2535), anti-GSK-3β (#9315), and phospho-GSK-3β
(Ser9) (#5558) were purchased from Cell Signaling Tech-
nology, Inc. (Beverly, MA, USA). Anti-APJ (20341-1-AP)
and CoraLite488-conjugated Affinipure Goat Anti-Rabbit
IgG (H+L) (SA00013-2) were purchased from ProteinTech
(Wuhan, China).

2.5. Cell Culture and Transfection. PC12 cells were cultured
with different concentrations of H2O2 for 24 h, and the 50%
inhibitory concentration (IC50) was selected for subsequent
experiments. -en, cells were cultured with different con-
centrations of SMI for 24 h, and the drug concentration with
the highest cell survival rate was selected for follow-up study.

Small interference RNA against APJ (Si-APJ) was syn-
thesized by GenePharma Co., Ltd. (Shanghai, China). Before
H2O2, PC12 cells were transfected with Si-APJ or empty
vector, respectively. Transfected cells with Lipofectamine
2000 (#11668019; -ermoFisher Scientific, Shanghai, China)
for 24 h according to the manufacturer’s protocols.-en, the
cells were harvested for follow-up experiments as indicated.
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2.6. Cell Viability Measurements. Cell viability was deter-
mined by the CCK-8 assay. PC12 cells were cultured in 96-
well plates and treated with H2O2 and SMI, and then CCK-8
solution (10 μL/100 μL medium) was added and incubated
for 2 h. -e absorbance of culture medium at 450 nm was
detected by microplate reader (Bio-Tek, USA).

2.7. TUNEL Staining. PC12 cells were seeded into 6-well
culture plates. After treatment, cells were fixed with 4%
paraformaldehyde for 30min. -en, 0.3% Triton X-100 PBS
was added and incubated for 5min. After this, it was in-
cubated with TUNEL detection solution at 37°C for 1 h.

2.8. Determination ofMDA, SOD, and ROS. -e activities of
MDA, SOD, and ROS in cells were detected to measure the
antioxidant capacity of SMI. According to the manufac-
turer’s protocols of the commercial kits, MDA and SOD
values were measured by Microplate Reader, and the total
cellular protein was measured with the BCA method for
standardization. ROS fluorescence was observed under a
fluorescence microscope (BX71; Olympus, Tokyo, Japan).

2.9. Immunofluorescence Staining. Briefly, PC12 cells were
first fixed with 4% paraformaldehyde for 30min, and then
0.3% Triton X-100 was added to permeabilize for 5min.
After blocking with 5% BSA for 30min, APJ primary an-
tibody was added and incubated overnight at 4°C. Next, cells
were incubated with a secondary antibody at 37°C for 1 h and
DAPI for 5min. Fluorescence images were obtained with a
fluorescence microscope.

2.10. Western Blotting. Total protein obtained from PC12
cells was quantified using BCA Protein Quantification Kits.
Equal amounts of proteins were separated by SDS-PAGE
and transferred onto a polyvinylidene fluoride (PVDF)
membrane. After being blocked for 1 h, the membranes were
incubated with primary and secondary antibodies at room
temperature for 2 h and 1 h, respectively.

2.11. Statistical Analysis. SPSS 22.0 and GraphPad Prism
8.0.1 were used for statistical analysis and graph making.-e
Shapiro–Wilk (SW) method was used to test the normal
distribution of quantitative data, the mean± SD was used to
describe the normal distribution, one-way analysis of var-
iance (ANOVA) was used to compare the mean of multiple
groups of samples, and LSD was used for comparison be-
tween two groups. Non-normal distribution was described
by median and quartile, and differences between groups
were tested by nonparametric test. Significance level of
statistical tests was set at 0.05.

3. Results

3.1. Identification of Common Targets of AIS and SMI.
-e target data of SMI were obtained through the Swiss
Target Prediction. -e component-target network was
constructed by Cytoscape software, and a network graph of

388 nodes and 861 edges was obtained (Figure 1(a)). Among
them, 388 nodes included 11 components of Red Ginseng,
13 components of Ophiopogonis Radix, and 362 targets
(Supplementary Table S1). 861 edges represented the rela-
tionship between SMI components and targets. -en, the
targets of AIS were obtained through the disease-related
database, and a total of 692 targets were included (Sup-
plementary Table S2). Among them, 77 targets were shared
by both SMI and AIS (Figure 1(b), Supplementary Table S3)
and became the focus of our following analysis.

3.2. Protein-Protein Interaction Data and KEGG Pathway
EnrichmentAnalysis. 77 common SMI and AIS targets were
introduced into the STRING11.0 platform to construct the
PPI network (Figure 2(a)). According to the rank of degree
value, TNF, AKT1, EGFR, SRC, JUN, and STATA3 are the
top targets, which are the core targets of SMI for AIS
treatment.

Metascape software was used to analyze the KEGG
pathway enrichment for core targets, including endocrine
resistance, serotonergic synapse, Apelin signaling pathway,
and renin-angiotensin system, suggesting that SMI may act
on AIS through these pathways. At the same time, the first 10
process pathways were selected by using Bioinformatics to
draw the KEGG enrichment analysis bubble map
(Figure 2(b)).

