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In eukaryotic cells, miRNAs regulate a plethora of cellular functionalities ranging from
cellular metabolisms, and development to the regulation of biological networks and
pathways, both under homeostatic and pathological states like cancer.Despite their
immense importance as key regulators of cellular processes, accurate and reliable
estimation of miRNAs using Next Generation Sequencing is challenging, largely due to
the limited availability of robust computational tools/methods/pipelines. Here, we introduce
miRPipe, an end-to-end computational framework for the identification, characterization,
and expression estimation of small RNAs, including the known and novel miRNAs and
previously annotated pi-RNAs from small-RNA sequencing profiles. Our workflow detects
unique novel miRNAs by incorporating the sequence information of seed and non-seed
regions, concomitant with clustering analysis. This approach allows reliable and
reproducible detection of unique novel miRNAs and functionally same miRNAs
(paralogues). We validated the performance of miRPipe with the available state-of-the-
art pipelines using both synthetic datasets generated using the newly developed miRSim
tool and three cancer datasets (Chronic Lymphocytic Leukemia, Lung cancer, and breast
cancer). In the experiment over the synthetic dataset, miRPipe is observed to outperform
the existing state-of-the-art pipelines (accuracy: 95.23% and F1-score: 94.17%). Analysis
on all the three cancer datasets shows that miRPipe is able to extract more number of
known dysregulated miRNAs or piRNAs from the datasets as compared to the existing
pipelines.
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1 INTRODUCTION

The advent and deployment of high-throughput sequencing
techniques triggered the urgent need for the development of
computational methods and tools that can robustly, reliably, and
reproducibly identify the sequenced molecular identity. To date, a
large number of computational methods have been developed for
the systematic analysis of these ultra-complex sequencing
datasets. However, so far, no single method could robustly
achieve the required detection/estimation precision. In pursuit
of these, multiple methods are being developed, tested, and
deployed. But to date, either the availability as an open-source
tool or the anticipated accuracy of their functionality is largely
limited.

Reliable sequencing of short RNAs, an essential cellular
component known to regulate a plethora of cellular functions,
is the much-anticipated breakthrough in sequencing technology.
Among these miRNAs, a class of small non-coding RNAs
comprising of 17–24 nucleotides has been implicated in
regulating transcript homeostasis via RNA degradation
pathways (Etheridge et al., 2011; Chevillet et al., 2014; Wang
et al., 2016; Kai et al., 2018).

The underlying molecular mechanisms by which miRNAs
mature and silence their target transcripts have been extensively
studied. However, importantly, due to their centralized position
in regulating key cellular processes, a thorough understanding of
their identity and hence, their function, both under the
homeostatic as well as pathological state is an ever daunting
task due to the limited availability of computational methods for
their reliable detection. Likewise, in cancer, microRNAs
(miRNAs or miRs) have been centrally classified in the
networks of oncogenes and tumor suppressor genes (Lin and
He, 2017) and therefore, reported to influence diverse transcripts
with distinct functions. Loss of function-related experiments in
cancer cells pinpointed the exact underlying mechanistic
pathways by virtue of which miRNAs regulate cancer
initiation and progression. Moreover, due to specific
expression of miRNAs in cancer, a large number of them have
been proposed as potential biomarkers for cancer detection.
Despite their immense importance, reliable computational
methods are required for the systematic identification of the
novel miRNAs and reliable estimation of their expression levels.
Although several methods have been proposed in the past decade
for the detection of known and novel miRNAs from the
sequencing data, differences in the data processing pipelines of
RNA-seq data lead to varying results on the same dataset.

Some of the state-of-the-art pipelines are miRDeep2
(Friedländer et al., 2012), miRDeep* (An et al., 2013), mirPRo
(Shi J. et al., 2015), mirnovo (Vitsios et al., 2017), miRge2.0 (Lu
et al., 2018), sRNAtoolbox (Aparicio-Puerta et al., 2019), and
MiR&moRe2 (Gaffo et al., 2020). The above pipelines for the
analysis of smRNAs (small RNAs) yield multiple false positives,
do not identify paralogues of existing miRNAs, and often fail to
identify the reverse complement sequences of known miRNAs.
Although the above methods can detect a number of dysregulated
miRNAs, it is important to detect statistically significantly
dysregulated miRNAs. These results generally vary across

methods because of the algorithm used for extracting the
miRNAs along with their count values. Hence, there is a need
to develop robust methods to detect accurate and statistically
significant dysregulated miRNAs and their count values.

To overcome the aforementioned limitations, we propose
miRPipe, a robust computational workflow for the reliable
identification and expression estimation of known and novel
miRNAs from RNA-seq data. We have performed a comparative
analysis of miRPipe with other well-known methods and found
that miRPipe outperformed all these methods when
benchmarked with both synthetic (known ground truth), and
CLL real RNA-Seq expression dataset. To benchmark miRNA
pipelines, presently no synthetic data simulators available to
generate ground truth. Therefore, we have also developed a
highly flexible, innovative, and faster synthetic sequence
simulator tool miRSim for the comparative analysis of various
existing pipelines with miRPipe. Our analysis of CLL datasets
identified 31 known and 8 novel dysregulated miRNAs, which we
have experimentally validated using real-time PCR on clinical
samples. A free friendly synthetic data simulator miRSim and a
free dockerized version of miRPipe are available for deployment
in a clinical setup. Our aim to provide docker is that our pipeline
miRPipe is easily usable for both beginner and expert
bioinformaticians. They can subsequently share the analyzed
results with the clinicians for further inference.

2 MATERIALS AND METHODS

We have used synthetic and real RNA-Seq expression datasets
for functionality and benchmark against the available state-of-
the-art miRNA pipelines. Of note, we have developed an in-
house tool miRSim (Ruhela et al., 2021) to assess the pipeline
performance by comparing pipeline outcome with matched
ground truth. For miRPipe validation, we have considered
three publicly available GEO datasets, that is, Chronic
Lymphocytic Leukemia (CLL) dataset (GSE123436) (Kaur
et al., 2020), breast cancer dataset (GSE171282) (Lin et al.,
2021) for miRNA identification and Lung Cancer dataset
(GSE37764) (Nogueira Jorge et al., 2017) for piRNA
identification.

2.1 Proposed miRSim Tool: Synthetic Data
Simulator
The performance assessment of existing or the development of
any new bioinformatics tool such as a sequence aligner or a
sequence quantification tool is robustly possible only when the
ground truth is available. Presently, some of the synthetic
sequence simulators available for the generation of synthetic
sequencing data such as ART (Huang et al., 2012), pIRS (Hu
et al., 2012), Flux (Griebel et al., 2012), polyester (Frazee et al.,
2015), and RNA-Seq simulator (Grant et al., 2011), can also be
used to generate reads containing miRNA sequences. These
synthetic RNA-Seq data generator tools are generic in nature,
and data generation depends on platform-specific parameters.
However, these tools do not provide the ground truth data for the
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FIGURE 1 | (A) Example of synthetic reads based on hsa-miR-155 miRNA hairpin structure. Red color shows seed region, green color shows xseed region and
capital letters denote altered nucleotide (B) One example data from miRSim pipeline. Here, the miRNA/piRNA region is represented by μ1, μ2, . . .. Here μ1 represents
original miRNA and μ2-μ7 are derived from μ1 by alterations in the seed and xseed sequence of μ1 and may or may not constitute a valid miRNA. The number of miRNAs
present in the chromosome-1 and total number of miRNAs in all chromosomes are taken from miRBase (version22) (Kozomara et al., 2019)
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validation of a bioinformatics pipeline. Hence, we designed the
miRSim tool that fills this gap.

The design and workflow outline of the miRSim tool is
illustrated in 1. Mechanistically, the standard miRNA
sequences and their genomic location can be stored in FASTA
and GFF file formats (gff3) as the reference input to the miRSim
tool. The miRNA, piRNA, and novel miRNAs sequences were
collected from the miRBase (Kozomara et al., 2019), piRNAdb
database (version 1.7.6) (https://www.pirnadb.org/), and the
recent literature (Wallaert et al., 2017; Kaur et al., 2020),
respectively. For the robustness of any RNA-Seq pipeline, it is
essential to detect known miRNAs, novel miRNAs, and their
paralogues robustly. Hence, miRSim provides the option to add a
selected percentage of altered sequences of miRNAs and piRNAs
as the ‘Other’ category, which acts as a true negative to assess the
efficiency of the pipeline.

