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Abstract: A series of catalytic coatings consisting of MnOx-CeO2 and TiO2 support were prepared by
atmospheric plasma spraying, which was aimed at the application of selective catalytic reduction
(SCR) of NOx. The effect of the load of active component on the coating was firstly studied. The results
showed that all the coating presented the highest catalytic activity at approximately 350 ◦C and the
coating with the composition of 20MnOx/5CeO2/TiO2 (wt%) achieved the most powerful performance.
The coating was then prepared on a wire-mesh structure substrate, which can be easily assembled as
a gas filter. The results showed that the specific surface area was greatly increased resulting in the
significant improvement of the catalytic activity of the coating. This strategy offered a promising
possibility of removing NOx and particulate fliting simultaneously in industrial applications.

Keywords: atmospheric plasma spray; wire-mesh structure; selective catalytic reduction; Mn-Ce-Ti
mixed oxides

1. Introduction

Nitrogen oxides (NOx) are the main pollutants in the air, which are emitted by vehicle exhaust,
combustion of fossil fuels, especially from electric power plants. The NOx is very harmful to the
environment, which results in acid rain, photochemical smog, and ozone hole [1,2]. The selective
catalytic reduction (SCR) with NH3 is currently the most widely used measures that transform NOx

emissions from stationary sources to N2 and H2O, primarily through the reaction [3]:

4NO + 4NH3 + O2 = 4N2 + 6H2O (1)

In general, the commercially used catalyst for the SCR process is V2O5/TiO2 (anatase) catalyst,
which can be enhanced by the addition of WO3 or MoO3 [3–7]. However, this kind of catalyst only
has an excellent efficiency at an elevated temperature range (300–400 ◦C) and will be easily disable in
the environment containing SO2. In this context, the Mn-based catalysts was found to be an excellent
candidate in the SCR processing in low temperature, which could be located at the downstream of the
desulfurization and particulate control devices. The contact with SO2 and small particulates could be
reduced [8]. Specifically, the MnOx-CeO2 supported by anatase TiO2 offers high catalytic activity at a
relatively lower temperature [3,8–10]. The CeO2 transforms to Ce2O3 in the reaction owing to its large
oxygen storage capacity. Since the TiO2 (anatase) has a large surface area and it provides more active sites,
it is an excellent support in the catalyst for NOx removal. Moreover, the MnOx can be better dispersed on
the TiO2 support, and a fine synergistic effect could be generated between MnOx and anatase [11].

Currently, many works on SCR performances were tested in the laboratory, and the majority of
these works concerned the powder-based catalysts only, the reports on the coating-type catalysts that
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can be applied on a large scale was rarely found. One relevant work on washcoat-type catalysts were
prepared on the honeycomb cordierite (CC) substrate [12]. However, these monoliths with narrow
channel structures inside yield significant air pressure drop, in which a laminar gas flow takes place so
that they had a low heat-transfer and mass-transfer efficiency. Using wire-mesh as substrate could
overcome this circumstance to a large extent, because it has greater heat transfer numbers, a moderate
pressure drop, good thermal and mechanical strength, and an excellent thermal response as well due
to the porous structure [13–15]. The air pressure drop could reach 4000 Pa in cordierite, which is
much higher than the porous wire-mesh (no more than 1000 Pa) [16]. Additionally, the heat-transfer
and mass-transfer coefficient was influenced by the wire-mesh thickness and the variable channel
radius. Moreover, the wire-mesh typed is much cheaper, whose coast is about only 25% of the ceramic
honeycombs and foams. Furthermore, the high geometric flexibility of wire-mesh can meet many
different shape requirements in actual applications. These features make it easy to be used in the
manufacturing of gas filter or gas heater, which can remove NOx and eliminate dust simultaneously.

Atmospheric plasma spray (APS) is a low cost and high flexibility deposition technique in the
industry, which could produce a variety of coatings on any substrate. Moreover, the ceramic coating
prepared by APS with porous structure could increase the specific area of the surface, therefore leading
to an enhancement of the catalytic reaction [17,18]. Coating deposited on the substrate by plasma
spraying instead of the common wet-dipping approach also gives a better adhesion of coating [19].
Due to the fully-molten state and semi-molten state of the feedstock by plasma spraying deposited on
the surface, the coating could naturally have a well adhesion and achieve a longer service life.

In this work, MnOx-CeO2-TiO2 powder with different composition was firstly prepared as the
feedstock. The composition of the coating was optimized in terms of deNOx efficiency. The coating
was then prepared on a stainless-steel plate and wire-mesh substrate by plasma spraying, respectively.
The coating’s catalytic performance on both substrates was examined and compared.

