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Abstract

Convolutional neural networks (CNNs) and other deep-learning models have proven to be transformative tools for the automated
analysis of microscopy images, particularly in the domain of cellular and tissue imaging. These computer-vision models have pri-
marily been applied with traditional microscopy imaging modalities (e.g. brightfield and fluorescence), likely due to the availability of
large datasets in these regimes. However, more advanced microscopy imaging techniques could, potentially, allow for improved model
performance in various computational histopathology tasks. In this work, we demonstrate that CNNs can achieve high accuracy in
cell detection and classification without large amounts of data when applied to histology images acquired by fluorescence lifetime
imaging microscopy (FLIM). This accuracy is higher than what would be achieved with regular single or dual-channel fluorescence
images under the same settings, particularly for CNNs pretrained on publicly available fluorescent cell or general image datasets.
Additionally, generated FLIM images could be predicted from just the fluorescence image data by using a dense U-Net CNN model
trained on a subset of ground-truth FLIM images. These U-Net CNN generated FLIM images demonstrated high similarity to ground
truth and improved accuracy in cell detection and classification over fluorescence alone when used as input to a variety of commonly
used CNNs. This improved accuracy was maintained even when the FLIM images were generated by a U-Net CNN trained on only a
few example FLIM images.
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Significance Statement:

Computational histopathology has benefited greatly from recent advances in computer vision and deep learning, allowing for
automated analysis of various cellular and tissue features. However, most of the work has been focused on improving computer-
vision models for datasets using standard imaging techniques. This work explores the benefit of applying these advanced models
in the domain of fluorescence lifetime imaging microscopy (FLIM). The superiority of FLIM to standard fluorescence imaging is
demonstrated for common computer-vision tasks. Additionally, the possibility of generating predictions of FLIM from standard
fluorescence is explored and demonstrated to also improve computer-vision model accuracy.

Introduction
The ability to accurately locate, classify, and segment cells within
microscopy images is fundamental for bioimaging applications in
both basic and translational biomedical research, as it enables the
study of cell spatial relationships and morphologies as they per-
tain to physiology, drug response, and disease (1, 2). Automating
these otherwise time-consuming and expert-dependent tasks has
been an active area of research and development (3, 4), particu-
larly since the advent of convolutional neural networks (CNNs),
which have attained substantially higher accuracies than previ-
ous “hand-crafted,” feature-engineered methods (5). Fluorescence
tissue imaging presents a number of challenges that can reduce
the accuracy of CNNs in cell segmentation and classification, in-
cluding auto-fluorescence, dense clustering, and variation in cell

size, shape, and density among different cell types (6). Much of
the effort in overcoming these challenges has been focused on
improving CNN architectures or creating large datasets for pre-
training CNNs so that they attain high accuracies with limited
training examples (4, 6–8). However, improvements may also be
made by leveraging advances in microscope technology for use in
combination with CNNs or other deep-learning architectures.

Fluorescence lifetime imaging microscopy (FLIM) records the
exponential fluorescence decay response following excitation
with a pulsed or time-modulated light source (9). If they have dif-
ferent lifetime decays, multiple fluorophores can be separated by
FLIM, even when they have similar excitation and emission pro-
files (10–12). Thus, FLIM provides an extra dimension of contrast in
fluorescence imaging that may be leveraged to reduce issues with
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auto-fluorescence (13)—a common problem in fluorescence tissue
imaging (14, 15)—as well as for multiplexing of multiple stains un-
der the same spectral acquisition settings (16). Fluorescence life-
times may also vary depending on the molecular environment,
which can provide additional contextual information, such as the
pH (17), viscosity (18), polarity (19, 20), and concentration of ionic
species (21–23). In some cases, FLIM responses of various fluo-
rophores to microenvironmental conditions have been shown to
have cell and tissue-specific patterns, which may be used for de-
tection and classification (24–28).

In this work, we explored the advantages that FLIM provides
for a variety of CNN architectures for cell instance segmentation
and classification in tissue imaging. FLIM images were acquired
on mouse lung tissue sections stained with spectrally overlapping
nuclear and cell-membrane stains in order to take advantage of
FLIM contrast. FLIM raw data are typically stored in various for-
mats that depend on the instrumentation and whether the ac-
quisition was performed in the time domain (e.g. time-correlated
single-photon counting) or frequency domain. Therefore, to pro-
vide a generalizable method for FLIM representation, acquired
time-domain lifetime decays were transformed to their two pha-
sor components (g and s), applicable for both time- and frequency-
domain FLIM (29). Most CNN architectures have been developed
for use with regular red, green, and blue (RGB) images, so methods
to translate the phasor FLIM data to RGB were also explored. Since
FLIM provides both the integrated fluorescence signal as well as
the decay response, CNN accuracies when trained with and with-
out lifetime information were compared on the same set of im-
ages. The addition of lifetime information improved CNN accu-
racy for both cell instance segmentation and classification across
all architectures tested when compared with conventional single
and dual-channel fluorescence. In many cases, the improvement
in accuracy with the addition of FLIM was more pronounced for
the highest-performing CNN architectures that were pretrained
on publicly available datasets.

