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Abstract

Background: Decades of research strongly suggest that the genetic etiology of autism spectrum disorders (ASDs) is
heterogeneous. However, most published studies focus on group differences between cases and controls. In
contrast, we hypothesized that the heterogeneity of the disorder could be characterized by identifying pathways
for which individuals are outliers rather than pathways representative of shared group differences of the ASD
diagnosis.

Methods: Two previously published blood gene expression data sets – the Translational Genetics Research Institute
(TGen) dataset (70 cases and 60 unrelated controls) and the Simons Simplex Consortium (Simons) dataset (221
probands and 191 unaffected family members) – were analyzed. All individuals of each dataset were projected to
biological pathways, and each sample’s Mahalanobis distance from a pooled centroid was calculated to compare
the number of case and control outliers for each pathway.

Results: Analysis of a set of blood gene expression profiles from 70 ASD and 60 unrelated controls revealed three
pathways whose outliers were significantly overrepresented in the ASD cases: neuron development including
axonogenesis and neurite development (29% of ASD, 3% of control), nitric oxide signaling (29%, 3%), and skeletal
development (27%, 3%). Overall, 50% of cases and 8% of controls were outliers in one of these three pathways,
which could not be identified using group comparison or gene-level outlier methods. In an independently
collected data set consisting of 221 ASD and 191 unaffected family members, outliers in the neurogenesis pathway
were heavily biased towards cases (20.8% of ASD, 12.0% of control). Interestingly, neurogenesis outliers were more
common among unaffected family members (Simons) than unrelated controls (TGen), but the statistical significance
of this effect was marginal (Chi squared P < 0.09).

Conclusions: Unlike group difference approaches, our analysis identified the samples within the case and control
groups that manifested each expression signal, and showed that outlier groups were distinct for each implicated
pathway. Moreover, our results suggest that by seeking heterogeneity, pathway-based outlier analysis can reveal
expression signals that are not apparent when considering only shared group differences.
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Background
The study of complex human disorders—diseases influenced
by many genetic and environmental factors, such as cancer,
diabetes, and autism—has intensified with the rise of se-
quencing technology, but the majority of genetic heritability
remains unaccounted for in most cases [1]. McClellan and
King suggested that heterogeneity is the source of this gap,
positing that the genetic component of complex disease is in
fact a collection of rare or private conditions [2]. Moreover,
they asserted that “causality in this context can almost never
be resolved by large-scale association or case–control stud-
ies”. It is possible that genetic heterogeneity converges onto
a final common pathway for each disease, but even at this
level there could be one or more related pathways contribut-
ing to pathogenesis, with each pathway implicated in only a
subset of patients (for example, [3]). This recognition has
led to several pathway-based classifications of cancer [4,5].
It is widely accepted that autism spectrum disorders

(ASDs) are heterogeneous both phenotypically—for ex-
ample, among people with ASDs there is much variation
in the three core domains of language, social interaction,
and range of interests—and in terms of genetic variation
[6]. However, most of the published analyses focus on
group differences, such as in numbers of genic copy
number variations (CNVs) [7-13] and gene expression in
genes and pathways [14-22]. By their nature, these
methods will blur or collapse the heterogeneity within
the ASD group that many have posited characterize this
spectrum disorder. Here we have chosen to characterize
the heterogeneity of the disorder by finding those cases
that are most unambiguously different from other
subjects, those that are outliers in one or more gene ex-
pression pathways. Specifically, we develop an outlier
approach to expression data analysis that searches for
pathways in which outliers are biased towards either
case or control.
Hawkins defined an outlier to be “an observation