2. Materials and Methods

2.1. Feedstock Preparation

The initial raw powder included anatase TiO2 with a size of 10 nm, MnOx of 50 nm, and CeO2
of 50 nm (99.9%, Tansail, Nanjing, China). Since the nano-size powders are easily agglomerated and
can hardly be transported by a flowing gas, deposition of the nano-size particles by thermal spraying
usually required that the feedstock is in micro-size particles. To this end, the composite powder
was firstly mixed with deionized water, a small amount of binder (PVA) and dispersant (PAA) was
then added to the slurry. After three h of ball milling, the slurry was transferred to an atomization
spray-dryer to agglomerate the nano-size powder. Finally, the agglomerated particles size ranging from
20–40 µm with a spherical shape was obtained, as shown in Figure 1. This agglomeration process just
involved morphological changes and no phase change was taken place during the spray-drying [20].
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2.2. Coating Preparation

Two types of substrates were used, one was a stainless-steel plate with a size
of 60 mm × 15 mm × 4 mm, the other was a wire-mesh substrate made of stainless wire with a diameter
of 0.25 mm and the grid cell size was of 0.5 mm. The schematic diagram of the spraying process is
shown in Figure 2. Prior to spraying, the plate substrate surface was cleaned by ethanol and then
roughened by sand-blasting treatment with 16 to 22 mesh corundum, as usual. In the case of wire-mesh
substrate, it is difficult to perform a sand-blast pre-treatment. Therefore, the NiAl coating was sprayed
on the wire-mesh firstly as a bond layer, which offered an adequate adhesion of the catalytic coating [19].
After that, the coating was deposited using Metco 9 MB plasma gun mounted a robot arm. The spraying
parameter of the catalytic coating as well as the NiAl are given in Table 1. During the plasma spraying
process, the spraying time and the track of the plasma gun was controlled to maintain the coating
thickness and uniformity. The speed of the robot is 500 mm/s and the deposited coating thickness for
each cycle is approximate 10 µm. In addition, both the front and back of the substrate was sprayed.

Figure 2. Schematic diagram of the process of plasma spraying.

Table 1. Parameters of plasma spraying with different coatings.

Coating
Material

Power
(kw)

Voltage
(V)

Current
(A)

Ar Flow Rate
(SLPM)

Powder
(g/min)

Spray Distance
(mm)

NiAl 30 60 500 50 60 100
MnOx-CeO2-TiO2 16 40 400 40 30 100

2.3. Characterization

The phase of the coatings was examined by an X-ray detector (Shimadzu, Xrd-7000, Kyoto, Japan)
in which the Cu target was used (Kα radiation) and the scanning range was from 20◦ to 60◦ at a
scanning speed 0.02◦/s. In order to calculate the fraction of anatase phase in the coating, the Jade 6.0
software was used. The full-spectrum of the diffraction peak was firstly fitted and then the anatase
content was estimated by calculating the diffraction peak area, the equation was shown as follows:

A =
Ianatse

Itotal
(2)

A: The fraction of anatase phase in the coating
Ianatase: The area of anatase
Itotal: The total area of the diffraction peak area

In order to observe the coating microstructure, the coating samples were firstly sectioned by
electrical discharge machining (EDM), and then cold mounted with epoxy resin. The sample was
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subsequently grinded and polished. The cross-section of the coating sample was observed by SEM.
The elements analysis on different area was also performed by the SEM equipped energy dispersive
spectrometer (EDS).

The SCR activity test was carried out in a fixed-bed quartz reactor. The schematic diagram of the
SCR reactor is shown in Figure 3. In which a vertical tube furnace was used to heat the mixed gas.
The typical gas composition was as follows: 1000 ppm NH3, 1000 ppm NO, 5% O2, and the balance
of N2. The total flow rate was 1350 mL/min and the hourly space velocity (GHSV) was 27,000 h−1.
The 42i-HL NO/NOx analyzer was used to monitor the concentration of NOx in different temperature.
Before the data recording, the reaction gas was purged into the reactor until the NO concentration
of the export gas reached the inlet gas concentration (1000 ppm). The data was then recorded for
every 50 ◦C and the NOx conversion efficiency and N2 selectivity was calculated by the following
equation [21,22].

ηNOx = ([NOx]in − [NOx]out/[NOx]in) × 100%

[NOx] = [NO] + [N2O] + [NO2]
(3)

N2 selectivity =
[NOx]in − [NOx]out − [NO2]out − [N2O]out

[NOx]in − [NOx]out
× 100% (4)
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Figure 3. Schematic diagram of the selective catalytic reduction (SCR) testing reactor.