While FLIM can provide several advantages for bioimaging, it
comes at the cost of longer acquisition times (30) and, in the case
of time-domain FLIM, large storage requirements for the raw data
(31). The throughput for imaging large sections of tissue by FLIM,
for instance, for whole-slide scanning, is thus substantially lower
than for conventional fluorescence imaging (30). As a proposed
solution to increase throughput, a dense U-Net CNN architecture
was adapted to predict the phasor FLIM images using only sin-
gle or dual-channel fluorescence images as input. The U-Net CNN
generated FLIM images were not only highly similar to ground-
truth, but also conferred similar advantages over fluorescence
alone for cell instance segmentation and classification with CNNs.
In particular, FLIM images generated using dual-channel fluores-
cence input were almost at par with ground-truth FLIM in many
instances and required few training examples. This method could,
thereby, allow for only a subset of images to be acquired by FLIM
during an experiment while the others are acquired via regular
fluorescence, while still maintaining most of the advantages of
employing FLIM for all images.

Results
FLIM acquisition was conducted upon wild-type mouse (Balb-C)
lung tissues that had been cryosectioned (10μm), mounted, fixed,
and stained using a combination of propidium iodide (PI) and
Alexa-Fluor 555 conjugated wheat-germ agglutinin (WGA). These
stains were chosen as they have overlapping excitation and emis-
sion wavelengths but separable fluorescence lifetimes, providing

FLIM contrast for the nuclei (PI) and cell membranes (WGA). FLIM
acquisitions were made using a fluorescence-lifetime equipped
confocal microscope (Leica SP8 FALCON) of eighty different ar-
eas of tissue at two excitation/emission wavelengths: 570/575 to
620 nm and 590/600 to 640 nm. FLIM data from each wavelength
displayed contrast for both nuclei and membranes, with 570 nm
excitation displaying higher fluorescence intensity for the cell
membranes and 590 nm excitation highlighting the nuclei.

FLIM data were transformed from the time domain using the
phasor approach, yielding three components for each pixel coor-
dinates (i, j):

Vi, j =
T
∫
0

Ii, j (t) dt, gi, j (ω) =
T
∫
0

Ii, j (t) cos (nωt) dt / vi, j, si, j (ω)

=
T
∫
0

Ii, j (t) sin (nωt) dt / vi, j,

where Vi, j is the integrated intensity, gi, j (ω) and si, j (ω) are the pha-
sor components (x and y on the phasor plot), Ii, j (t) is the num-
ber of photons at a given decay time t, n is the harmonic fre-
quency (n = 1, for first harmonic), and ω is the angular frequency
(ω = 2π f , where f is the laser repetition frequency) (32). Phasor
FLIM is often calibrated with a reference fluorophore sample of
known, mono-exponential lifetime (29). However, in this applica-
tion, the actual lifetimes are not needed and calibration to fit the
universal semicircle is redundant, as the values are all normal-
ized to a range determined by the measured signal to convert to
an RGB image (see the “Material and Methods” section).

Three methods were explored for translating phasor FLIM im-
age data into three-channel (RGB) FLIM images for input into
computer-vision models: directly to RGB from each of the three
phasor-FLIM channels; via hue, saturation, value (HSV) color
space transformation of the g and s components and fluores-
cence integrated intensity, respectively; or by first reducing the
phasor components into one dimension using linear discriminant
analysis (LDA) (33) and using that as the hue (H) and the fluo-
rescence intensity as the value (V) with the saturation at max-
imum (LDA + HV, see the “Material and Methods” section). The
HSV transformations reduce the contrast of low-intensity pixels,
which have fewer photon counts and thus higher error in fluo-
rescence lifetime. Consequently, the HSV- (Supplementary Mate-
rial Appendix Fig. S1) and LDA + HV-transformed (Fig. 1A) RGB
images are similar to commonly employed FLIM contrast visu-
alization methods, while the direct RGB images display substan-
tial levels of background noise (Supplementary Material Appendix
Fig. S1).

Comparison of FLIM and fluorescence images for
cell detection and classification
Annotation masks on the cell nuclei and corresponding cell-class
labels were made for twenty FLIM image sets. Cell detection was
posed as an instance segmentation problem, such that the models
must both detect the presence/location of the cell nuclei and label
the pixels associated with the nuclei. Models were trained with ei-
ther fluorescence intensity image inputs (single- or dual-channel)
or FLIM inputs (single-channel only) using one of the RGB transfor-
mation methods. Prior to training, model weights were either ran-
domly initialized or loaded from the same models trained on flu-
orescent cells from the Data Science Bowl 2018 (DSB) dataset (7).
Comparisons were made for three model architectures: Mask R-
CNN with a ResNet-50 backbone (Fig. 1B) and a ResNet-101 back-
bone (Supplementary Material Appendix Fig. S2A) (34, 35), and
Stardist (Supplementary Material Appendix Fig. S2B) (36). The av-
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Fig. 1. Comparison of colorized FLIM and regular fluorescence confocal images on cell detection. (A) FLIM images of mouse lung sections stained with
PI and WGA for nuclei and cell membrane, respectively, imaged for fluorescence lifetime at ex./em. 570/575 to 620 nm (top) and 590/600 to 640 nm
(bottom) and visualized using LDA to reduce the phasor signal to one dimension to determine pixel hue, which was then combined with the
fluorescence intensity signal to form an RGB image. (B) Evaluation of cell detection average precision by intersection over union (IoU) of Mask R-CNN
with a ResNet-50 backbone trained using single (gray) or dual channel (black) regular fluorescence images or FLIM images using either direct HSV
colorization of the phasor components (green), LDA then HV colorization (red), or direct conversion of phasor and fluorescence intensity to RGB
channels (purple). Horizontal dot-dashed lines represent the average precision of the best model at IoU = 0.7, with the color signifying the type of
training images used.

erage precision of the instance segmentation at an IoU threshold
of 0.7 was used as the accuracy metric. For all architectures tested,
FLIM images yielded higher accuracy than corresponding single-
channel fluorescence images for both 570 and 590 nm acquisi-
tions. The instance segmentation accuracies for FLIM at 590 nm
were also higher than those for dual-channel fluorescence with
and without DSB pretraining, suggesting that FLIM for this chan-
nel provides more information relevant to detect and segment
cell nuclei than the fluorescence intensity signal alone. Generally,
the CNN architectures had lower accuracy training on direct RGB
FLIM than with HSV and LDA + HV colorized FLIM images, particu-
larly when employing DSB pretraining (Fig. 1B and Supplementary
Material Appendix Fig. S2). DSB pretraining improved accuracy for
all architectures and for all types of input images.