In this category, the new miRNA sequence is generated by
altering either the seed region’s nucleotides (red colored
nucleotides in Figure 1A) or by altering the xseed region’s
nucleotides (green colored nucleotides in Figure 1A) or both
by at least 2 nt. The altered nucleotide are shown in each of the
seed and xseed regions by capital letters. The seed and xseed
regions (regions other than the seed region) of a miRNA
govern the functionality of miRNA in biological processes
(Kehl et al., 2017). The 2 nt cut-off was based on the fact that
the recommended tolerance used in the standard RNA-seq
aligners such as STAR (Dobin et al., 2013), TopHat2 (Kim
et al., 2013), miRDeep2, and miRDeep* is allowed upto 2 nt.
The resulting sequence will not be a miRNA or piRNA. The
fraction of sequences for each of these error types is provided
in the form of an error profile as input to the miRSim tool by
the user. One example is shown in Figure 1. Here, Figure 1A
shows the hairpin structure of hsa-mir-155 with highlighted
seed (red-colored nucleotides in Figure 1A) and xseed (green
colored nucleotides in Figure 1A) regions. Similarly,
Figure 1B shows one example calculation of synthetic
sequence generation by miRSim by doing alterations in the
miRNA sequences.

Workflow of miRSim Tool: The miRSim tool accepts
reference sequences of miRNAs and their genomic location
from the input fasta and gff files provided by the user. In
addition, the user provides other input parameters such as the
total number of sequences to be generated, % of known
miRNAs, % of novel miRNAs, % of known piRNAs, quality
score encoding, minimum depth and expression profile
distribution for generating the synthetic data. The miRSim
tool utilizes this information first to infer the distribution of
reads (that is, the number of reads per chromosome). The
read distribution is directly proportional to the number of
miRNAs present in each chromosome. Using the read
distribution, the number of miRNAs per chromosome is
computed such that each miRNA gets a read depth greater
than or equal to the minimum required read depth. Using this
miRNA distribution, each chromosome’s expression profile is
generated based on either the Poisson or the gamma
distribution. Finally, the synthetic sequences are generated
by adding the adaptor sequence and primer sequence such

that the overall sequence length becomes 75 and written in the
output FASTQ/FASTA file. The miRSim tool supports
parallel thread operation to write the synthetic sequences
in multiple threads simultaneously in order to generate data
expeditiously.

miRSim also provides the ground truth in a readable
comma-separated file format that contains information
about known miRNAs, piRNAs, and novel miRNAs along
with their sequences, chromosome location, expression
counts, and the CIGAR string for all the sequences. The
‘Other’ category sequences also specify the known
miRNAs/piRNAs (with chromosome location) from which
these altered sequence reads are generated besides the above
information. Any robust pipeline should discard these noisy
reads. miRSim delivers output in the form of a compressed
FASTQ or FASTA file format. As of now, miRSim tool has
been developed and tested for the human genome only. For
other genomes, miRSim parameters can be readjusted
accordingly. For other non-human genomes, a user has to
adjust 1). RNA-sequence length for that genome, and 2). seed
region and xseed region location. The core algorithm will
remain the same. The source code of miRSim is available in
the GitHub and zenodo in both command line version and
jupyter notebook version.

2.2 Synthetic RNA-seq Expression Dataset
Used in This Study
In this study, we have generated the miRSim simulated synthetic
dataset for the benchmarking of the pipeline on the identification
of known/novel miRNAs and known miRNAs. Using miRSim,
we generated thirty synthetic FASTQ files with a varying read
depth of 50 K reads, 0.1 million reads, and 1 million reads with
known proportions of both altered and unaltered known/novel
miRNAs and known piRNAs (Supplementary Material S6). The
reason behind considering the multiple read depth categories is to
assess the pipeline for low depth as well as high depth data.
Although, the synthetic data experiments can also be extended to
higher depth (more than 1 million reads). For known miRNA
identification experiments, reads were generated using high
confidence miRNAs taken from miRBase (version 22) to
ensure the least false positives or false negatives in the
experimental design. Similarly, for novel miRNA identification,
miRpipe includes the genomic and structural features. Novel
miRNAs detected recently in (Wallaert et al., 2017; Kaur et al.,
2020) were added to the synthetic data experiments as the ground
truth sequences (See Supplementary Material S9). Moreover, for
known piRNA identification, the reads were generated from the
piRNAdb database (version 1.7.6). We have also generated the
synthetic data file for benchmarking pipelines on the
identification of reverse complement sequences as known
miRNAs. For this purpose, we have generated a synthetic
FASTQ file that had the reads of 887 high confidence
miRNAs (added from miRBase database version 22) with a
read depth of 10 each. Thus, the synthetic FASTQ file
contained 8,870 reads with reverse complement of 887 high
confidence miRNAs.
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2.3 Real RNA-seq Expression Datasets
Used in This Study
Wehave included three publicly available datasets in our study that
are CLL dataset (GSE123436), breast cancer dataset (GSE171282),
and lung cancer dataset (GSE37764) for miRPipe validation. In the
CLL dataset, the RNA-Seq profile of 28 CLL cases and 10 age-
matched healthy controls were studied to identify unique pattern of
eight dysregulated miRNAs in CLL. This study also validated the
altered expression levels of eight dysregulated miRNAs by RT-
qPCR. The breast cancer dataset (GSE171282) consists of 3 normal
and 6 tumor RNA-Seq samples. The breast cancer dataset was
studied to understand the effects of two commonly used local
anesthetics, lidocaine, and bupivacaine, on the malignancy of
MCF-7 breast cancer cells. The original publication of the
breast cancer dataset (GSE171282) has reported 11 RT-qPCR
validated dysregulated known miRNAs. We have used CLL and
breast cancer datasets for the miRPipe validation in miRNA
identification. Similarly, in the lung cancer dataset, the primary
non-small cell lung adenocarcinoma tissues of 6 never-smoker
Korean female patients were studied to identify dysregulated
piRNAs to identify the altered expression patterns of non-
coding RNAs in the non-smoker females. The original
publication of the lung cancer (GSE37764) dataset has not

reported any dysregulated piRNAs. We have used this dataset
for miRPipe validation in piRNA identification.

2.4 Description of the Proposed miRPipe
A complete block diagram of miRPipe is provided in Figure 2.

2.4.1 Input Data
The miRPipe allows both single or multiple sample processing
with input files in FASTQ format (either.fastq or.fastq.gz. For
computing the differentially expressed miRNAs, miRPipe utilizes
the widely accepted DESeq2 method. Importantly, the
information on adaptor sequence, human reference genome,
and miRBase version can be either provided by the user or the
default options of miRPipe can be chosen.

2.4.2 Hardware and Software Dependencies
Pipelines: miRPipe, miRDeep* (An et al., 2013), miRDeep2
(Friedländer et al., 2012), mirPRo (Shi J. et al., 2015),
sRNAtoolbox (Aparicio-Puerta et al., 2019), miRge2.0 (Lu
et al., 2018), mirnovo (Vitsios et al., 2017), MiR&moRe2
(Gaffo et al., 2020) were installed and run on a workstation
with the hardware configuration of Single Intel(R) Core(TM) i7-
8700 CPU 6Cores, 12Threads,@Base frequency of 3.20GHz,
32 GB DDR4 RAM. The docker is fully functional on Linux

FIGURE 2 | Infographic representation of miRPipe workflow: This pipeline identifies differentially expressed novel miRNAs, knownmiRNAs, and known piRNAs.The
RNA-Seq data in standard FASTQ format is cleaned for adaptor contamination. Reads of specific lengths are aligned to the human reference genome for miRNA and
piRNA identification. Further, the aligned reads are processed using novel seed-based clustering for their functional annotation. Lastly, their differential expression
analysis is computed using DESeq2 to find the significantly dysregulated miRNAs and piRNAs.
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platform and requires the following system configuration:
Ubuntu 18.04 operating system with at least 8 GB RAM. The
miRSim tool was developed on hardware configuration of Single
Intel(R) Core(TM) i5-8400 CPU 2Cores, 4Threads, @Base
frequency of 2.80GHz, 8 GB DDR4 RAM.

2.5 miRPipe Workflow
miRPipe is an integrated pipeline for the identification of
statistically significant differentially expressed known/novel
miRNAs, and known piRNAs simultaneously by parallel
threaded operations.

The following steps are sequentially carried out in the miRPipe
(Figure 2):

1) Input: miRPipe accepts sequencing files in the FASTQ
format, along with the sample information file in the CSV
format that contains sample (or subject) IDs and sample
group (whether treated and control, or the data collected at
two different time points).

2) Pre-processing: miRPipe performs adapter removal in the
raw FASTQ files using the Trim-Galore tool (http://www.
bioinformatics.babraham.ac.uk/projects/trim_galore/). Post-
trimming, miRPipe segregates reads based on their sequence
lengths. The first category contains read sequences of 17-
24 nt lengths that are processed further for miRNA
identification.The second category contains read sequences
of 25-31 nt lengths that are processed for piRNA
identification. The remaining read sequences of lengths
≥32 nt are rejected by miRPipe.