3. Results and Discussion

3.1. Coatings Deposited on Steel Plate

The XRD pattern of the powder is shown in Figure 4. It was shown that all the original TiO2

was in anatase, while MnOx was composed of MnO2 and Mn2O3. In general, anatase would transfer
to rutile at the temperature of 400–1100 ◦C [23]. In the process of plasma spraying, the powder was
usually in a molten or semi-melted state, thus rutile was readily formed after spraying. The XRD
pattern of the coatings with different constitution is shown in Figure 5. The content of anatase in each
coating is given in Table 2. It was shown that under the same spraying parameters, minor retention of
anatase phase occurred for 5MnOx/5CeO2/TiO2 coating, in which most of anatase was transformed to
rutile. As the content of MnOx increased to 10% and 20%, although the total amount of TiO2 decreased,
the content of anatase phase in the coating increased obviously. The melting point of Mn2O3 is 1080 ◦C,
which is much lower than that of TiO2 (1600 ◦C). During the heating journey of the in-flight particles
in the plasma jet, MnOx could absorb the heat and then be melted earlier than the melting of TiO2,
which likely counteracted the phase transformation of anatase to rutile. This result also gives a hint
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that the addition of MnOx with low-melting point influenced the phase change of TiO2 during plasma
spraying. As the amount of MnOx increased to 30%, the original content of TiO2 decreased to 65%,
and the intensity of anatase in the coating was reduced. When the content of MnOx reached 40%,
there was only little anatase and rutile survived in the coating. Moreover, the phase of MnOx also
underwent phase change, the XRD results indicated that as the fraction of MnOx increased from 5% to
30%, the metastable Mn5O8 and Mn3O4 was formed in the coating. When the initial content of MnOx

increased to 40%, the content of Mn5O8 and Mn3O4 in the coating decreased, but Mn2Ti phase was
produced in the coating, which might result from the interaction of MnOx and TiO2.
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Table 2. The content of anatase in the coating with different MnOx content.

Coating Composition TiO2 (Anatase) Content (wt %)

5MnOx/5CeO2/TiO2 14.53
10MnOx/5CeO2/TiO2 26.43
20MnOx/5CeO2/TiO2 28.75
30MnOx/5CeO2/TiO2 24.78
40MnOx/5CeO2/TiO2 16.98

3.2. Morphology and Composition Analysis of Coatings Deposited on Steel Plate

Typically, plasma spray coatings are characterized by a layered microstructure consisting of
large amount lamella [20]. Each lamella is formed by an individual molten and semi-molten particle
impinging on the substrate. The cross-sectional morphology of the five coatings are shown in Figure 6.
The result showed that the coating consisted of a large amount of fully-molten particles and some
semi-molten particles. In the magnified SEM images, it can be easily found that the lamella in the
coatings were composed of bright phase and dark phase. The size of these phases was of 1–2 micrometer,
being too small to be accurately discerned by EDS. The chemical composition analysis by SEM only
can give a rough estimation. The black phase was a manganese-rich phase and the white phase was
rich in titanium. In the spraying process, the MnOx underwent phase change because of the input heat
of plasma jet. By comparing the XRD pattern of coatings, the formation of Mn5O8 and Mn3O4 in the
five coatings and Mn2Ti in 40MnOx/5CeO2/TiO2 coating might account for the formation of such a
Mn-rich phase.

Materials 2019, 12, x FOR PEER REVIEW 6 of 14 

Table 2. The content of anatase in the coating with different MnOx content. 

Coating Composition TiO2 (Anatase) Content (wt %) 
5MnOx/5CeO2/TiO2 14.53 

10MnOx/5CeO2/TiO2 26.43 
20MnOx/5CeO2/TiO2 28.75 
30MnOx/5CeO2/TiO2 24.78 
40MnOx/5CeO2/TiO2 16.98 

3.2. Morphology and Composition Analysis of Coatings Deposited on Steel Plate 

Typically, plasma spray coatings are characterized by a layered microstructure consisting of 
large amount lamella [20]. Each lamella is formed by an individual molten and semi-molten particle 
impinging on the substrate. The cross-sectional morphology of the five coatings are shown in Figure 
6. The result showed that the coating consisted of a large amount of fully-molten particles and some 
semi-molten particles. In the magnified SEM images, it can be easily found that the lamella in the 
coatings were composed of bright phase and dark phase. The size of these phases was of 1–2 
micrometer, being too small to be accurately discerned by EDS. The chemical composition analysis 
by SEM only can give a rough estimation. The black phase was a manganese-rich phase and the white 
phase was rich in titanium. In the spraying process, the MnOx underwent phase change because of 
the input heat of plasma jet. By comparing the XRD pattern of coatings, the formation of Mn5O8 and 
Mn3O4 in the five coatings and Mn2Ti in 40MnOx/5CeO2/TiO2 coating might account for the formation 
of such a Mn-rich phase. 