which deviates so much from the other observations as
to arouse suspicions that it was generated by a different
mechanism” [23]. The many methods that have been de-
veloped to identify outliers can be grouped into several
broad categories [24]. Global methods define outliers
using the entire data set as a reference set, whereas local
methods use only a subset of samples as reference.
Based on the assumption that control samples could be
outliers in some pathways and that most case samples
will not be outliers in any given pathway, we chose a glo-
bal outlier method. Labeling methods classify samples as
“outlier” or “non-outlier”, while scoring methods assign
a continuous outlier score to each sample. In order to
assign samples to pathway-specific subgroups, we chose
a labeling method. Techniques can also be classified by
the properties of the underlying model. The most basic
approach is to use statistical tests to calculate a
probability of observing a data point given a null distri-
bution, and then apply a threshold to label outliers.
More sophisticated approaches include depth- [25],
deviation- [26], distance- [27], and density- [28,29] based
models.
The Mahalanobis distance is among the most basic

techniques for outlier detection, with applications in
wide-ranging fields such as the identification of defective
machine parts [30], face recognition [31], and cyber se-
curity [32]. An analogue of Euclidean distance that scales
and centers the data, the Mahalanobis distance gives
more weight to variation in directions with lower vari-
ance (see Methods). Here we apply it to multivariate
transcriptomic data to identify subgroups of outlier sam-
ples with distinct, pathway-specific gene expression sig-
natures. Our hypothesis is that outlier samples have
gene expression values that were generated by a different
mechanism than the rest of samples because of genomic
variants in the pathway’s genes or in their regulators. A
common problem with outlier-based methods is that
outliers can strongly influence estimates of the parame-
ters of the normal data. We address this issue by
employing the robust minimum covariance determinant
to estimate mean and scatter [30,33].
Many applications of outlier-methods to genomic data

have already been developed, primarily to identify sub-
sets of tumor samples with different chromosomal trans-
locations or activated oncogenes [34-41]. These methods
propose various ways of defining a cutoff between out-
lier and non-outlier samples for a single gene, motivated
by the fact that different oncogenes may be activated in
different tumor subtypes, leading to outlier expression
for these genes in some samples but not others
[34-38,40]. Recently, Luo and colleagues brought outlier
methods to autism research [42]. By integrating
transcriptomic and copy number variation (CNV) data
from autistic patients and controls, they linked genes
with outlier expression values in cases to specific CNVs.
While powerful, all of these methods search for outliers
at the level of the gene. The approach taken here instead
searches for outliers within the multidimensional space
corresponding to the genes in a pathway, based on the
hypothesis that these pathways allow the identification
of shared endophenotype [43].
We applied our method to an autism data set derived

from peripheral blood with 70 ASD and 60 control sam-
ples, collected by the Translational Genomics Research
Institute (TGen) in Pheonix, Arizona, which we refer to
as the TGen data set. The analysis revealed three path-
ways—neuron development, nitric oxide (NO) signaling,
and skeletal development—with significantly more case
outliers than control outliers according to Fisher’s exact
test. Analysis of a second data set, consisting of 221
ASD and 191 control samples and referred to hereafter
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as the Simons data set, confirmed that neurogenesis was
perturbed in a subset of samples. In this data set, con-
trols were unaffected family members (188 siblings and
3 mothers), and the proportion of control neurogenesis
outliers was higher than in the TGen data set where the
controls were unrelated to the cases. Conventional dif-
ferential expression of pathways that use overall group
differences (e.g. GSEA) did not identify the perturbation
of the above pathways as significant.

Results
Our aim was to characterize samples as “outliers” or
“non-outliers” in prior-knowledge based pathways, with
the hypothesis that, within a pathway, outliers represent
samples that are biologically perturbed. For analysis, we
collected 2,159 pathways that included modified Gene
Ontology (GO) terms [44], Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways [45,46], Reactome path-
ways [47], and Biocarta pathways (www.biocarta.com)
from the Molecular Signatures Database (MSigDb) ver-
sion 3.0 [48], two genesets consisting of differentially
expressed genes for autism-linked syndromes i.e., Fragile
X mental retardation and 15q duplication based on the
data of Nishimura and colleagues [19], and two sets of
de novo mutation-containing genes from two recent
exome sequencing studies [49,50] (see Methods).
Although each of these pathways consists of 10 to 300