3) Sequence Alignment: In Step-3, miRPipe initializes parallel
threads for 1) the identification of known and novel miRNAs
and 2) the identification of piRNAs.While one CPU thread is
allocated for piRNA identification, the remaining CPU
threads are allocated for miRNA identification.
3A) piRNA Identification Pipeline: For piRNA identification,
reads of length 25–31 nt are screened based on their quality
scores. Reads having more than 10% bases with a phred score
of less than 20 are filtered out. The remaining reads of better
quality are aligned to human genome using the bowtie
(version 1.2.3) with the following fixed parameters: 1)
minimum length of sequence l = 25; 2) zero mismatch in
the seed region; 3) with no reverse complement alignment
allowed to obtain the alignment results. All the alignment
results are then post-processed using the bedtools intersect.
miRPipe utilizes piRNA annotations from piRNAdb.
Subsequent analysis results in a final count matrix of all
the annotated piRNAs across all samples that are used as
input for the DESeq2 for the differential gene expression
analysis.
3B) miRNA Alignment: The first step in miRNA
identification is the sequence alignment using miRDeep*.
miRDeep* sequence aligner is developed on the top of bowtie
and allows the sequence mapping with zero mismatches in
both strands of the human genome reference.

4) Post-Processing: All known miRNA and novel miRNA reads
are collected from all the samples (multiple subjects) to
prepare a list of reads for the DASHR blast search processing.

5) Blast search using DASHR: All miRNAs that are not
annotated as known miRNA are blast-searched with the
DASHR database to check if they match with any known
miRNA sequences. Moreover, there can be some sequences
that are annotated as novel miRNAs, whose annotation is
missed due to it being present as a reverse complement
sequence in the fastq file. Although bowtie can map a reverse
complement sequence of a known miRNA to its correct
genomic location, yet due to differences in the mapping
strand and precursor sequence from the respective mapping
strand and precursor sequence of that known miRNA,
miRDeep* fails to annotate the reverse complement
sequence to its true known miRNA. Such cases are
referred as a novel by miRDeep*, although they should
have been assigned as known miRNA. Thus, in such
cases, we blast search these sequences in the DASHR
database and check if they match with any of the known
miRNAs. The DASHR database tries to find the best possible
match with known miRNAs (according to the reference
genome hg19 or hg38 as specified by the user). If the
DASHR database does not find any hit with any known
miRNA, then we take the reverse complement of these
sequences and blast search again in the DASHR database.
Now, if they match any known miRNA at the same genomic
location as that of novel miRNA, the novel miRNAwill be re-
annotated as known miRNA, and the count of novel miRNA
will be merged with that of known miRNA. For other reads,
the miRNA nomenclature system used in miRBase (Ambros
et al., 2003) is followed for their renaming as explained in the
next step.

6) Novel Seed-based clustering and Functional annotation of
novel miRNAs: In Step-6, miRPipe performs the seed-based
clustering on both known and novel miRNA sequences. The
methodology of seed-based sequence clustering and
functional annotation is as follows:
6A) Novel Seed-based clustering: In this step, seed-based
clustering is employed by miRPipe on known and novel
miRNAs to identify unique novel miRNAs and known
miRNA paralogues. Different scenarios of seed-based
clustering is shown in Figure 3. First, we perform CD-hit
(Li and Godzik, 2006) clustering on the seed sequences of all
novel and known miRNAs. novel miRNAs whose seed
sequences are identical (that is, 0 nt mismatch) are
subsequently checked, again via CD-hit clustering, but
now on xseed region sequences. All novel miRNA reads
having identical seed sequence, maximum alterations of 2 nt
in the xseed sequence, and similar genomic location (that is,
maximum 2 nt variation in the genomic position) were
identified as a single novel miRNA. Their counts were
merged.
1B) Functional annotation of novel miRNAs: According to
(Bofill-De Ros et al., 2019), if a given sequence has the
identical seed sequence with different genomic location,
such a sequence are called as the paralogous. Using these
criteria, all novel miRNAs that shares the identical seed with
different genomic location are called as paralogues. If the
novel miRNA has the identical seed as that of a known
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miRNA (say hsa-mir-x), and a different genomic location,
then the novel miRNA will be called as paralogue of known
miRNA and will be labeled as “hsa-mir-x_n” where n is
1,2,3,. . .as more paralogues are discovered. Similarly, if the
novel miRNA has the identical seed as that of a novel miRNA
(say novel-mir-x) and a different genomic location, then the
novel miRNA will be called as paralogue of novel miRNA
and will be labeled as “novel-mir-x_n” where n is 1,2,3,. . .as
more paralogues are discovered. Functionally, the paralogues
behave identically (Begley and Ellis, 2012) due to the same
seed in their mature miRNA sequence.

7) Final count file preparation: Once the functional annotation
of novel miRNAs is completed, miRPipe returns the final
count matrix containing expression counts of all novel
miRNAs, known miRNAs, and known piRNAs across all
the samples. Since there are many miRNAs in miRBase
whose mature sequences are identical and located at
multiple genomic locations in the human genome. Such
miRNAs represent the miRNA paralogues. The sequence
aligner in Step-3 of miRPipe workflow lists all these miRNA
paralogues with the same expression counts. Thus, in real
RNA-Seq expression data, miRPipe deduplicate the final
count file to remove the multiple entries of the same
mature sequence present in the count file.

8) Differential Expression Analysis: miRPipe carries out DEM
(dysregulated miRNAs) analysis using the DESeq2 method.
Any miRNA or piRNA is considered to be statistically
differentially expressed if its p-adj value after
Benjamini–Hochberg (BH) correction is ≤0.05.

9) Renaming of novel miRNAs: The dysregulated novel
miRNAs identified in Step-8 of miRPipe workflow are
renamed using the miRNA nomenclature system used in
miRBase [(27), http://www.mirbase.org/help/nomenclature.
shtml]. The rules for miRNA nomenclature are as follows:
a) Previously annotated miRNAs: If the novel miRNA

sequence has been already annotated in another
organism, then the same identifier will be used in
other organisms also. For this, we have blast searched
all the novel miRNA sequences in the Rfam database with
E-value less than or equal to 0.01 and then renamed them
using the same identifier.

b) Sequential annotation: If the above conditions are not
met for any novel miRNAs, then the renaming was done
sequentially. In the end, we have added “*” in the suffix of
all novel miRNA new names to represent that these
names are putative names only.

10) Output: The final output file in the corresponding user data
directory contains the significantly differentially expressed
miRNAs and piRNAs.

3 RESULTS

3.1 Benchmarking of miRPipe With Existing
Standard Pipelines
miRPipe is benchmarked with seven standard pipelines
introduced in the recent past for the novel miRNA detection.

These are mirdeep2, mirdeep*, mirPRo, mirnovo, miRge2.0,
sRNAtoolbox, and MiR&moRe2. We have proposed an
innovative strategy for miRNA pipeline validation and
benchmarking, where we have used synthetic RNA-Seq data
with known ground truth and real RNA-Seq expression data.
The synthetic data experiments allow us to evaluate the accuracy,
sensitivity, and specificity for extensive comparison with other
pipelines in identifying and annotating correct miRNAs. Hence,
results are presented: 1) by comparing the workflow and
architecture of all the pipelines, 2) by using the pipelines on
the synthetic data generated by the miRSim tool, where the
ground truth is known, and 3) by comparing the results
obtained on the real RNA-Seq expression CLL, lung cancer
and breast cancer dataset.

3.2 Summary Comparison of Different
Pipelines
We have compared the bioinformatics pipeline parameters (such
as sequence quality control, miRNA sequence length criteria,
sequence aligner, type of genome dataset used, reference
annotation database, type of RNA considered, etc.), and
features (such as miRNA profiles, model types, platform
dependencies, etc.) of all the eight pipelines and shown in
Table 1. The sequence pre-processing in any bioinformatics
pipeline includes three sequence filtering/trimming steps, that
is, 1. adaptor-trimming, 2. quality control, and 3. length control.
The adaptor trimming and quality control steps are mandatory to
prepare reads for downstream analysis, such as sequence
alignment with respect to the reference genome, miRNA
annotation, etc. In the length filtration step, all eight pipelines
have different criteria of miRNA sequence length, e.g., miRDeep2
and miRDeep* consider sequence having a length range of 18 nt-
23 nt as miRNA. In contrast, miRPro considers all the sequences
having a length greater than 17 nt as miRNA, etc. We have
observed that most of the human miRNAs lie in the range of
17 nt-24 nt. Also, both miRNAs and piRNAs sequences have
slightly varying lengths across different miRNAs and piRNAs
instead of strictly defined fixed lengths. For example, there are
some known piRNAs whose sequence length is 25, while some
others have lengths less than 25. Thus, it is challenging to find the
exact cutoff of sequence length that can help infer a maximum
number of true positive miRNAs or piRNAs.

Moreover, there are 1.3% miRNAs that are present in the
miRBase database having sequence lengths of 25 nt to 28 nt. At
the same time, there are 21.3% piRNAs that are present in the
piRNAdb database having sequence lengths of 25 nt to 28 nt.
Considering sequences of length 25 nt to 28 nt for miRNAs may
lead to false negatives in the piRNAs pipeline, and we may miss
many important piRNAs. Similarly, rejecting a sequence of length
less than 18 nt may lead to ignoring the actual miRNAs. Hence,
we consider the sequence length range of 17 nt-24 nt for miRNAs
and 25 nt-31 nt for piRNAs. Thus, all the steps in sequencing data
pre-processing, especially length filtration, play a crucial role in
pipeline performance evaluation.