  

  

Figure 6. Cont.



Materials 2019, 12, 3046 7 of 14

Materials 2019, 12, x FOR PEER REVIEW 7 of 14 

  

  

  
  

Figure 6. Low and higher magnification view of the cross section of coating with different 
composition. (A,B): 5MnOx/5CeO2/TiO2 coating; (C,D): 10MnOx/5CeO2/TiO2 coating; (E,F): 
20MnOx/5CeO2/TiO2 coating; (G,H): 30MnOx/5CeO2/TiO2 coating; (I,J): 40MnOx/5CeO2/TiO2 coating. 

3.3. Catalytic Activity of Coatings Deposited on Steel Plate 

The catalytic activity of the five coatings for SCR performance at different temperatures (ranged 
from 100–450 °C) is presented in Figure 7. The result showed that all the coating achieved their 
highest catalytic efficiency at a temperature of 350 °C, which is consistent with the data reported by 
A. Moscatelli [24]. Among all the coatings, the efficiency of the 20MnOx/5CeO2/TiO2 achieved 51.04% 
conversion of deNOx, which was more significant than the others. Curiously, the conversion 
efficiency of the coating was improved when the MnOx loading was from 5%–20%. As the loading of 
MnOx continuously increased to 30%, 40%, the deNOx efficiency decreased. The reason might be 
attributed to the variation of the anatase content in the coating. Some other works pointed out that 
MnOx could have a positive effect with the support of anatase, in which the former could be dispersed 

Figure 6. Low and higher magnification view of the cross section of coating with different composition.
(A,B): 5MnOx/5CeO2/TiO2 coating; (C,D): 10MnOx/5CeO2/TiO2 coating; (E,F): 20MnOx/5CeO2/TiO2

coating; (G,H): 30MnOx/5CeO2/TiO2 coating; (I,J): 40MnOx/5CeO2/TiO2 coating.

3.3. Catalytic Activity of Coatings Deposited on Steel Plate

The catalytic activity of the five coatings for SCR performance at different temperatures (ranged
from 100–450 ◦C) is presented in Figure 7. The result showed that all the coating achieved their
highest catalytic efficiency at a temperature of 350 ◦C, which is consistent with the data reported
by A. Moscatelli [24]. Among all the coatings, the efficiency of the 20MnOx/5CeO2/TiO2 achieved
51.04% conversion of deNOx, which was more significant than the others. Curiously, the conversion
efficiency of the coating was improved when the MnOx loading was from 5–20%. As the loading
of MnOx continuously increased to 30%, 40%, the deNOx efficiency decreased. The reason might
be attributed to the variation of the anatase content in the coating. Some other works pointed out
that MnOx could have a positive effect with the support of anatase, in which the former could be
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dispersed more evenly. The presence of anatase in the catalyst can improve the catalytic performance
effectively than rutile [3,25]. The relationship between the MnOx content, anatase content and the NOx

conversion at 350 ◦C is summarized in Figure 8. It can be clearly seen that as the MnOx content changed,
the trend of catalytic efficiency of the coating consistently changed with the variation of the anatase
content. When the fraction of MnOx was 20%, the coating owned the highest anatase content and
therefore the most powerful catalytic activity. Compared with traditionally powder-based Mn-Ce-Ti
oxides catalyst, which achieved 90–100% NOx conversion at the temperature of 100–220 ◦C [3,26,27],
the coating catalyst on steel plate had a lower efficiency and higher reaction temperature. There are
two possible reasons for this phenomenon. One was that powder-based materials had a much higher
specific area than bulk materials, in which the former could contact intensively with the reaction gas.
Moreover, compared with other Mn oxides like MnO2, Mn2O3, the Mn3O4, and Mn5O8 was generated
in the sprayed coating, which had a relatively lower activity and might influence the react temperature
consequently [28].
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3.4. Catalytic Performance of the Coated Wire-Mesh Structure