For cell-type classification, cells were broadly separated into
four categories, including alveolar epithelial, bronchial epithe-
lial, vascular and smooth muscle cells, and macrophages (see
the “Material and Methods” section). Eight different CNNs were
tested for cell classification: DenseNet-121 (37), EfficientNetB5
(38), Inception-v3 (39), ResNet-50 and ResNet-101 (40), VGG16 and
VGG19 (41), and Xception (42). Cell classification performance was
compared on labeled image crops centered on the cell nuclei.
For almost all CNNs tested, with and without ImageNet (43) pre-
training, the FLIM images acquired with 570 nm excitation yielded
higher average precision across all classes than the single and

dual-channel fluorescence images (Fig. 2B). The accuracy for FLIM
images acquired with 590 nm excitation was lower than FLIM at
570 nm, similar to the 570 nm and dual-channel fluorescence im-
ages, but had much higher accuracy than the single-channel fluo-
rescence images acquired at 590 nm. These results are in contrast
to the cell instance segmentation performance, where 590 nm
FLIM images yielded higher accuracy (Fig. 1B). The single-channel
fluorescence images demonstrate the same pattern. Propidium io-
dide has a longer wavelength emission peak than Alexa-Fluor 555
(620 vs. 568 nm) (44), and the 590 nm FLIM images highlight the
nuclei more than the cell membranes, whereas the reverse is the
case for the 570 nm FLIM images. These results support the simple
explanation that cell instance segmentation relies on the nuclei,
while cell classification relies more on the cell membrane.

FLIM images transformed using LDA + HV yielded the highest
accuracies for the top performing models, with and without pre-
training (Figs. 1B and 2B). Transforming the FLIM images to color
using HSV, with the hue as the g phasor component and satura-
tion as the s phasor component, resulted in slightly lower CNN ac-
curacy on these top models, followed by the images directly con-
verted to RGB. The LDA + HV images were designed to maximize
contrast in a manner relevant to the cell instance segmentation
task by implementing LDA to reduce the two-component phasor
into one dimension, using nuclei phasor pixels vs. background as
the dependent variable. HSV FLIM conversion potentially suffers
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Fig. 2. Comparison of colorized phasor FLIM and regular fluorescence confocal images on cell classification. Cells are grouped into one of four
categories based on morphology and immuno-fluorescence staining: septum tissue cells, vascular tissue cells, bronchial epithelial tissue cells, and
macrophage cells. (A) FLIM image of mouse lung cryosection (top) and locations of the various cell types. (B) Average precision cell-classification
accuracy for various common CNN architectures trained on either single or dual channel fluorescence images (solid bars) or colorized FLIM images
(hashed bars) using either randomly initialized training weights (top) or ImageNet pretrained weights (bottom).

from reduced contrast at low saturation values, which may ex-
plain the slight reduction in accuracy among the top models. Both
the LDA + HV and HSV images reduce background FLIM noise be-
cause they assign low values to low fluorescence intensity pixels
across all RGB channels, which is not the case for direct FLIM con-
version to RGB. These pixels have the most FLIM noise because
they have the fewest photon counts for accurate lifetime mea-
surement. Additionally, the discrepancy between LDA + HV/HSV
and RGB FLIM appears to increase when pretraining the CNNs. Di-
mensional reduction with uniform manifold approximation and
projection (UMAP) (45) on extracted image features shows that the
HSV and LDA + HV images have a higher similarity to DSB fluo-

rescence cell images than the RGB FLIM images across most of
the CNNs (Supplementary Material Appendix Fig. S3). This higher
proximity to the DSB images in CNN latent space may partially ex-
plain why HSV and LDA + HV lead to higher accuracies than direct
RGB FLIM images with DSB pretraining for the cell detection task.

Generation of FLIM images via a dense U-Net
CNN using fluorescence image data
The prediction of FLIM images from fluorescence was explored us-
ing an implementation of a dense U-Net CNN (46). In order to gen-
erate a predictable output for the U-Net CNN, the phasor com-
ponent images of the FLIM acquisitions were segmented into K
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Fig. 3. Schematic for training a dense U-Net CNN to generate colorized FLIM images from fluorescence images. Ground-truth FLIM data are first
transformed into three channels: phasor components g and s and the fluorescence intensity (top left). Paired FLIM acquisitions were made at 570 and
590 nm excitations so that single or dual-channel fluorescence intensity images can be used as the training input for the U-Net (bottom left), while the
phasor images from one of the excitation wavelengths are segmented into discrete labels by k-means clustering and used as the U-Net training
output. Colorization is performed on the predicted segmentation, in this case by reducing the phasor coordinates to one dimension via LDA and using
hue-value color transformation to RGB, to generate colorized FLIM images (bottom right) highly similar to those of the colorized ground-truth (top
right).