In addition, the selection of sequence aligners also plays an
important role in sncRNA identification. Most of the pipelines
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have used bowtie1 except mirPRo and mirnovo because bowtie1
is very sensitive to small and medium-length sequences. For
miRNA annotation, miRBase is considered a standard
database used in all eight pipelines except miRge2.0, which lets
the user choose the annotation database (either miRBase or
miRGeneDB) as per user requirement. In addition to
identifying known and novel miRNAs, some pipelines like
mirnovo, miRge2.0, MiR&moRe2, and sRNAToolbox also
provide information about other RNA types such as tRNA,
rRNA, snoRNA, moRNA, loop-RNA, etc. Only three out of
the seven existing pipelines (mirnovo and miRge2.0,
sRNAToolbox) use the random forest, SVM, and Weka-based
machine learning model for novel miRNA prediction. Also, each
pipeline has been developed using a different programming
language and has different platform dependencies. The
difference in the miRNA selection criteria, sequence alignment
strategy, annotation database, the model used for snc-RNA
identification, etc., makes these pipelines methodologically
unique and cause different outputs for the same input data.

3.3 Benchmarking of Pipelines on Synthetic
Data
Synthetic data is generated using miRSim tool for pipeline
validation with known percentage of reads of known/novel
miRNAs, and known piRNAs (Refer to Supplementary
Material S6 for an example). Since the ground truth is known,
pipelines are assessed on the metrics of accuracy and F1-score.
The following notations are used for four class label detection:
Class-1: known miRNA, class-2: novel miRNA, class-3: known
piRNA, class-4: Not belonging to other 3 classes.

• A read is counted as true positive (TP) if it is correctly
identified by the pipeline.

• A read is considered as false positive (FP) to class-‘x’, when
it belongs to one of the other classes, but is identified as
class-‘x’ read.

• A read is considered as false negative (FN) when it belongs
to class-‘x’, but is rejected by the pipeline to class-4 (Others).

• A read is considered as true negative (TN) when it is an
altered miRNA/piRNA and is also labeled the same by the
pipeline, that is, all the reads with sequences not belonging
to valid miRNAs or piRNAs or novel miRNAs (in other
words, not belonging to any of the above three classes) are
called as true negatives.

The performance metrics are computed as:

Accuracy � TP + TN

TP + TN + FP + FN
,

F1 Score � 2.
Precision × Recall

Precision + Recall
,

wherePrecision � TP

TP + FP
and,

Recall � TP

TP + FN
.

3.3.1 Benchmarking of Pipelines on the Identification
of Known miRNAs
In the synthetic data experiment for the identification of known
miRNAs, we have observed that there are many mature miRNA
sequences that can match at multiple genomic locations on the

FIGURE 3 | Functional annotation of novel miRNAs using seed-based clustering. Above figure shows an example for all possible scenarios for cluster formation of
novel miRNAs functional annotation with known and novel miRNAs along with their genomic location of sequence alignment.
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TABLE 1 | Comparison of recently published bioinformatics pipelines on all the intermediate steps such as sequence pre-processing, de-duplication, sequence alignment,
and sequence annotation. In all the intermediate steps, each pipeline uses different tools (with different versions) or their ownmodule written in languages such as Python,
Perl, R or C++. Further, each pipeline has its own miRNA consideration criteria. For example, miRge2.0 pipeline considers 16–25 nt length of sequence for miRNA
identification, while sRNAtoolbox considers all the sequence of length less than 25 nt for miRNA identification. This difference in length criteria plays a significant role in the
difference in the accuracy of miRNA sequence alignment step, which is the most crucial step in the bioinformatics pipeline for miRNA identification. Majority of the above-
mentioned pipelines uses Bowtie1 for sequence alignment, while mirnovo pipeline uses Bowtie2 and mirPRo pipeline uses Novoalign sequence aligner. In our proposed
miRPipe, we have used the miRDeep* in Step-3 of the workflow with DASHR blast search and seed-based clustering of the novel miRNAs. Most of the pipelines also
report other categories of RNAs present in the sequencing data such as rRNA, moRNA, piRNA, etc. We have also integrated our pipeline piRNA identification pipeline in
miRPipe with parallel thread execution for an optimum use of computational resources to facilitate less overall time to deliver the output results.

Pipeline
steps

Modules Pipelines

miRDeep2
(Friedländer

et al.,
2012)

miRDeep*
(An et al.,
2013)

mirPRo
(Shi et al.,
2015a)

Mirnovo
(Vitsios
et al.,
2017)

miRge2.0
(Lu et al.,
2018)

sRNAbench
(Aparicio-Puerta

et al.,
2019)

MiR&moRe2
(Gaffo
et al.,
2020)

miRPipe

Year 2012 2013 2015 2017 2018 2019 2020

Pre-
processing

Adaptor
Trimming

✓ ✓ ✓ Reaper Cutadapt
(v1.11)

✓ Cutadapt
(v2.5)

Trim-
Galore

Quality
Control (Min
Phred Score)

20 20 ✓ × 20 20 20 20

Length
Control

18–23 nt 18–23 nt >17 nt × 16–25 nt <25 nt 15–30 nt 17–24 nt
(miRNA)
25–31 nt
(piRNA)

Sequence
Deduplication

Collapsed to
Unique reads

✓ ✓ ✓ Tally + vsearch +
CD-HIT

✓ ✓ ✓ ✓

Sequence
Alignment
w.r.t.
References
Genome

Sequence
Alignment

Bowtie (v1.1) Bowtie
(v0.1)

Novoalign
+ HTSeq

Bowtie2 +
mirnovo_analysis.pl

module

Bowtie
(v1.1.1) +
Samtools

Bowtie (v0.12) Bowtie (v1.1.2)
+ Samtools +

bedtools
(v2.27)

Bowtie
(v1.2.3)

Sequence
Annotation

miRNA
Database

miRBase miRBase miRBase miRBase miRBase/
miRGeneDB

miRBase miRBase miRBase

Other RNA
Database

× × × Rfam Ensembl Provided by user ✓
(Experimental)

piRNADb

miRNA
Identification

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Isomirs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
novel miRNAs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Other sncRNA × × × rRNA, tRNA Primary

tRNA, rRNA,
snoRNA,

known RNA
spike-in
sequence

tRNA, snoRNA,
snRNA, rRNA,

piRNA

moRNA,
loopRNA

piRNA

Features Genomic
features

× × × 9 × × × ×

Coverage
Profile
features

× × × 12 × × × ×

Sequence
Features

✓ ✓ ✓ 12 21 ✓ ✓ ✓

Model Type Machine
Learning
based

No No No Random Forest Support
Vector
Machine

Weka No No

Application
Genome

Human ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Non-human ✓ ✓ Mouse,
Chicken

8 animal species
and 7 plant species

novel miRNA
prediction
only for
Mouse
genome

✓ × ×

Language Programming
Language

Perl, Bash Java C++ Perl, R Python 2.7 Web Server Pytyon3, R
Bash

Python3,
Bash

Packages
(Continued on following page)
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human genome, wherein the miRNAs at these different genomic
locations correspond to different precursor sequences. For such
cases, we have compared the miRPipe outcome with the miRSim
generated ground truth for miRPipe pipeline assessment. The
comparative analysis with miRPipe revealed that miRPipe
outperforms existing pipelines with an average accuracy
(across all depths) of 96.58% and an average F1-score of
89.95% on the identification of known miRNAs (Table 2;
Figure 4, and Supplementary Material S1–S3, synthetic data
experiment results for 50 K, 0.1 and 1 M read depth).

3.3.2 Benchmarking of Pipelines on the Identification
of Novel miRNAs
Comparison of inter-computational pipelines revealed that miRPipe
outperformed all the other computational methods, with an average

accuracy of 99.55% and average F1-score of 97.55% across all depths
in synthetic data experiments on novel miRNA identification
(Table 2; Figure 4, and Supplementary Material S1–S3).

3.3.3 Benchmarking of Pipelines on the Identification
of Known piRNAs
We performed a comparative analysis with sRNAtoolbox that
uses RNAcentral for piRNA and other snc-RNAs annotations for
piRNA identification. Of note, it is the only dedicated
computational workflow that allows simultaneous
identification of miRNAs and piRNAs. While miRPipe yielded
an average accuracy of 98.91% and an average F1-score of 94.35%,
sRNAtoolbox yielded an average accuracy of 74.25% and an
average F1-score of 4.34% across all depths (Table 2;
Figure 4, and Supplementary Material S1–S3).