3.3. Protective Effects of SMI on H2O2-Induced Cell Death.
To assess the effect of SMI on H2O2-induced oxidative stress,
we first measured the effects of different concentrations of
H2O2 and SMI on the viability of PC12 cells by CCK-8 assay.
PC12 cells were cultured for 24 h under different conditions,
and the results are shown in Figure 3. -e higher the H2O2
concentration, the lower the cell survival rate, while the SMI
concentration of 0–10mg/mL had no significant effect on
the cell survival rate.WhenH2O2 concentration was 100 µM,
the cell survival rate was 45%, which was closest to IC50.
-erefore, H2O2 concentration of 100 µM was used for
subsequent experiments. SMI could significantly improve
the cell survival rate reduced by H2O2, and the effect was
most significant at 4mg/mL, which was used for subsequent
experiments.

3.4. SMI-Ameliorated Cells Injury by Enhancing APJ Level.
According to the results of KEGG pathway enrichment
analysis in network pharmacology, the APJ level was selected
to explore the mechanism of SMI on oxidative stress after
AIS.

To further confirm the effect of SMI on APJ expression,
the immunofluorescence method was used to visually detect
APJ content, and Si-APJ was used to silence APJ expression.
-e changes in APJ fluorescence intensity were observed, as
shown in Figure 4. H2O2 treatment can significantly reduce
the fluorescence intensity of APJ. SMI itself has no effect on
the fluorescence intensity of APJ but can enhance the
fluorescence intensity after H2O2 treatment. Compared with
Si-NC, Si-APJ significantly reversed the effect of SMI on
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APJ. -ese data support the hypothesis that APJ plays an
important role in the antioxidative stress mechanism of SMI.

3.5. SMI Attenuated H2O2-Induced PC12 Cell Apoptosis.
-e TUNEL response is well known as apoptosis. Compared
with normal PC12 cells, H2O2 stimulation significantly in-
creased the proportion of TUNEL-positive cells and in-
creased the cell fluorescence intensity, while SMI itself has
no effect on cell apoptosis (Figure 5). Compared with the
H2O2 group, SMI significantly reduced the apoptosis index,
while Si-APJ partially reversed the effect of SMI. -ese data
indicate that SMI can reduce cell apoptosis caused by H2O2,
and the mechanism is related to the APJ pathway.

3.6. SMI Attenuated H2O2-Induced PC12 Cell Oxidative
Stress. To investigate the effects of SMI on H2O2-induced
oxidative stress in PC12 cells, biochemical indices of

oxidative stress, including SOD activity, ROS level, and
MDA level, were detected. As shown in Figure 6, compared
with the control group, H2O2 treatment can induce oxidative
stress injury, showing that the MDA level and ROS fluo-
rescence intensity are significantly upregulated, while SOD
activity is significantly decreased. Compared with H2O2
group, SMI significantly increased SOD activity of PC12
cells, while the MDA level and ROS fluorescence intensity
were significantly decreased. -e effect of SMI was partially
reversed by Si-APJ. -e above results indicate that SMI can
significantly reduce the abnormal oxidation of PC12 cells
induced by H2O2 and restore the endogenous antioxidant
system, while the silence of APJ weakens its antioxidant
activity.

3.7.Effect of SMIonAPJ/AMPK/GSK-3βPathway. To further
explore the molecular mechanism downstream of APJ, the

(a)

SMI

285 77 615

AIS

(b)

Figure 1: (a) SMI component-target network diagram. (b)-e intersection targets of the drug SMI and the disease AIS.
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(a)

Figure 2: Continued.
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protein expression of APJ/AMPK/GSK-3β pathway was
detected by western blot. As shown in Figure 7, H2O2
significantly reduced the protein expression levels of APJ
and p-AMPK, as well as the phosphorylation level of GSK-
3β. SMI could increase the protein expression levels of APJ,
p-AMPK, and p-GSK-3β. When Si-APJ silenced APJ, the
effects of SMI on p-AMPK and p-GSK-3β were significantly
reduced. -ese results indicated that SMI could protect
H2O2-damaged PC12 cells through APJ/AMPK/GSK-3β
pathway.

4. Discussion

SMI is derived from the classic formula of TCM (Shengmai
San) and is widely used in diseases of the cerebrovascular
system, cardiovascular system, and tumor system with
definite curative effects [35, 36]. A meta-analysis of 11
clinical studies showed that SMI was beneficial in improving
the clinical efficacy of AIS [37].