As the 20MnOx/5CeO2/TiO2 coating yields the highest deNOx efficiency, this type of coating was
selected and deposited on the wire-mesh substrate. The surface morphology of wire-mesh before and
after spraying is shown in Figure 9. The magnified morphology of the coating surface and the sectional
of coating is shown in Figures 10 and 11, respectively. By comparing Figure 9a,b, it could be found
that the surface of the wire-mesh was roughed after spraying. The sprayed catalytic coating consisted
a lot of spherical particles and pores, as clearly shown in Figure 10. Those pores appeared on the
coating surface formed by the irregular stacking of splats with different melting state. In Figure 10b,
many spherical particles can also be observed on the coating surface, which might be attributed to
the retention of the original nanoparticles. This implies that the coating was built up partly by the
incomplete molten or semi-molten particles. Nevertheless, both these pores and spherical particles
would enhance the roughness of coating surface, which more or less contributed to the improvement of
the specific surface area [19]. From the sectional observation (Figure 11), the two layers can be clearly
distinguished. The bottom layer was NiAl bond layer, which was only 10–20 µm thick and consisted
of well-deformed particles. The top layer was 20MnOx/5CeO2/TiO2 coating.
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The result of the test on the catalytic activity of the wire-mesh catalysts as well as the steel plate
samples are shown in Figure 12. It can be seen that the wire-mesh catalytic efficiency achieved 63%
at 350 ◦C, which was much higher than the other steel plate. From the XRD patterns (Figure 13), no
remarkable difference of the phase content can be found for the coating deposited on the steel plate
substrate and wire-mesh substrate. The discrepancy in terms of the catalytic performance between the
two catalytic coatings can be mainly attributed to their structural difference. The wire-mesh could take
the advantage the surface-area-to-volume because of the net structure, which enhanced the catalyst
load quantity [29]. In the case of the same GHSV, more catalyst had a longer time to contact with NOx,
which increased the NOx conversion rate further. Moreover, the dependence of catalytic performance
of coating upon the testing temperature was different for two different substrates. We thought that
the variation of substrate morphology might have a certain effect. When the coating was deposited
on wire-mesh substrate with a curved surface, most of the sprayed particles was impacted obliquely,
leading to an insufficient deformation at their impact. Some active components might be encapsulated
so that they cannot work well at low temperature. As the temperature raised, a large number of
the active component begins to function. When the temperature was further increased, these active
components would rapidly lose their activity, resulting in a sudden decrease of conversion efficiency.
Moreover, N2 selectivity is another standard to evaluate the performance of catalysts, which was
influenced by the formation of NO2 and N2O in the reaction [22,30]. During the process of NH3-SCR,
NO2 might be generated by the oxidization of NO (5) and (6), moreover NH3 might be excessively
oxidized to N2O through the following reactions (6) and (7):

NO + O2 = NO2 (5)

4NH3 + 4NO + 3O2 = 4N2O + 6H2O (6)

4NH3 + 4NO2 + O2 = 4N2O + 6H2O (7)

The results of N2 selectivity calculated by Equation (4) is shown in Figure 14. It was found that the
N2 selectivity of all the catalytic coatings were decreased as the temperature raised. The oxidization
of NO would be promoted as temperature increased. Moreover, it was reported that N2O is mainly
generated via the Eley–Rideal mechanism, which could also be improved as temperature raised [22,30].
These reasons might account for the reduction of N2 selectivity in the temperature range of 100–450 ◦C.
Although the N2 selectivity was in a declining trend, it was more than 91% in the whole process, and
it presented the same tendency among different coatings. This indicated that the plasma sprayed
catalytic coating had a well selectivity and a good stability.
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3.5. Stability of the Catalytic Performance

To study the stability of the catalyst, the wire-mesh coating was tested under the continuously
inputted mix gas circumstance at the temperature of 350 ◦C. The result of NOx conversion is shown in
Figure 15. It can be seen that the activity of the catalyst did not have an obvious change in the eight-h
test, which indicated a relatively stable performance of the catalyst. The stability and the service life of
the deposited catalytic coating in practical application still needs a further study.
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4. Conclusions

In this work, different MnOx/CeO2/TiO2 coatings were firstly deposited on stainless steel plates
by plasma spraying. The results showed that the original anatase phase was transformed to rutile to a
certain degree. When the content of MnOx was 20%, the remained anatase was higher than others.
Under SCR test, the 20MnOx/5CeO2/TiO2 coating presented the highest catalytic activity, namely,
51.08% at 350 ◦C. Then, the 20MnOx/5CeO2/TiO2 coating was deposited on a wire-mesh substrate.
Due to the complex structure of the wire-mesh, the maximum conversion efficiency of the coating on
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the wire-mesh substrate reached 63.07% at 350 ◦C. The plasma sprayed catalytic coating showed a
valuable prospect in industrial SCR applications.
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