TABLE 1 | (Continued) Comparison of recently published bioinformatics pipelines on all the intermediate steps such as sequence pre-processing, de-duplication, sequence
alignment, and sequence annotation. In all the intermediate steps, each pipeline uses different tools (with different versions) or their own module written in languages such as
Python, Perl, R or C++. Further, each pipeline has its own miRNA consideration criteria. For example, miRge2.0 pipeline considers 16–25 nt length of sequence for miRNA
identification, while sRNAtoolbox considers all the sequence of length less than 25 nt for miRNA identification. This difference in length criteria plays a significant role in the
difference in the accuracy of miRNA sequence alignment step, which is the most crucial step in the bioinformatics pipeline for miRNA identification. Majority of the above-
mentioned pipelines uses Bowtie1 for sequence alignment, while mirnovo pipeline uses Bowtie2 and mirPRo pipeline uses Novoalign sequence aligner. In our proposed
miRPipe, we have used the miRDeep* in Step-3 of the workflow with DASHR blast search and seed-based clustering of the novel miRNAs. Most of the pipelines also report
other categories of RNAs present in the sequencing data such as rRNA, moRNA, piRNA, etc. We have also integrated our pipeline piRNA identification pipeline in miRPipe with
parallel thread execution for an optimum use of computational resources to facilitate less overall time to deliver the output results.

Pipeline
steps

Modules Pipelines

miRDeep2
(Friedländer

et al.,
2012)

miRDeep*
(An et al.,
2013)

mirPRo
(Shi et al.,
2015a)

Mirnovo
(Vitsios
et al.,
2017)

miRge2.0
(Lu et al.,
2018)

sRNAbench
(Aparicio-Puerta

et al.,
2019)

MiR&moRe2
(Gaffo
et al.,
2020)

miRPipe

Year 2012 2013 2015 2017 2018 2019 2020

Random Forest R
Package

Biopython,
Numpy,
Scipy,
pandas,
sklearn,
reportlab,

forgi python
packages

data.table R
Packages

OS
Supported

Linux Linux,
MACOSX
Windwos

Linux Linux MACOSX Linux Not required Linux Linux,
MACOSX

and
Windows

TABLE 2 | Average performance of pipelines for knownmiRNA, novel miRNA and known piRNAs. The cells with ‘-’ indicates that pipeline does not identify that particular type
of RNA.

Pipelines Average accuracy Across all Depths (in %) Average F1 Score Across all Depths (in %)

Known miRNA Novel miRNA Known piRNA Known miRNA Novel miRNA Known piRNA

miRDeep2 94.74 97.33 - 85.66 85.27 -
miRDeep* 95.67 99.04 - 88.06 95.47 -
mirPRo 78.73 93.04 - 1.45 60.93 -
mirnovo 87.59 91.78 - 60.61 41.95 -
miRge2.0 82.56 0.0 - 25.90 0.0 -
sRNAbench 89.18 0.0 74.25 67.93 0.0 4.34
MiR&moRe2 91.07 92.52 - 74.05 46.76 -
miRPipe 96.58 99.55 98.91 89.95 97.55 94.35

The accuracy and F1-score of known/novel miRNAs and known piRNAs in bold letters represent the outstanding performance of miRPipe pipeline.
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3.3.4 Overall Benchmarking of all the Pipelines
The overall cumulative performance of all the pipelines is done by
considering known/novelmiRNAs and piRNAs in the synthetic data
experiments and, they are reported in Figure 4. In consistency with
the previous results, cumulative performance ofmiRPipe revealed an
average accuracy of 95.22% and an average F1-score of 94.17% across
all depths, a way higher than all tested alternative computational
methods (Table 2; Figure 4, and Supplementary Material S1–S3).

3.3.5 Benchmarking of Pipelines on the Identification
of Reverse Complement miRNA Sequence as Known
miRNAs
We have also benchmarked miRPipe with seven standard
pipelines introduced in the recent past for annotation of
reverse complement sequence as known miRNAs. As
mentioned in Section 2.2 (Synthetic RNA-seq expression
dataset used in this study), we have generated the synthetic

FIGURE 4 | Benchmarking of miRPipe with the existing pipelines on synthetic data. Averaged results are reported over 10 FASTQ files generated for each read
depth of 50 k, 0.1 million, and 1 million reads. The overall performance of all existing pipelines are shown in (A–C). All the pipelines are benchmarked against miRPipe for
known miRNA in (D–F) and for novel miRNAs in (G–I). Among the existing pipelines, only sRNAtoolbox identifies piRNA and hence, comparison results of miRPipe for
piRNA are compared with only sRNAtoolbox in (J–L).
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data for pipeline benchmarking on the annotation of reverse
complement sequence using 887 high confidence miRNAs in
miRBase database (version 22). The comparative analysis with
miRPipe revealed that miRPipe outperformed existing
pipelines with an accuracy of 42.16% and an F1-score of
59.31%. We have observed that miRDeep2, miRDeep*,
miRPro, mirnovo, miRge2.0, sRNAToolbox, MiR&moRe2,
and miRPipe has identified 4, 35, 7, 0, 6, 56, 0, and 374
miRNAs respectively out of 887 high confidence miRNAs in
miRBase database (version 22). We have shown the pipeline
performance comparison on the identification of the reverse
complement miRNA sequence in Figure 5. Although miRPipe
has also missed annotating many reverse complement
miRNAs, miRPipe has still successfully identified the most
number of reverse complement sequences as known miRNAs
among all eight pipelines.

3.4 miRPipe Validation on Publicly Available
Chronic Lymphocytic Leukemia Dataset
(GSE123436)
We have validated miRPipe with the publicly available Chronic
Lymphocytic Leukemia (CLL) real RNA-Seq expression dataset
(GSE123436) for miRNA identification. In the CLL dataset,
miRNA profiling of 28 CLL cases and ten age-matched
healthy controls were studied to understand the involvement
of dysregulated miRNAs in CLL and their impact on clinical
outcomes.

3.4.1 Results of all Pipelines on Chronic Lymphocytic
Leukemia Dataset (GSE123436)
A total of 31 known miRNAs were found as dysregulated by
miRPipe pipeline on CLL real RNA-Seq expression dataset
(GSE123436). Out of 31 dysregulated known miRNAs, 24
miRNAs were found as upregulated and 7 miRNAs were
downregulated. On the other hand, we have observed that
miRDeep2, miRDeep*, miRPro, mirnovo, miRge2.0,
sRNAToolbox, and MiR&moRe2 have identified 29, 22, 34, 32,
25, 5, and 5 dysregulated known miRNAs respectively. Further,
miRPipe has identified 28 dysregulated piRNAs in CLL real RNA-
Seq expression data. Out of 28 dysregulated piRNAs, one piRNA
was found to be up-regulated, and the remaining 27 were down-
regulated (shown in Table 3). The average percentage of known
piRNAs across CLL samples was observed as 5.94% calculated as

% piRNAs across CLL samples

� Total no. of sequences annotated as piRNAs
Total no. of sequences annotated as piRNAs + Total no. of sequences annotated asmiRNAs

( )p100,

3.4.2 Literature Validation of all Pipelines on Chronic
Lymphocyte Leukemia Dataset (GSE123436)
According to the original publication of this dataset (Kaur et al.,
2020), eight miRNAs were found as dysregulated in CLL real
RNA-Seq expression dataset. Out of 8 dysregulated miRNAs
reported in the original publication, there were five common
miRNAs reported by miRPipe. In comparison of dysregulated
known miRNAs identified by miRDeep2, miRDeep*, miRPro,

FIGURE 5 |Benchmarking of miRPipe with the seven standard pipelines
on the identification of reverse complement miRNA sequence as known
miRNA.

TABLE 3 | Differentially expressed piRNAs in CLL dataset.

S. No. piRNA Up/down regulation Fold change

1 hsa-piR-23019 down −3.15
2 hsa-piR-23020 down −3.27
3 hsa-piR-32157 down −3.21
4 hsa-piR-32158 down −3.22
5 hsa-piR-32159 down −3.22
6 hsa-piR-32160 down −3.22
7 hsa-piR-32161 down −3.22
8 hsa-piR-32166 down −3.21
9 hsa-piR-32178 down −3.21
10 hsa-piR-32181 down −3.15
11 hsa-piR-32185 down −3.27
12 hsa-piR-32186 down −3.22
13 hsa-piR-32194 down −3.27
14 hsa-piR-32234 down −3.27
15 hsa-piR-32237 down −3.27
16 hsa-piR-32838 down −3.22
17 hsa-piR-32839 down −3.22
18 hsa-piR-32845 down −3.18
19 hsa-piR-32852 down −3.19
20 hsa-piR-32978 down −3.72
21 hsa-piR-32995 down −3.72
22 hsa-piR-33013 down −3.75
23 hsa-piR-32963 up 3.46
24 hsa-piR-32990 down −1.54
25 hsa-piR-33010 down −1.54
26 hsa-piR-33053 down −1.59
27 hsa-piR-32847 down −1.99
28 hsa-piR-32920 down −1.16
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mirnovo, miRge2.0, sRNAToolbox, MiR&moRe2 and miRPipe
with the literature, 17 out of 29 (58.62%), 18 out of 22 (81.81%),
21 out of 36 (58.33%), 14 out of 25 (56%), 8 out of 25 (32%), 2 out
of 5 (40%), 2 out of 5 (40%) and 27 out of 31 (87.09%) miRNAs,
respectively, were found to be reported as dysregulated in the
literature of CLL. Here, the dysregulated miRNAs identified by
miRPipe are found to be reported in multiple CLL-related
literature (Balatti et al., 2013; Shen et al., 2014; Ruiz-Lafuente
et al., 2015; Balatti et al., 2016; Hu et al., 2018; Yang et al., 2018;
Farahat et al., 2019; Gao et al., 2019; Farzadfard et al., 2020;
Rahimi et al., 2021; Sitlinger et al., 2021). We have also reported
28 dysregulated piRNAs in CLL which, to the best of our
knowledge, no one has reported till date.