clusters using K-means. The U-Net CNN was trained using the flu-
orescence intensity images from the FLIM acquisitions as input
to predict the resulting K class segmentation of the phasor data
(Fig. 3). These segmentations could then be transformed into RGB
images by assigning each class the corresponding phasor cluster
center values and applying the same RGB transformations used
for the ground-truth FLIM. Either the 570 nm, 590 nm, or both flu-
orescence image channels were used as inputs to generate the
corresponding FLIM images. A range of K values from 2 to 8 were
explored, using various image similarity metrics for comparison.
While the global F1 scores decreased with increasing K values, the
structural similarity index (47), and mutual information (48) be-
tween the generated phasor images and the ground truth both
plateaued near K = 5. The normalized root mean square error
(49) increased and the peak signal-to-noise ratio (50) decreased at
K = 7 (Supplementary Material Appendix Fig. S4). Thus, K = 6 was
utilized for further studies. The resulting generated FLIM images
were highly similar to their ground-truth counterparts, with the
highest similarity achieved by using both fluorescence channels
as input for the U-Net CNN (Supplementary Material Appendix
Fig. S4).

Generated FLIM images enhance cell-nuclei
instance segmentation and cell/tissue
classification over fluorescence intensity alone
The U-Net CNN-generated FLIM images were compared us-
ing the same instance-segmentation CNN architectures as the
ground-truth FLIM (Fig. 4). The FLIM images that were generated

using a single fluorescence input channel achieved similar CNN
accuracy as training the CNNs directly with just the single-
channel fluorescence images for Mask R-CNN ResNet-50 (Fig.
4A), Mask R-CNN ResNet-101 (Supplementary Material Appendix
Fig. S5A), and Stardist (Supplementary Material Appendix Fig.
S5B). However, training the U-Net CNN to predict the 590 nm ex-
citation FLIM phasor from dual-fluorescence input yielded im-
ages that achieved higher CNN instance-segmentation accura-
cies than the dual-channel fluorescence images. As with the
ground-truth FLIM images, the higher accuracy was observed
for the generated FLIM images that were transformed via HSV
or LDA + HV RGB colorization, but not with direct RGB trans-
formation. The accuracy achieved was not quite as high as
with the ground-truth FLIM images taken at 590 nm excitation.
The result for the Mask R-CNN ResNet-50 was confirmed us-
ing four-fold cross validation (Supplementary Material Appendix
Fig. S6).

For the cell-classification CNNs tested, the U-Net CNN-
generated FLIM images were frequently superior to the single-
and dual-channel fluorescence images (Fig. 5). In six of the eight
CNN architectures, the 570 nm FLIM images generated from dual-
channel fluorescence yielded the second highest accuracies, be-
hind the ground-truth 570 nm FLIM, as determined by average
precision across all cell types (Fig. 5C). This increased accuracy
over dual-channel fluorescence was also observed for each indi-
vidual cell type (Fig. 5A and Supplementary Material Appendix
Fig. S7). In general, transforming the generated FLIM images di-
rectly to RGB resulted in lower accuracies than HSV or LDA + HV
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Fig. 4. Comparison of U-Net generated colorized FLIM vs. regular fluorescence confocal images on cell detection. U-Nets trained to predict a
single-channel FLIM output with either 1 or 2-channel fluorescence intensity image inputs. (A) Evaluation of cell detection average precision by IoU of
Mask R-CNN with a ResNet-50 backbone trained on either the generated FLIM images or the corresponding fluorescence images alone. Dashed lines
designate models trained with generated FLIM images (1 or 2 channels). Horizontal dot-dashed lines represent the average precision of the best model
at IoU = 0.7, with the color signifying the type of training images used. (B) Representative images and segmentations showing the cell detection
performance of the Mask R-CNN using various ground-truth FLIM, generated FLIM, or fluorescence-only inputs, showing true positive (green
boxes/masks), false negative (red boxes/masks), and false positive (blue boxes/masks) detections.

transformations when employing ImageNet pretraining (Supple-
mentary Material Appendix Fig. S8). As with the results for the
ground-truth FLIM, ResNet-101 generated the highest accuracies
overall.

The relationships between image similarity and CNN model
accuracy for the U-Net CNN-generated FLIM images and their
ground-truth counterparts were explored for the ResNet-50 Mask
R-CNN instance segmentation CNN and the ResNet-101 classifi-
cation CNN. Generated FLIM images were made using a range of K
from 2 to 8 and used to train these CNNs. Various metrics for im-
age similarity were compared with the relative average precision,
defined as the ratio of CNN average precision for the generated
FLIM to the average precision for the ground-truth FLIM images
(Supplementary Material Appendix Fig. S9). While no single image
similarity metric consistently explained a high proportion of the