Scientifically, oxidative stress is mainly the result of ex-
cessive accumulation of ROS [38], which plays an important
role in the pathogenesis of I/R. In this study, the oxidative
stress model of PC12 cells was induced by H2O2, and then
SMI intervention was performed. -e results showed that

SMI can improve cell survival rate, alleviate oxidative stress
injury, and inhibit apoptosis, suggesting that SMI has a
neuroprotective effect. Early studies have shown that SMI’s
effect on intracellular Ca2+ homeostasis, especially in re-
ducing phosphate inhibition, has a myocardial protective
effect on postmyocardial infarction reperfusion [14]. It has
been reported that ginsenoside Rb1 protects I/R-induced
myocardial injury by regulating energy metabolism mediated
by the RhoA signaling pathway [39]. Total saponins protect
myocardial I/R injury through the AMPK pathway [40].
However, these studies on the mechanism of SMI on I/R
injury are currently limited to the cardiovascular system, and
there are few studies on the cerebrovascular system.

We used network pharmacology tools to demonstrate
the molecular mechanism of the neuroprotective effect of
SMI on I/R after AIS. Network pharmacology has been used
to predict the pharmacological mechanisms of TCM [41, 42]
and helps clarify the mechanism of action of TCM from a
systematic point of view at the molecular level [43]. In this
study, network pharmacology studies have shown that the 24
potential components in SMI may play a central role in
regulating 362 targets that are mainly related to AIS. APJ
signaling pathway is an essential pathway in the target
disease-function pathway network.
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Figure 2: (a) SMI-AIS PPI network. (b) Enrichment map of the KEGG pathway.
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Evidence-Based Complementary and Alternative Medicine 9



**

##
#

##
##

##

##

##

0

20

40

60

80

100

SO
D

 (U
/m

g)

CO
N

H
2O

2

H
2O

2+
SM

I

H
2O

2+
SM

I
+S

i-A
PJ

H
2O

2+
SM

I
+S

i-N
C

SM
I

(d)

Figure 6: SMI attenuated H2O2-induced PC12 cells oxidative stress. (a, b) -e representative images from ROS staining and fluorescence
intensity of ROS. Scale bar� 20 μM. (c, d) -e expression levels of MDA and SOD in PC12 cells; ∗∗P< 0.01 vs control group; #P< 0.05;
##P< 0.01.

APJ

p-AMPK

AMPK

p-GSK-3β

GSK-3β

GAPDH

H2O2

SMI
Si-APJ
Si-NC

-
-
-
-

+
-
-
-

+
+
-
-

+
+
+
-

+
+
-
+

(a)

**

**

## ##

##

##

0

50

100

150

A
PJ

/G
A

PD
H

 (%
 o

f c
on

tro
l)

H
2O

2+
SM

I+
Si

-N
C

CO
N

H
2O

2+
SM

I+
Si

-A
PJ

H
2O

2

H
2O

2+
SM

I

(b)

Figure 7: Continued.

10 Evidence-Based Complementary and Alternative Medicine



At different stages of AIS, the expression of APJ will change
temporarily [44]. Many transcription factors are involved in
regulating the expression of APJ [45]. In the early stage of
cerebral ischemia, hypoxia-inducible factor 1α (HIF-1α) and
Sp1 transcription factor (Sp1) induce the upregulation of APJ
expression [46, 47]. In the reperfusion phase, APJ expression is
downregulated, which may be related to oxidative stress, en-
doplasmic reticulum, autophagy, and inflammation and the
interaction between them [48, 49]. In this study, the oxidative
stress induced by H2O2 downregulated the expression of APJ.

Studies have shown that AMPK is a downstream target
of APJ-mediated anti-inflammatory and antioxidative stress
during brain and heart ischemic injury [50, 51]. Consistent
with these views, in this study, when Si-APJ was used to
silence APJ, AMPK expression was also reduced. AMPK, as
an energy sensor andmaster regulator of metabolism, plays a
key role in regulating cell survival in vivo and in vitro [52].
Activating AMPK to inhibit neuronal apoptosis is consid-
ered to be a treatment strategy for neurological diseases [53].
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine
protein kinase, composed of two subtypes GSK-3α and
GSK-3β, and is involved in a variety of cellular processes,
including apoptosis, oxidative stress, cell proliferation, and
glycogen metabolism [54]. AMPK inhibits GSK-3β activity
by phosphorylation at Ser9 [44]. Recent evidence suggests
that GSK-3β promotes cell death and that inhibition of
GSK-3β is related to the survival mechanisms against various
stresses associated with oxidative stress [55]. Our study
detected the change of APJ expression in H2O2-induced
cellular oxidative stress model for the first time, indicating

that the neuroprotective effect of SMI is partly achieved
through the APJ/AMPK/GSK-3β pathway.

5. Conclusions

In short, network pharmacology analysis shows that SMI has
the characteristics of multiple components, multiple targets,
and multiple pathways. Further cell experiments confirmed
that it can reduce H2O2-induced oxidative stress and im-
prove cell survival, and these mechanisms may involve
activation of APJ/AMPK/GSK-3β signaling pathway.
However, further work is needed to validate other signaling
pathways and clarify their relationships.
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Figure 7: SMI alleviated H2O2 injury in PC12 cells through APJ/AMPK/GSK-3β signal pathway. Protein levels detected by western blot.
∗∗P< 0.01 VS control group; ∗P< 0.05VS control group; #P< 0.05; ##P< 0.01.
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