3.4.3 Comparison of all Pipeline Results With Reverse
Transcription Quantitative Polymerase Chain Reaction
on Chronic Lymphocytic Leukemia Dataset
(GSE123436)
We next compared the results of dysregulated miRNAs (DEMs)
obtained from all the pipelines on CLL real RNA-Seq expression
dataset and further validated these findings using semi-
quantitative real-time PCR.

miRNA profiling was carried out on treatment naïve 28 CLL
cases using the TaqMan Array Human MicroRNA Card A + B v2.0
(Applied Biosystems, CA, United States of America) each of which
profiles 380 TaqMan MicroRNA Assays enabling the simultaneous
quantitation of 754 (377 + 377) human miRNAs plus 4 endogenous
controls. The data was normalized using three endogenous controls
U6 SnRNA, RNU48 and RNU44. The results obtained were also
validated in additional cohorts of de novo CLL patients using the
miRCURY LNA™ universal RT microRNA PCR System
(Exiqon).The additional data on 89 CLL patients was also
generated by our group on the same CLL cohort enrolled in the
study as mentioned in Kaur et al. (Kaur et al., 2020). A unique set of
68 DEMs were validated out of 754 miRs tested with TaqMan Array
Human MicroRNA Card A + B v2.0 (Applied Biosystems, CA,
United States) (Supplementary Material S5).

We have compared the number of DEMs identified by the
existing pipelines that matched to the results of RT-qPCR to
assess the pipeline performance. In comparison of pipeline
performance for miRNA identification, we have observed that
each pipeline (including miRPipe) has detected many
dysregulated miRNAs (DEMs). However, after comparing
them with the results of RT-qPCR, the true DEMs count
decreased considerably. This is because it is practically difficult
to test and validate all the predicted DEMs in the laboratory for at
least three reasons: 1) The assays used for DEM validation may
not contain all the predicted DEMs, 2) limitation of sample
material available, and 3) it adds a huge cost and extra
working hours. Hence, only the topmost or prioritized DEMs
are preferably tested and validated. The false-positive miRNAs
are the miRNAs that are identified as dysregulated by the pipeline
but not validated in RT-qPCR experiments. Similarly, the false-
negative miRNAs are the miRNAs that are not identified as
dysregulated by the pipeline but are RT-qPCR validated. The %
false positives and % false negative of the pipeline are
computed as:

% False Positives � 1 − Number of RT − qPCR validatedmiRNAs identified by the pipeline
Total number of miRNA identified by the pipeline

( )p100,

% FalseNegatives � 1 − Number of RT − qPCR validatedmiRNAs identified by the pipeline
Total number of RT − qPCR validatedmiRNA

( )p100,

We combined the RT-qPCR validated miRNAs identified
by all eight pipelines to get the total number of RT-qPCR
validated miRNAs which give a total of 134 miRNAs. Out of
134 miRNAs, 31 miRNAs were found as RT-qPCR validated.
The miRPipe has outperformed all other pipelines with the
least false positives and false negatives.In miRPipe, out of 31,
17 miRNAs are found as RT-qPCR validated, giving the least
false positives, that is (1–17/31)*100 = 45.16% and least false
negatives (1–17/31*100 = 45.16%) among all eight pipelines.
The % false positives and % false negatives for the remaining
seven pipelines are shown in Table 4 and Supplementary
Material S4.

3.5 miRPipe Validation on Publicly Available
Lung Cancer Dataset (GSE37764)
We have validated miRPipe with the publicly available lung
cancer dataset (GSE37764) for piRNA identification. In the
lung cancer dataset, the role of dysregulated miRNAs and
piRNAs in the non-smoker female lung cancer patients were
studied. Among eight pipelines used for benchmarking, only
miRPipe and sRNAToolbox identify piRNAs. According to
the original publication of this dataset (Nogueira Jorge et al.,
2017), no piRNAs were found to be dysregulated in RNA-Seq
samples of non-smoker females. However, a total of 18 and 20
dysregulated piRNAs were identified by the miRPipe and
sRNAToolbox, respectively (Supplementary Material S7).
There was no common piRNA detected by the two
pipelines. Out of the 18 piRNAs (identified by miRPipe), 6
piRNAs (33.33%) were found to be reported as dysregulated
in lung adenocarcinoma in the literature (Mei et al., 2015). On
the contrary, none of the piRNAs identified by sRNAToolbox
were found to be reported in the literature.

3.6 miRPipe Validation on Publicly Available
Breast Cancer Dataset (GSE171282)
We have also validated the miRNA identification pipeline in
miRPipe with a publicly available breast cancer dataset
(GSE171282). In (Lin et al., 2021), 11 dysregulated miRNAs
were identified to understand their involvement in the effects
of anesthetics on breast cancer cells. We have observed that
miRDeep2, miRDeep*, miRPro, mirnovo, miRge2.0,
sRNAToolbox, MiR&moRe2, and miRPipe have identified 22,
8, 31, 29, 34, 14, 42, and 21 known dysregulated miRNAs
respectively (Supplementary Material S8). In comparing with
the literature reported miRNA 9 out of 22 (40.90%), 7 out of 8
(87.5%), 10 out of 31 (32.25%), 8 out of 29 (27.58%), 19 out of 34
(55.88%), 12 out of 14 (85.71%), 23 out of 42 (54.76%), and 19 out
of 21 (90.47%) miRNAs were found to be reported as
dysregulated in the literature of breast cancer. Here, the
dysregulated miRNAs identified by miRPipe are found to be
reported in multiple breast cancer-related research papers (Shi Y.
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et al., 2015; Krishnan et al., 2015; Hannafon et al., 2016; Tan et al.,
2016; Li et al., 2017; Reza et al., 2017; Schultz et al., 2017; Sripada
et al., 2017; Xia et al., 2017; Chen et al., 2018; Lagendijk et al.,
2018; Lai et al., 2019; Li et al., 2019; Sun et al., 2019; Xie et al.,
2019; Mahlab-Aviv et al., 2020; Zhang et al., 2020; Ghafouri-Fard
et al., 2021; Shen et al., 2021; Yang et al., 2021; Zellinger et al.,
2021; Park et al., 2022). Only 6 out of 11 (54.54%) miRNAs
reported in the original publication of this dataset (Lin et al.,
2021) were found to be reported as dysregulated in the literature.
Of the pipelines compared, miRPipe and MiR&moRe2 reported
miRNAs matched most with the literature (19 and 23,
respectively), although miRPipe has the least number of FPs
because of the 21 reported by miRPipe, 19 matched with the
literature.

4 DISCUSSION

In this work, we have benchmarked our pipeline, miRPipe, with
seven recent pipelines (miRDeep2, miRDeep*, mirPRo, mirnovo,
miRge2.0, sRNAtoolbox, and MiR&moRe2) using a newly
developed synthetic RNA-sequence simulator, miRSim tool
that generates FASTQ file with known fraction of altered/
unaltered known/novel miRNAs and piRNAs, and help
evaluate pipelines on identifying true positives and rejecting
false miRNA/piRNA reads looking similar to known miRNAs/
piRNAs.

4.1 Difference in miRDeep2, miRDeep* and
miRPipe
We have added the following methods in miRPipe to make it
better then miRDeep2 and miRDeep*:

1) Novel Seed-based clustering: Both, miRDeep* and miRDeep2
do not report the known miRNA paralogues and yield many
false positives and false negatives, which reduce their
accuracy and F1 score. In Step-3 of the miRPipe workflow
(that is, by miRDeep*), there can be many novel miRNA
sequences that are not assigned to their correct miRNA
family, or in other words, they are not detected properly.