variance in relative average precision, the image similarity met-
rics in combination explain a proportion of 0.849 and 0.897 of the
variances for the ResNet-50 Mask R-CNN and ResNet-101, respec-
tively. Thus, image similarity metrics may provide a straightfor-
ward way to estimate how well the generated FLIM images will
compare with ground truth in CNN performance. To explore this
possibility, the U-Net CNN was trained with smaller proportions
of the FLIM training set (N = 60). Surprisingly, the image similar-
ity metrics did not reduce much for any of the acquisition modes,
even when training with as few as 5% of the training set (N = 3)
(Supplementary Material Appendix Fig. S11). This result was ver-
ified by training these CNNs on the 5% training-set images, re-
sulting in little reduction in CNN average precision for the cell
instance segmentation task (Supplementary Material Appendix
Fig. S10).
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Fig. 5. Comparison of U-Net generated color-FLIM images vs. regular fluorescence confocal images on cell classification. Cells are grouped into one of
four categories based on morphology and immuno-fluorescence staining: septum tissue cells, vascular tissue cells, bronchial epithelial tissue cells,
and macrophage cells. (A) Receiver operating characteristic curves for ResNet-101 trained on fluorescence images, or ground-truth or generated
LDA + HV color-FLIM images at either 570 or 590 nm excitation. (B) Representative images of each cell type by type of fluorescence or LDA + HV
color-FLIM input (570 nm excitation). (C) Average precision cell-classification accuracy for various common CNN architectures trained on either single
or dual channel fluorescence images (black, orange, and blue bars), ground-truth LDA + HV color-FLIM (salmon and light blue bars), or generated
LDA + HV color-FLIM images (brown and navy hashed bars) using ImageNet pretrained weights.

FLIM data provides high accuracy in
cross-channel prediction
As a final test of the benefit of FLIM image data over traditional flu-
orescence for CNN prediction, we adapted the dense U-Net to pre-
dict the fluorescence or FLIM image data cross channel from the
fluorescence or FLIM image data of the alternate spectral channel.
For example, the U-Net could be trained to predict the FLIM im-
ages from the 590 nm excitation channel using the fluorescence

images from the 570 nm excitation channel. In this way, fluores-
cence could be compared to FLIM with a completely unsupervised,
annotation-free prediction task. Both the fluorescence and FLIM
images generated by using FLIM input were much closer to the
ground truth than those predicted by fluorescence input alone
(Fig. 6A). In fact, the ground truth and FLIM-generated images are
difficult to distinguish visually, while the fluorescence-generated
images display a number of artifacts and appear washed-out. This
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Fig. 6. Image generation comparison from U-Net trained to predict the fluorescence or FLIM images of one of the acquisition channels using the other
channel’s fluorescence or FLIM images as input. (A) Top row: ground-truth images of (left to right) 570 nm ex. fluorescence, 570 nm ex. LDA + HV
color-FLIM, 590 nm ex. fluorescence, and 590 nm ex. LDA + HV color-FLIM. Middle row: predicted fluorescence and FLIM images generated by training
the U-Net on the fluorescence images from 590 nm ex. (left two panels) and 570 nm (right two panels). Bottom row: U-Net predicted images of the
same using FLIM image data from 590 nm ex. (left two panels) and 570 nm (right two panels) as input. (B) (left to right) The structural similarity index,
peak signal-to-noise ratio, normalized root mean square error, and mutual information metrics of the U-Net generated fluorescence images. The
x-axis represents the predicted output image type (fluorescence or FLIM from either spectral channel), solid bars represent fluorescence data training
input from the alternate spectral channel, slanted hashed bars represent FLIM data training input, the error bars represent the standard deviation
among the predicted images, and the y-axis represents the image similarity metric value.

qualitative assessment is supported by comparing image similar-
ity metrics, which all show a substantial advantage of the FLIM
input over fluorescence alone (Fig. 6B).

Discussion
FLIM and machine learning
While efforts have been applied to designing novel computer-
vision models for computational histopathology tasks (4, 6–8),

there has been much less attention on alternative imaging tech-
niques for this application. Some likely reasons for this dis-
crepancy include the lack of large datasets, lack of access to
these types of instruments, and general challenges for adopt-
ing new technologies and methods in domains that require
standardization, as is the case with histopathology. This work
addresses the first challenge by demonstrating that FLIM in
combination with CNNs can achieve high accuracy in cell in-
stance segmentation, over standard fluorescence imaging, while
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pretraining on standard fluorescence cell datasets. Thus, FLIM can
directly take advantage of already existing fluorescence datasets
to boost computer-vision model performance. This direct compat-
ibility with standard fluorescence may provide FLIM with advan-
tages over other imaging techniques, such as FT-IR (51), Raman
(52), and mass spectrometry (53). Since immunofluorescence is
already an established histopathological technique (54–56), adop-
tion of FLIM for computational histopathology might not require
as much groundwork as these techniques. Also, multispectral
FLIM has been shown to enhance immunofluorescence multi-
plexing (57, 58), which is of increasing interest in histopathol-
ogy research due to the wealth of information that can be de-
rived from spatially resolving many different proteins within cells
(56, 59).

Another challenge to FLIM adoption for histopathology is the
slower imaging speed compared to standard fluorescence (30),
which would make it particularly challenging for whole-slide
imaging. To address this challenge, this work explored whether
FLIM images could be accurately predicted from fluorescence in-
tensity images. FLIM instruments are generally able to function as
standard fluorescence microscopes, so imaging throughput could
be increased by employing FLIM for just a subset of imaging
fields and training a CNN to predict the lifetime contrast in the
other fields. Training the U-Net CNN using this method requires
minimal end-user effort, as it does not require annotations, and
the only major hyperparameters are the K-means number and
the background-intensity value for thresholding. The number of
training samples needed is likely to vary depending on a variety of
factors, including photon statistics, imaging noise, and the com-
plexity of the FLIM signal (e.g. how many different distinct lifetime
species are present). However, the method described in this work
of combining image similarity metrics for predicting downstream
CNN task accuracy may provide a direct strategy by which to de-
termine how many training samples are needed.