genes, we reduced these many dimensions into a single
quantitative measure for each sample. First, we applied
principal component analysis (PCA) to the multidimen-
sional space of genes in the pathway and retained the
principal components that accounted for 90% of
variance [51]. In the TGen data set, the median number
of retained principal components was 6 (IQR = 4–9),
whereas in Simons this number was larger (26, IQR =
17–47), a difference that can be at least partially
explained by the difference in sample size. After
projecting the data into PCA space, we represented each
sample by a Mahalanobis distance to the centroid of all
samples [30,52,53]. In theory, these distances follow a
square root chi-squared distribution under the null
hypothesis. This allowed us to define pathway-specific
outliers based on the theoretical chi-squared 97.5th

percentile, which corresponds to a p-value < 0.025 for
a one-sided test [30]. Having categorized the samples
into outliers and non-outliers in each pathway with
this threshold, we then searched for pathways where
the outliers were significantly biased towards either
case or control.

Identification of outlier-enriched pathways
In the TGen data set, we initially found five pathways
enriched for case outliers at FDR < 10%. No pathway was
enriched for control outliers at this threshold. The
genesets characterizing 15q duplication and Fragile X
mental retardation were not enriched for outliers in our
data set, nor were the sets of genes that contained de
novo mutations in two recent studies [49,50]. The case-
enriched pathways were axonogenesis (GO:0007409, modi-
fied by MSigDb), neurite development (GO:0031175,
modified by MSigDb), neuron development (GO:0048666,
modified by MSigDb), nitric oxide (NO) signaling pathway
(Biocarta), and skeletal development (GO:0001501, modi-
fied by MSigDb). To check for the confounding effect of
age, we performed propensity sampling (see Methods).
Briefly, propensity sampling selects subsets of cases and
controls that are matched for age and repeats the proced-
ure on this reduced data set. All five pathways ranked
highly after propensity sampling for age (ranks 2, 16, 7, 18,
and 3 out of 2,159 pathways, respectively) indicating that
age was not an important confounder. The complete re-
sults from propensity sampling, reported as average
p-values across 100 trials, are included as Additional
file 1. P-values were less significant after propensity sam-
pling because of iterations in which outliers were excluded.
Among the five pathways that were significantly

enriched with case outliers, axonogenesis, neurite devel-
opment, and neuron development are highly redundant
genesets: axonogenesis is contained within neurite devel-
opment, which is contained within neuron development.
The size of these genesets is 43, 53, and 61 genes, re-
spectively. Because they are almost identical, these three
pathways captured a very similar signal. As expected, the
Mahalanobis distance distributions for these pathways
were highly correlated (Kendall’s tau ≥ 0.74 for all three
pairs, P < 6.86 × 10− 4. Therefore, we selected only the
largest pathway, neuron development, for further ana-
lysis. In contrast, neuron development shares only one
gene with skeletal development (GLI2) and none with
NO signaling. NO signaling and skeletal development do
not share any genes, and the correlation of their
Mahalanobis distance distributions was not significant
compared to the distribution of Kendall’s tau correlation
for all pairs of pathways (Kendall’s tau = 0.29, P = 0.349).
For these reasons, we selected neuron development, ni-
tric oxide signaling, and skeletal development as the
candidate pathways in which a subgroup of patients was
detected as outliers in TGen. Table 1 enumerates the
number of case and control outliers in these pathways
along with their Fisher’s exact test p-values. For refer-
ence, in the average pathway, 10.7 cases (15.3%) and 8.4
controls (14.0%) were outliers.
This produced a clustering of samples into overlapping

subgroups where each subgroup consisted of the outliers
in a candidate pathway (Figure 1A). Overall, 30.8% (40/
130) of samples were outliers in at least one pathway.
The overlap of these pathway-specific outlier groups is
shown in Figure 1B. The highest overlap was between
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Table 1 Case/control outlier counts in outlier-enriched
TGen pathways