For example, some paralogues of known miRNAs are
declared as novel miRNAs by the sequence aligner in
Step-3 of miRPipe (miRDeep*), although they should
have been assigned to their respective known miRNA
families. miRPipe clusters such miRNAs declared as novel
in Step-3 of miRPipe using novel seed-based clustering
(Step-6). In Step-6, miRPipe identifies novel miRNAs and
known miRNA paralogues by comparing the seed, xseed
sequence (other than the seed sequence), and their genomic
locations. Similarly, Step-6 of the miRPipe workflow also
combines novel miRNAs sharing the same seed sequence as
that of a known miRNA (or another novel miRNA),
maximum of two alterations in xseed sequence and
similar genomic location through seed-based clustering.
After Step-6, miRPipe eventually yields uniquely identified
novel miRs and their paralogues. This step helps miRPipe to
yield the least false positives and false negatives. For example,
let us consider a sequence “tccctgtcctccaggagctc” that is
identified as novel miRNA (say novelMir-1) in Step-3 of
the miRPipe workflow. The novelMir-1 has an identical seed
as that of hsa-mir-339, has more than 2 nt alteration in the
xseed region, and is mapped at a genomic location other than
that of hsa-mir-339. Therefore, novelMir-1 should be called
a paralogue of hsa-mir-339 and should be labeled as hsa-mir-
339_1. Thus, novelMir-1 naming leads to a false positive to
the novel miRNA class and a false negative for the known
miRNA class. In miRPipe pipeline, by assigning the correct
class to novelMir-1 as hsa-mir-339_1, both the false positive
and false negative would be reduced.

2) Identification of reverse complement miRNAs as known
miRNA using DASHR blast search: miRPipe checks whether
the miRNAs identified as a novel miRNA in Step-3 of the
miRPipe pipeline are indeed novel. In Step-3 of the miRPipe
workflow, there can be some sequences that are annotated as
novel miRNAs, whose annotation is missed due to it being
present as a reverse complement sequence in the fastq file.
miRDeep2 fails to identify the reverse complement sequence
as known miRNA. Out of 887 high confidence known
miRNAs, miRDeep2 has correctly annotate only 4 reverse
complement sequence as known miRNAs. Moreover,
miRDeep* can annotate only those reverse complement

TABLE 4 | Comparison of pipeline performance in CLL real RNA-Seq expression dataset.

S. No. Pipeline No. of
Dysregulated miRNA

Identified by
Pipeline

Number of
miRNAs Validated
with RT-qPCR

Results

% False
Positive

% False
Negative

1 miRDeep2 29 9 68.96 70.96
2 miRDeep* 22 10 54.54 67.74
3 miRPro 34 12 64.70 61.29
4 mirnovo 32 6 81.25 80.64
5 miRge2.0 25 4 84 87.09
6 sRNAToolbox 5 1 80 96.77
7 MiR&moRe2 5 1 80 96.77
8 miRPipe 31 17 45.16 45.16

The bold letters represent the number of miRNAs identified, number of RT-qPCR validated mIRNAs, % False Positives, and % False Negatives reported by miRPipe pipeline.
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sequence as a knownmiRNA that are already annotated in the
miRBase database, regardless of mapping strand of the reverse
complement sequence with the human genome. For example,
the miRNAs hsa-mir-3529–5p (aggtagactgggatttgttgtt) and
hsa-mir-7–2 (aacaacaaatcccagtctacct) are reverse
complementary pair. The reverse complement of hsa-mir-
3529–5p (or hsa-mir-7–2) will be mapped to hsa-mir-7–2 (or
hsa-mir-3529–5p) in the opposite strand. Similarly, for the
reverse complimentary pair hsa-mir-103a-3p (agcagcattgta
cagggctatga) and hsa-mir-103b-1 (tcatagccctgtacaatgctgct),
the reverse complement of hsa-mir-103a-3p (or hsa-mir-
103b-1) will be mapped to hsa-mir-103b-1 or (hsa-mir-
103a-3p) in the same strand. Out of 887 high confidence
known miRNAs, miRDeep* has correctly annotate only 35
reverse complement sequence as known miRNAs. However,
in many cases, due to different mapping strand and precursor
sequence of the reverse complement sequence with the
respective mapping strand and precursor sequence of that
known miRNA, miRDeep* failed to annotate the reverse
complement sequence to its true known miRNA and
annotated them as novel miRNAs. Due to lack of correct
annotation of reverse complement sequences as known
miRNAs, both miRDeep2 and miRDeep* yield many false
positives and false negatives. On the other hand, miRPipe
correctly annotate the reverse complement sequence to its true
known miRNA in the Step-5 of the workflow (DASHR blast
search). For example of a sequence “ctacagaggcgacatgggggtca”
(say mir-1) which is the reverse complement of hsa-mir-
6859–3p (tgacccccatgtcgcctctgtag). The sequence of mir-1 is
mapped at the genomic location chr1:17,369–17,391
(chromosome.number:chromosome.start, chromosome.end)
which is the same as the genomic location of hsa-mir-
6859–3p reported in miRBase database. The mapping
strand of mir-1 is opposite with the respective strand of
hsa-mir-6859–3p. The precursor sequence generated by
miRDeep* for mir-1 is the reverse complement with the
respective precursor sequence of hsa-mir-6859 in miRBase.
Hence, miRDeep* will annotate mir-1 as novel miRNA, while
miRPipe will correctly annotate mir-1 to hsa-mir-6859 in
Step-5 of the workflow (DASHR blast search).

3) Identification of piRNA: Unlike most of the bioinformatics
pipelines that either identify miRNAs or piRNAs, miRPipe
also identifies piRNAs along with the miRNAs from the RNA-
Seq data.

4) Customized reference genome: miRPipe allows users to choose
the reference genome hg19/hg38) and miRBase version
(version 19/20/21/22) as per the requirement. The sequence
aligner used in miRPipe uses the miRBase database for
sequence annotation. If required, a user can add another
database for miRNA annotation. For example, MirGeneDB
can be used instead of miRBase, and accordingly, the
sequences can be annotated according to this database. If a
user replaces the miRBase annotation files with that of
mirGeneDB, then miRPipe will annotate the miRNA
according to the MirGeneDB database.

5) Batch-mode operation: Since miRDeep* is a single-threaded
memory-intensive sequence aligner, the sequential operation

increases the time taken by the pipeline when data of multiple
subjects is required to be processed. On the other hand,
miRPipe allows the execution of sequence alignment in the
batch mode for multiple subjects’ data analysis and therefore,
has significantly reduced execution time in the downstream
analysis. In order to provide operational flexibility in miRPipe,
a user can control whether to run a job in the sequential mode
(one subject’s file or one sample file at a time) or in the batch
mode (multiple subjects’ files or multiple samples’ files). In
sequential mode, miRPipe will align one file at a time.
Similarly, in batch mode, the entire dataset consisting of
multiple files is divided into several small batches. All these
batches are processed parallelly on dedicated (individual)
CPU threads. Further, the user can also control the
number of threads and memory allocation per thread (as
per the system hardware RAM limits).This operation is faster
and less time-consuming than the sequential operation for a
big dataset.

6) Cohort analysis and identification of dysregulated miRNAs:
miRPipe can perform cohort analysis (dataset containing
multiple samples) and report the dysregulated known
miRNAs, novel miRNAs, and known piRNAs via the
statistical test of DESeq2. For cohort analysis, miRPipe can
split the cohort into multiple batches and process each batch
on a dedicated thread parallely, and then use DESeq2 to report
dysregulated miRNAs or piRNAs. On the contrary, since
miRDeep* can process only one sample at a time, it does
not report the dysregulated miRNAs or dysregulated piRNAs,
but can only detect miRNAs present in the fastq file of a
subject.

7) Synthetic Data Generator (miRSim): We have also developed
the miRSim tool to generate synthetic data for the extensive
benchmarking of different pipelines.

8) Both miRSim and miRPipe are open-source and available
publicly in an interactive jupyter notebook at the GitHub
repositories.

9) Selective pipeline execution: We have developed miRPipe in an
interactive jupyter notebook. The miRPipe pipeline is
developed in such a way that both piRNA and miRNA
pipeline can run together. If a user wants to run only one
pipeline at a time, that can be done easily in the jupyter
notebook.

4.2 Comparison of all Pipelines on Known
miRNA Identification
Of the existing pipelines, miRDeep2 identifies miRNAs by
hierarchical sequence alignment followed by RNA secondary
structure prediction of potential precursors and estimation of
the performance statistics of all potential precursors to filter
false positives. However, it allows mismatches of 1 to 2 nt in
the reads while matching the corresponding sequence to those
of known miRNAs introducing false positives. In addition, if
there is a reverse complement of a known miRNA sequence, it
either rejects it or annotates it as novel miRNA. On the other
hand, miRdeep* follows the same methodology as miRDeep2,
except that it incorporates an improved strategy for miRNA
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precursor sequence identification and additional isomiR
detection capacity. Further, it does not allow any mismatch
with known miRNAs, unlike miRdeep2, reducing the false
positives. mirPRo also follows the same methodology of
miRDeep2 except, that it imposes a stringent condition,
wherein only perfectly mapped reads are allowed for
known miRNA prediction. mirPRo also includes isomiR
detection. mirPRo pipeline does not report the paralogues
of known or novel miRNAs. mirPRo uses a Novoalign
sequence aligner for the identification of known miRNAs,
allowing a maximum 2 nt mismatch or three indels in one
opening gap. This could be the reason for more false positives
with mirPRo.