This approach remains limited by the availability of FLIM in-
struments, which are rare compared to wide-field or confocal flu-
orescence microscopes. Predicting FLIM, in general, from fluores-
cence intensity depends upon a set of matched FLIM and fluores-
cence images taken under the same imaging conditions, sample
type, dyes, etc. A machine-learning model is unlikely to general-
ize FLIM prediction from one set of imaging conditions to another.
However, tissue slides could potentially be scanned anywhere us-
ing a standard fluorescence microscope and then shipped to a lo-
cation with a FLIM instrument, imaged, co-registered, and then
the original images could be translated to FLIM. If the imaging
conditions and tissue-processing methods are standardized and
sufficiently controlled, this procedure may only be necessary for
a subset of slides. The benefit may derive from the powerful abil-
ity to interrogate advanced biological details that would inform
diagnoses and personalized treatments.

While a similar method for predicting fluorescence lifetime
from regular fluorescence images has been reported (60), the work
described here differs in a few key ways. For most of the studies in
this work, the dense U-Net CNN was designed to predict a discrete,
multi-class output consisting of the K-means segmented phasor
coordinates, as opposed to predicting a continuous output con-
sisting of the composite HSV image composed of fitted lifetime
and intensity values (60). Having the U-Net CNN perform the task
of predicting phasor coordinates instead of fitted lifetime allows
for direct compatibility with time-domain and frequency-domain
fluorescence-lifetime instrumentation, and phasors can be used
to determine multiexponential decays, which is not the case for
mean lifetime (29). We also tested predicting a continuous phasor

output by omitting the activation function on the final convolu-
tional layer and using two output nodes for the g- and s-phasor
components. The generated images from the continuous output
are highly similar to those from the multiclass output (Supple-
mentary Material Appendix Fig. S12). Likewise, the downstream
CNN cell-detection and classification accuracies from FLIM im-
ages generated using both types of U-Net are nearly equivalent
(Supplementary Material Appendix Fig. S13). However, prediction
of a discrete K-means output provides two advantages. First, a dis-
crete output allows for balancing the loss function to reduce the
issue of under-predicting uncommon outcomes, in this case, pha-
sor values found in relatively few pixels. This is a strategy that
has been used previously to increase the representation of “rare
colors” in grayscale image colorization (61). A similar advantage
can be shown for FLIM prediction by comparing the output of the
discrete U-Net against the output of the continuous U-Net parti-
tioned into the same K-means phasor regions. The discrete U-Net
provides higher accuracy relative to the ground-truth FLIM across
all regions of the phasor signal at various K values while maintain-
ing the same per-pixel (global) accuracy (Supplementary Material
Appendix Fig. S14). Second, phasor K-means by itself can gener-
ate fairly accurate segmentation of tissue or cellular structures
without supervision (62), which we found to be the case for seg-
menting cell nuclei from the 570 nm excitation phasor (Supple-
mentary Material Appendix Fig. S15). When provided with single-
channel fluorescence input, the discrete U-Net generated higher
nuclei segmentation accuracy than K-means on the output from
the continuous U-Net.

This work also demonstrates the utility of multi-channel fluo-
rescence input, which was determined to substantially increase
FLIM prediction accuracy and downstream CNN performance.
Even with single-channel input, the number of training samples
in our model could be surprisingly low (down to N = 3) while still
maintaining high similarity and CNN task accuracy. In contrast,
high image similarity was reported in (60) to require N >100 FLIM
training examples; the final performance of these two methods
is difficult to compare because earlier predicted FLIM data were
not compared to ground truth beyond image similarity (60). As
demonstrated in our study with downstream CNN accuracy, in-
dividual image similarity metrics do not fully capture how well
ground-truth FLIM information is carried over in the prediction.
While high image similarity overall predicts better CNN accuracy
relative to ground-truth FLIM, no individual image similarity met-
ric had consistent predictive capacity in this regard.

The result is perhaps surprising that CNNs perform with higher
accuracy using predicted FLIM images than they do with the same
grayscale images used to generate those FLIM images. However,
this method of colorizing grayscale fluorescence images with pre-
dicted FLIM contrast could be viewed as an image enhancement
strategy, which has been shown in other studies to improve down-
stream computer-vision task performance in medical images (63–
67). Some of these image-enhancement strategies have included
colorization of grayscale medical images (63, 66, 67). The benefit of
colorizing medical images has been attributed to improved com-
patibility with CNNs pretraining on RGB datasets (63, 67), such
as ImageNet (43). This discrepancy in the color mode between
the pretraining datasets and the final training/testing datasets
does not appear to strongly affect CNN accuracy, in this current
study. For instance, the color FLIM images displayed a higher im-
provement in Mask R-CNN cell instance segmentation than the
grayscale fluorescence images when pretraining with grayscale
fluorescence images from the DSB challenge (7). Also, pretraining
the cell-classification CNNs on ImageNet improved performance
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for both grayscale fluorescence and color FLIM approximately
equally (Supplementary Material Appendix Fig. S8). The benefit of
colorization in this study, instead, is from FLIM information added
to the fluorescence intensity images and not the colorization it-
self. This conclusion is supported by the tests on cross-channel
fluorescence and FLIM prediction. Providing the U-Net CNN FLIM
data drastically improves cross-channel prediction (vide supra),
which is an entirely annotation-free task. Thus, FLIM data seems
to consistently provide more salient content to the CNNs beyond
what is available from just the fluorescence data.