Pathway Case outliers Control outliers Fisher’s exact
test P

Neuron
development

20 / 70 (28.6%) 2 / 60 (3.3%) 9.97 × 10− 5

Nitric oxide
signaling

20 / 70 (28.6%) 2 / 60 (3.3%) 9.97 × 10− 5

Skeletal
development

19 / 70 (27.1%) 2 / 60 (3.3%) 2.03 × 10− 4

Total 35 / 70 (50%) 5 / 60 (8.3%) 1.47 × 10− 7
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NO signaling and skeletal development, with 14 samples
in both groups out of 22 NO signaling and 21 skeletal
development outliers. Remarkably, the five samples that
were outliers in all three pathways were all cases, and
only one control was an outlier in more than one path-
way (NO signaling and skeletal development). Figure 1C
shows a more detailed comparison of two candidate
pathways, neuron development and NO signaling. Nine
samples were outliers in both pathways (quadrant I), 13
samples (11 ASD and 2 controls) were outliers in NO
signaling but not neuron development (quadrant II), and
13 samples (11 ASD and 2 controls) were outliers in
neuron development but not NO signaling (quadrant
IV). A 3-dimensional PCA plot of the neuron develop-
ment pathway, revealing the multivariate structure
behind the outlier calculation, is shown in Additional
file 2.

Differential expression analysis
We opted to determine the leading edge genes that dis-
tinguished each outlier group from the rest of samples.
To do so, we performed standard differential expression
analysis of outliers vs. non-outliers in the three candi-
date pathways (see Methods). There were 249 differen-
tially expressed genes for neuron development (22
outliers vs. 108 non-outliers), 742 for nitric oxide signal-
ing (22 vs. 108) and 1448 for skeletal development (21
vs. 109) at the same FDR < 5% (Figure 2A). These in-
cluded 8, 14, and 26 known autism candidate genes re-
spectively from the Simons Foundation Autism Research
Initiative (SFARI) Gene 2.0 database [54], which
contained 369 genes as of July, 2012 (Table 2). Based on
hypergeometric tests, this overlap was significant for the
neuron development group, but not for the other two
(P = 0.0310, 0.314, 0.708 respectively). Because of the
relatively large number of samples that were outliers in
both NO signaling and skeletal development (Figure 1B),
the differentially expressed genes for these two sub-
groups were highly overlapping.
The top differentially expressed gene for the neuron de-

velopment group was SPON2, which codes for spondin-2,
an extracellular matrix protein. Also known as M-spondin
and mindin, spondin-2 has been shown to direct the
growth and adhesion of embryonic hippocampal neurons
in a rat model [55]. As an extracellular matrix protein in-
volved in neuronal cell adhesion, it plays a role one of the
emergent themes of ASD neurobiology [56]. The only other
gene in the intersection neuron development with the 249
differentially expressed genes was FEZ1, which codes for
fasciculation and elongation protein 1. FEZ1 was recently
shown to interact with DISC1, a known candidate gene for
both autism and schizophrenia [57,58]. Expression levels
of SPON2 and FEZ1 are plotted against each other in
Figure 2B, showing that most neuron development outlier
samples had extreme values in one or both of these genes.
However, some non-outlier samples had extreme expres-
sion values in these genes and vice versa, indicating that the
pathway structure is also important. A complete list of dif-
ferentially expressed genes for the three pathways is pro-
vided in Additional file 3.