We observed that six out of eight pipelines performed well on
known miRNA. Of these, miRPipe, miRDeep2, and miRDeep*
performed best, while mirnovo, miRge2.0, and sRNAtoolbox
yielded average performance, while mirPRo comparatively
underperformed. The performance of miRDeep2 was close to
miRDeep* except for a few miRNAs, whose precursor were
inconsistent for dicer processing. On the other hand, the
miRDeep* tool has an improved precursor excision strategy
over miRDeep2, leading to better performance on known
miRNA identification. We have observed that the average
accuracy and average F1-score of miRDeep2 and miRDeep*
across all depth for known miRNA identification was 94.74%,
85.66% and 95.67%, 88.06%, respectively while miRPipe has an
average accuracy and average F1-score of 96.58 and 89.95%
(Table 2). The improvement in the miRPipe performance on
the identification of known miRNAs was due to DASHR blast
search and seed-based clustering method.

4.3 Comparison of all Pipelines on Novel
miRNA Identification
For novel miRNA identification, miRDeep2, miRDeep*,
mirPRo, MiR&moRe2, and miRPipe use the hybrid
approach that includes both genomic features and hairpin
structural features. A sequence has to pass through 6
conditions to be annotated as novel miRNAs, such as 1.
Position of potential mature sequence to potential hairpin
sequence, 2. Potential star sequence, 3. Potential loop
sequence, 4. Number of base pairs between mature and star
sequence, 5. Percentages of reads aligned to the location of
mature miRNA for proper dicer processing (at least 90% read
should be aligned) and, 6. Log-odds probability score for
potential mature miRNA. These six conditions are used to
rigorously scan the precursor sequence to identify a read as a
novel miRNA. miRDeep* additionally employs the improved
precursor excision strategy compared to miRDeep2, which
leads to better performance. mirPRo has improved
performance on novel miRNA than known miRNA
detection. It also shows better performance on novel
miRNA identification compared to miRge2.0, sRNAtoolbox,
and MiR&moRe2 because mirPRo follows the same six
conditions and additionally allows a maximum mismatch of
1 nt. It considers mapped read lengths between 18 and 25 nt
and the fold-change criterion (that is, keep only mapped reads

with the highest read stack with at least two-fold change
compared to the second-highest read stack) to reduce the
false positives. Since, miRPipe is an improvisation for
reducing false positives and false negatives by incorporating
DASHR blast search and seed-based clustering on novel
miRNAs sequences, it yields better results than these tools
and other pipelines. Of note, miRPipe has the lowest false
positives and false negatives in comparison to other pipelines.

sRNAToolbox imposes stringent conditions for novel miRNA
prediction such as within-cluster ratio, 5’ fluctuation, minimum
number of hairpin bindings, the minimum number of mature
bindings, length intervals, and minimum reads. The threshold for
each feature is derived from the same machine-learning model
training dataset used in miRAnalyzer (Hackenberg et al., 2011).
We have observed that no novel miRNA was identified in
miRSim simulated synthetic data due to the sRNAToolbox
stringent conditions. The sRNAToolbox has also not identified
any novel miRNAs in the synthetic data experiment on the
identification of reverse complement sequence as known
miRNA. Moreover, sRNAToolbox has reported only three,
one, and three novel miRNAs in the CLL dataset
(GSE123436), lung cancer dataset (GSE37764), and breast
cancer dataset (GSE171282) dataset, respectively. None of the
novel miRNA were found as dysregulated in differential
expression analysis in any of the datasets. Similarly, miRge2.0
utilizes an SVM machine-learning model that uses 22 structural
and compositional features for novel miRNA predictions. The
SVM model has been trained on 17 tissues of the human and
mouse datasets. Due to these stringent conditions, miRge2.0 did
not report any novel miRNAs in synthetic data benchmarking
experiments. Moreover, the miRge2.0 pipeline identified 18, zero,
and zero novel miRNAs in the CLL dataset (GSE123436), lung
cancer dataset (GSE37764), and breast cancer dataset
(GSE171282) dataset, respectively. None of identified novel
miRNA were found as dysregulated in differential expression
analysis in any of the datasets. This could be due to the lack of
generalizability of the SVMmodel trained by miRge2.0 leading to
such high false negatives.

Similarly, the mirnovo pipeline uses machine learning
(random forest model) with 12 coverage profile features, 12
sequence complexity, and nine genomic features hairpin
structural features for novel miRNA identification. It
provides not only novel miRNAs but also other non-coding
RNAs such as tRNA or rRNAs. It is also observed to have high
false negatives. All the three above (sRNAToolbox, miRge2.0,
and mirnovo) are simple methods that do not impose many
stringent conditions for detecting novel miRNAs and hence,
lead to many false positives.

MiR&moRe2 identifies loop-RNAs, microRNA-offset
RNAs (moRNAs), and novel miRNAs with the precursor
excision methodology similar to miRDeep2, except that the
candidate precursor sequences are extended to 30 nt on both
upstream and downstream for the identification of the possible
moRNAs. It also checks for the sequences that are aligned in
the offset region or loop region of the miRNAs hairpin and can
be annotated as microRNA-offset RNAs (moRNAs) and loop-
RNAs. The miRNAs sequences that are neither moRNAs nor
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loop-RNAs and located in the close proximity to the mature
sequence of the hairpin precursor are considered as novel
miRNAs. MiR&moRe2 lacks the identification paralogues and
have many false negatives due to an inefficient precursor
excision strategy. miRPipe addresses the issues of
identification of paralogues, functional annotation of novel
miRNAs, utilizing both the genomic and precursor features,
and hence, outperform all the other pipelines.

4.4 Comparison of all Pipelines on Known
piRNA Identification
Among all these pipelines, only miRPipe and sRNAtoolbox
identify piRNAs and hence, reported these in the synthetic
data experiments. We observed average accuracy and a low
F1-score for piRNA identification in the sRNAtoolbox due to
high false negatives. In miRPipe, the stringent condition of zero
nucleotide mismatch in the seed region and no reverse
complement alignment helped in reducing the false positives
during piRNA identification. Compared to other pipelines,
sRNAtoolbox also reports other non-coding RNAs (long non-
coding RNAs, piRNAs etc.) using blast search for all unmapped/
unassigned reads to several remote databases hosted at NCBI
(such as GenBank, EMBL etc.) with the help of several helper
tools in sRNAbench such as Ensembl Parser, NCBI Parser, RNA
central parser, and Genomic tRNA database parser.

4.5 General Remarks
It is possible that the combination of different methods can
improve the results. The combination of multiple methods can
be either the consensus of results of all methods or the union of
results of all methods. If we consider the consensus results, it is
possible to reduce false positives. However, it may lead to high false
negatives because of the methodological differences of pipelines
that impact miRNA identification. Similarly considering the union
results, it may lead to high false positives, which is also not good.
We believe that miRPipe addresses this issue becausemiRPipe is an
end-to-end unified workflow that can report all important
miRNAs/piRNAs in one go with the least false positives or false
negatives, as shown in the benchmarking results.

We have validated miRPipe using miRSim simulated
synthetic data with ground truth and three publically
available real RNA-Seq expression datasets (GSE123436,
GSE37764, GSE171282).The bioinformatics pipeline can
also be validated using some publicly available sequencing
data with added synthetic microRNAs, usually using an
equimolar mixture of 962 synthetic microRNAs miRXplore
universal Reference from Miltenyi (Heinicke et al., 2020).
Further, miRPipe or any other bioinformatics pipeline can
also be tested on the comprehensive atlas of the human
transcriptome from “The RNA Atlas expands the catalog of
human non-coding RNAs.” (Lorenzi et al., 2021), which
includes small, polyA RNA as well as total RNA from 300
human tissues and cell lines. Since miRPipe is an open-source
bioinformatics pipeline, any future researcher can test the
pipeline on these datasets. As of now, miRPipe pipeline is
applicable only for human genomics data. For other genomes,

users need to replace the human genome reference index with
the corresponding non-human genome reference index and
also link the corresponding sequence annotation database.
After replacing the reference index and annotation files,
miRPipe can be used for the non-human genome as the
core algorithm will remain the same.

5 CONCLUSION

The synthetic data experiment validation and benchmarking
strategy, along with the validation on real RNA-Seq expression
data, establishes miRPipe as a robust, reliable, and reproducible
pipeline for the detection of known/novel miRNAs, paralogues,
and piRNAs from the RNA-Seq data. miRPipe outperforms
recent state-of-the-art pipelines. miRPipe can jointly identify
miRNAs and piRNAs and carries out parallel batch processing
for the efficient utilization of the computational resources. The
IPython notebook for bioinformatics pipeline and
containerization of tools makes its configuration and
deployment easy with minimum effort.
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