Although colorization alone did not appear to improve CNN
accuracy with fluorescence images, the method of colorization
did have some impact that may be related to compatibility with
pretraining. The HSV and LDA + HV colorized FLIM images are
closer visually to the pretraining datasets than the FLIM images
colorized by direct conversion to RGB, and these images yielded
a bit more CNN improvement with pretraining than the direct
RGB images (Supplementary Material Appendix Fig. S8). Overall,
the LDA + HV colorization method resulted in the highest accu-
racy for most of the CNNs tested. The main problem with HSV
colorization is that low saturation reduces contrast in the hue.
Transforming the 2D phasor into 1D for hue and using maximum
saturation, as was done for the LDA + HV colorization, avoids this
issue. Other dimensionality reduction methods are worth explor-
ing for this purpose, such as linear methods like principal compo-
nent analysis (68) or nonlinear methods like UMAP (45).

Materials and Methods
Tissue preparation and imaging
Five wild-type Balb-C mice, aged 1 to 2 y old, were obtained from
the Texas A&M Comparative Medicine Program and euthanized
by CO2 asphyxiation. Lungs were perfused by PBS injection into
the heart, inflated with 10% neutral buffered formalin through
the trachea, and removed and fixed in the formalin for one hour.
After immersion in a 15% and then 30% solution of sucrose in
PBS for 4 hours each, the lungs were frozen in Tissue-Tek O.C.T.
Compound (102094–104, VWR) in a -80 ºC freezer. Lungs were
cryosectioned to 10μm, mounted on slides (TruBond 360 Adhe-
sion Slides, 63701-Bx, and Electron Microscopy Sciences), dried
for 1 hour, re-fixed with 2% formalin for 30 seconds, washed with
glycine buffer for 5 minutes, and briefly rinsed 2x with PBS. A
subset of slides were antibody stained to cross-verify cell/tissue-
type classification using anti-CD31 (1:50 dilution, 102513, BioLe-
gend), anti-α-smooth muscle actin (1:100 dilution, 41–9760–80,
ThermoFisher), anti-CD324 (1:100 dilution, 147307, BioLegend),
or anti-F4/80 (1:40 dilution, 41–4801–80, ThermoFisher). These
slides were held at 4 ºC in a humidified chamber for 72 hours.
The other slides were stained with 20μg/mL PI (P4170-10MG,
Sigma–Aldrich) and 4μg/mL WGA Alexa-Fluor 555 (W32464,
ThermoFisher) in PBS. Slides were coverslipped with a glycerol-
based mountant (S36967, ThermoFisher) and held at 4 ºC until
imaging.

Slides were imaged with a 20x glycerol-immersion objective
on a Leica SP8-FALCON confocal microscope, which can perform
multispectral, time-domain FLIM using a pulsed white-light laser.
Images were taken at various positions and focal planes, in part
selected to feature regions with different tissue types (e.g. con-
taining alveolar, vascular, and/or bronchial epithelial tissue). FLIM
image pairs (1024 × 1024, N = 80) were taken with 1% laser
power at a speed of 100 lines per second using two different

excitation/emission acquisition settings: 570/575 to 620 nm and
590/600 to 640 nm. Phasor FLIM images were generated with the
LAS X software using wavelet-transform filtering and exported as
multichannel (fluorescence intensity, g phasor, and s phasor com-
ponents) TIFF images for further analysis.

Software and hardware
Cell annotation masks were generated using the Labkit plugin for
ImageJ (69). All coding was performed in Python (v3.9.5). Image
processing and model evaluation were performed using Scikit-
Image (v0.18.2), Scikit-Learn (v0.24.2), NumPy (v1.20.3), and Mat-
plotlib (v3.4.2). Model training and prediction were performed ei-
ther in Tensorflow (v1.15.3) in Google Colab or Keras (v2.4.3) on a
GeForce RTX 3090 (CUDA v11.5).

Image data annotation and processing
Cell nuclei annotation masks were generated for a subset of
twenty FLIM image pairs using the stacked fluorescence inten-
sity images (570 and 590 nm excitation) to determine the lo-
cation of the nuclei (9,308 total nuclei). These nuclei were as-
signed a cell/tissue classification by referring to images of anti-
body stained tissues into four categories: alveolar epithelial cells,
bronchial epithelial cells, vascular and smooth muscle cells, and
macrophages.

The multichannel TIFF images were transformed into either
grayscale RGB fluorescence images (using the fluorescence in-
tensities only) or RGB FLIM images of one of three types: HSV,
LDA + HV, and RGB (direct). For the HSV images, the g and s pha-
sor images and fluorescence intensity images were stacked into a
3D matrix as the “H” (hue), “S” (saturation), and “V” (value) com-
ponents, respectively, and transformed in color space to RGB. For
the direct RGB images, the fluorescence intensity, g-, and s-phasor
images were directly used as the “R,” “G,” and “B,” respectively.
To generate the LDA + HV images, phasor pixels from the la-
beled nucleus regions and background were converted into mean
vectors:

x̄i =
[
μg

μs

]
,

where i is each class (nuclei vs. background) and μg and μs are
the mean g and s phasor components, respectively. A within-class
scatter matrix was then computed:

SW =
c∑

i = 1

n∑
x∈Di

(x − x̄i ) (x − x̄i )
T
,

where c is the number of classes (in this case 2) and Di is the set of
phasor values for each class i. The between-class scatter matrix
was then computed:

SB =
c∑

i = 1

Ni (x̄i − m) (x̄i − m)T
,

where m is the mean of all classes and Ni is the number of pixels
pertaining to each class i. The 1 x c matrix W was composed of the
eigenvector with the highest eigenvalue as solved for the matrix:

SW
−1SB.
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The dot product between the phasor matrix for each image and
W yielded the 1D transformed matrix:

Y =

⎡
⎢⎢⎢⎢⎣

g1 s1

g2 s2

...
...

gN sN

⎤
⎥⎥⎥⎥⎦ · W,

where g are the g phasor values, s are the s phasor values, and N is
the total number of pixels. Reshaping Y into the original 2D image
shape yielded the LDA transformed image. This LDA image was
then used as the “H” (hue) component, stacked with the fluores-
cence intensity and a “S” dummy matrix set at maximum value
and transformed in color space into RGB.