Comparison with group difference tests
To check whether these candidate pathways could be
identified by group comparison methods, rendering this
outlier-based approach irrelevant, we performed standard
differential expression followed by hypergeometric tests
for enrichment among the MSigDB pathways (see
Methods). Using this approach, 437 genes were differen-
tially expressed at FDR < 5%, 5 pathways were identified at
FDR < 5%, and 45 pathways were identified at FDR < 10%
(Additional file 4). It is likely that the significance of these
hypergeometric tests was inflated by our filtering for ro-
bustly expressed genes, which are biased towards genes
that are part of known pathways. Nevertheless, none of
neuron development, NO signaling, or skeletal develop-
ment was significant according to this analysis, with
q-values of 0.365, 1, and 1, respectively. Of the pathways
that were significantly enriched with differentially ex-
pressed genes by hypergeometric tests, only the GO term
axon guidance (GO:0007411, modified by MSigDB), a
22-gene pathway that is entirely contained within neuron
development, was equivalent to or contained within one
of the three outlier pathways (Additional file 4). Axon
guidance contained 4 differentially expressed genes (hyper-
geometric P = 0.000944, q-value = 0.0702); these genes
were SPON2, SIAH1, SLIT1, and FEZ2. Interestingly, in
the group difference comparison, FEZ2 and not FEZ1 was
differentially expressed. Since axon guidance was one of
45 pathways identified at FDR < 10% using hypergeometric
tests whereas neuron development was one of 3 pathways
identified at FDR < 10% using the outlier method, we con-
clude that our method identifies this signal with greater
specificity. The three outlier-enriched pathways were not
identified as significantly up or down regulated in cases
using GSEA even at FDR < 25%. Indeed, no pathways were
significant at FDR < 10% by GSEA. Taken together, these



Figure 1 Outlier-enriched pathways in the TGen data set. A) Heatmap marking outliers for each outlier-enriched pathway: neuron
development, nitric oxide (NO) signaling, and skeletal development (Figure 4, step 4). Samples sorted by outlier status followed by diagnosis.
B) Venn diagram showing the overlap of outlier samples for the three pathways in Figure 1A. The numbers of case and control outliers,
respectively, are shown in parentheses. C) A comparison of Mahalanobis distance values (Figure 4, step 2) in neuron development and NO
signaling. Marginal density plots show the distributions of case (red) and control (blue) samples.
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data indicate that our outlier method captured a signal
that was not evident at the group difference level.

Comparison with gene-level outlier analysis
To determine whether pathway-level analysis held any
advantage over gene-level analysis, we performed gene-
level outlier tests (see Methods). Our gene-level analysis
was analogous to our pathway-level analysis in that we
defined outliers based on a hard threshold and then
performed Fisher’s exact tests to compute outlier
enrichment. 822 genes were significant at FDR < 5%
(Additional file 5). 14 MSigDB pathways were significant



Figure 2 TGen outlier-group differentially expressed genes (Figure 4, step 5). Differential expression was calculated using t-tests on log
(base 2) expression values at FDR < 5%. A) Overlap of differentially expressed genes for the three outlier groups. B) Comparison of the log
(base 2) expression levels of the two most differentially expressed genes in the neuron development pathway, SPON2 and FEZ1. Marginal density
plots show the distributions of case (red) and control (blue) samples.
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at FDR < 10% by hypergeometric tests (Additional file 5).
Neuron development, NO signaling, and skeletal devel-
opment were not among them. Out of these 14 path-
ways, only negative regulation of developmental process
(GO:0051093, modified by MSigDB) overlapped signifi-
cantly with any of the three outlier-enriched pathways
(namely, neuron development and skeletal development;
see Additional file 5 for overlap statistics), but the over-
lap was not nearly as significant as a complete contain-
ment, as in the case of neurogenesis and neuron
development. Interestingly, SPON2 was the fifth ranked
outlier gene (P = 4.83 × 10− 5, q-value =0.0118), and
FEZ1 was also significant (P = 0.0138, q-value = 0.0392),
but neuron development was not significantly overrepre-
sented in the 822 outlier genes overall. This suggests that
the subtle contributions of other genes in the neuron de-
velopment pathway enabled pathway-level analysis to cap-
ture a signal that was lost at the gene-level.

Validation in an independent data set
For validation, we applied the same analyses to the Simons
data set. No genes were differentially expressed (minimum
FDR q-value = 1) and no pathways were differentially
expressed at FDR < 25% using GSEA. Using the outlier
method presented here, no pathways were significant at
FDR < 10%, and all pathways with uncorrected Fisher’s test
p-value < 0.05 are listed in Additional file 6. The highest
ranked outlier-enriched pathway was the bone remodeling
RANKL pathway (Biocarta). In this pathway, we identified
39 / 221 (17.6%) of cases and 14 / 191 (7.3%) of controls as
outliers (Fisher’s exact test P = 0.00185). The RANKL path-
way regulates bone homeostasis [59,60], but since it shares
no genes with the MSigDb skeletal development pathway,
a comparison of the RANKL signal in Simons to the skel-
etal development signal in TGen is purely speculative.
None of the three TGen candidate pathways were ini-

tially identified as outlier-enriched in the Simons data
set with Fisher’s exact test p-values of 0.204 (neuron devel-
opment), 1.0 (NO signaling), and 0.703 (skeletal develop-
ment) and case/control outlier percentages of 20.8%/
15.7%, 16.7%/12.6%, and 17.6%/19.4%, respectively. These
numbers were fairly typical given average outlier percent-
ages of 16.6% for cases and 15.8% for controls. However,
we found that neurogenesis (GO:0022008, modified by
MSigDB), a 93-gene pathway that contains all 61 neuron
development genes, ranked highly among the pathways
biased towards ASD outliers. Remarkably, neurogenesis
ranked 9th out of 2,159 pathways for case-specific outlier
enrichment (99.5th percentile), and 13th for two-sided tests
(99.3rd percentile). As shown in Figure 3, we identified 46 /
221 (20.8%) of cases and 23 / 191 (12.0%) of controls as
outliers (Fisher’s exact P = 0.0178). While neurogenesis did



Table 2 Differentially expressed autism candidate genes for each pathway subgroup