Dense U-Net CNN for FLIM prediction from
fluorescence intensity
K-means was used to segment the phasor images into K classes,
representing pixels with similar phasor values (62). To employ the
K-means algorithm, the phasor images for a given acquisition set-
ting (i.e. 570/575 to 620 nm excitation/emission) were gathered, a
background threshold value from the fluorescence intensity im-
ages was determined, and all phasor values corresponding to pix-
els above that threshold were pooled. The Scikit-Learn K-means
algorithm was used to determine K cluster center values on the
pooled data. Segmentations could then be generated for each im-
age by determining the closest cluster center for each pixel using
its g and s phasor values. These segmentations were used in com-
bination with the background threshold to create “K + 1”-class
segmentation masks for FLIM prediction.

An implementation of a dense U-Net CNN (46) was then used
to predict these segmentation maps. The dense U-Net CNN, de-
picted in Fig. 3, is similar in architecture to the original U-Net
CNN (70), but with added short skip connections at each layer.
As with the original U-Net CNN (70), the architecture consists of
four encoding layers, four decoding layers, and a bridge layer, em-
ploying two successive 3 × 3 kernel convolutions with ReLU acti-
vation at each layer. The encoding portion began with 64-feature
channels, increasing 2-fold with each layer until a total of 1,024,
while the decoding portion decreased feature channels two-fold
back to the original 64. Max-pooling (2 × 2) and transposed con-
volutions (2 × 2) were used between layers for the encoding and
decoding portions, respectively. The final convolutional block em-
ployed SoftMax activation to the “K + 1”-class mask.

For training, an official test set of five randomly selected, la-
beled/annotated images were set aside to be used for all ex-
periments, except for cross-validation studies. Of the remaining
seventy-five image sets, all or a random subset were randomly di-
vided into training (80%) and validation (20%) sets. A patch size
of 256 × 256 pixels from the input fluorescence intensity im-
ages (one or two channels) and output segmentation was used.
Data augmentation consisted of random selection of the patch
window, random flipping across the x and/or y axis, and random
0, 90, 180, or 270 degree rotation. A total loss consisting of the
sum of the balanced, class-weighted dice loss and categorical fo-
cal loss (v1.0.1, https://github.com/qubvel/segmentation_models)
was used for training with the Adam optimizer (base learning
rate = 10−5, β1 = 0.9, β2 = 0.999, and ε = 10−8). Training was per-
formed for 400 epochs with the model weights saved for the epoch
with the lowest validation loss.

Cell instance segmentation and classification
models
For all cell instance segmentation and cell classification studies,
except when using cross-validation, the same randomly selected
group of twelve training, three validation, and five testing image
sets were used. Models were provided the RGB images as training
input and cell-nuclei masks (instance segmentation) or class la-
bels (classification) for output prediction. Additional model details
are available in the Supplementary Material Appendix.

Cell instance segmentation was tested with three CNN archi-
tectures: Mask R-CNN (34, 35) with either a ResNet-50 or ResNet-
101 backbone (https://github.com/matterport/Mask_RCNN) and
Stardist (36) (https://github.com/stardist/stardist). Model weights
were either initialized at random or from the model trained on flu-
orescence images of cell nuclei from the Data Science Bowl (DSB)
2018 dataset (7). The models were provided random 256 × 256
patches from the RGB images that were randomly rotated or
flipped as input and the same patch of cell-nuclei masks as the
ground-truth output for prediction. Training was performed over
a total of 280 epochs (Mask R-CNN) or 400 epochs (Stardist) with
the model weights saved for the epoch with the lowest validation
loss.

Cell classification was tested with eight CNN architectures:
DenseNet-121 (37), EfficientNetB5 (38), Inception-v3 (39), ResNet-
50 and ResNet-101 (40), VGG16 and VGG19 (41), and Xception (42).
Model weights were either initialized at random or from ImageNet
(43). To generate images during training, cells were randomly se-
lected and cropped (48 × 48) randomly within a ± 5 pixel x and y
distance from the cell-nuclei center. These cropped images were
further augmented by random flipping and rotation, and then re-
sized to the input dimensions and preprocessed and normalized
to the specifications of the CNN. Training was conducted over
100 epochs using the RMSprop optimizer and a learning rate of
2 × 10−6.

Cross-channel fluorescence and FLIM prediction
The same dense U-Net CNN design and parameters were imple-
mented for cross-channel prediction of the fluorescence and FLIM
data, except that the output was switched from a discrete predic-
tion of K-means phasor classes to a continuous prediction of the
fluorescence intensity and g- and s-phasor coordinates. This was
accomplished by omitting the activation function in the final con-
volutional layer and using mean-squared error as the loss func-
tion.

Evaluation metrics
Further details of the evaluation metrics are available in the Sup-
plementary Material Appendix.
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