Neuron development Nitric oxide signaling Skeletal development

Gene log2(FC) q-value Gene log2(FC) q-value Gene log2(FC) q-value

BZRAP1 0.759 7.39e-08 SYNGAP1 0.760 0.000173 SYNGAP1 0.769 4.24e-06

CD38 0.645 0.0270 GPC6 0.510 0.0437 KCTD13 0.564 9.09e-07

PDE4A 0.430 0.00711 KCTD13 0.497 0.000921 NSD1 0.492 6.91e-08

AUTS2 0.387 0.00217 DMPK 0.391 0.00565 PCDHGA11 0.485 2.88e-06

ADRB2 0.363 0.00122 NSD1 0.340 0.00847 DMPK 0.478 1.24e-05

ADA 0.330 0.00246 CACNA1G 0.285 0.0494 NCKAP5L 0.374 0.000301

STK39 0.306 0.0210 MED12 0.215 0.0184 SATB2 0.330 0.0169

BCL2 -0.235 0.0141 CD44 0.164 0.0276 NOS2A 0.327 0.0102

TSN -0.172 0.0127 DPP6 0.325 0.0382

PEX7 -0.228 0.0283 EPHB6 0.308 0.00248

TMLHE -0.245 0.0461 MED12 0.305 7.87e-05

EPHA6 -0.287 0.0368 NRP2 0.290 0.0302

DIAPH3 -0.510 0.0247 TSC2 0.238 0.0352

TPH2 -0.548 0.0183 MAPK3 0.220 0.0283

DRD2 0.179 0.0316

RIMS3 0.177 0.0289

CD44 0.151 0.0301

RPL10 -0.102 0.0181

ADSL -0.155 0.0440

SLC25A12 -0.183 0.0431

ARHGAP15 -0.187 0.0271

DUSP22 -0.194 0.0204

PEX7 -0.212 0.0408

RORA -0.266 0.0295

EIF4E -0.343 0.0293

TPH2 -0.822 0.00313

Genes in bold were differentially expressed in both nitric oxide signaling and skeletal development outliers, which were the groups with the highest overlap
(Figure 1B).
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not pass the FDR < 10% significance threshold based on
the multiple hypothesis-corrected Fisher’s test (indeed, no
pathways passed this threshold in the Simons data set), we
consider this rank-based evidence noteworthy given the
statistical significance of the pathway in the TGen data set.
One control sample that clearly belongs to the non-outlier
group was called an outlier, but was very close to the out-
lier threshold. Nevertheless, neurogenesis was highly
ranked despite this classification error, which weakened
the result. Interestingly, a greater proportion of controls
had a neurogenesis signature in the Simons data set than
in the TGen data set (12% vs. 3%, chi-squared P = 0.0858),
which is consistent with the fact that the Simons controls
were unaffected family members rather than unrelated
children. Out of 46 case outliers and 23 control outliers,
there were six proband/sibling pairs, of which two were
sex matched.
Differential expression analysis revealed the genes that
drove the clustering of the neurogenesis subgroup in the
Simons data set. At FDR < 5%, 1,969 genes were differ-
entially expressed between neurogenesis outliers and all
other samples (Additional file 7). Of these, 13 were
among the 93 genes in the neurogenesis pathway. Three
out of these 13 neurogenesis genes were known autism
candidate genes according to the SFARI database:
NRXN3, ROBO1, and NRCAM. All three were over-
expressed in the neurogenesis outlier subgroup. More-
over, out of the total 1969 differentially expressed genes,
35 were found in the SFARI database. Interestingly,
SPON2, the most significant neuron development gene
in TGen, was marginally differentially expressed in the
Simons neurogenesis group (P = 0.0889, q-value = 0.172).
Because the Simons data set consisted largely of pairs of

siblings, we performed an alternate analysis for this data set



Figure 3 Neurogenesis outliers in the Simons data set. The y-axis is in units of Mahalanobis distance from the pooled centroid of cases and
controls, and the x-axis is samples. One control sample was misclassified as an outlier due to the choice of χ20:975 as the hard threshold.
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using McNemar’s test instead of Fisher’s test. There were
168 proband/sibling pairs out of 412 samples. On the re-
duced data set consisting of these 168 pairs of siblings, no
pathways were significant: all pathways had q-values of 1
(see Additional file 8 for McNemar’s test results for all
2,158 pathways). In the neurogenesis pathway, 19% of
ASD samples were identified as outliers versus 13.1% of
controls, yielding a McNemar’s test p-value of 0.155.
There were seven sibling pairs (4.2% of both cases and
controls) in which both siblings were outliers, which is
greater than expected by chance but not significant by
hypergeometric test (P = 0.0934). Because the direction of
the effect remained the same but was less significant, and
because Fisher’s test p-values were highly correlated with
McNemar’s test p-values on the reduced data set (ρ =
0.864), we attribute the loss of significance to the elimin-
ation of 76 samples and the resulting loss in power, rather
than the use of an alternate method. Indeed, this result is
consistent with the interpretation that the neurogenesis
signal is enriched among siblings of probands as compared
to unrelated controls.

Discussion
ASD, like other complex disorders such as diabetes and
heart disease, is almost certainly associated with the ef-
fect of multiple genes as well as environmental factors.
To date, no more than 20% of cases have been linked to
structural genomic variants such as de novo CNVs and mu-
tations, and monogenic syndromic disorders. To further
understand the heterogeneity of ASD genetic architecture
reflected in the blood transcriptome, we developed a novel
approach using outlier statistics. To demonstrate the
plausibility, we used two independently collected data sets
of ASD and controls. Only ~30% of cases shared molecu-
lar signatures including neural development (29% of
cases), NO signaling pathway (29% of cases), and skeletal
development (27% of cases). These pathways could not be
identified with group comparison or gene-level outlier
methods, and the significantly perturbed cases for these
pathways were not identical. Overall, our approached
identified 50% of cases but only 8% of controls as outliers
in at least one of these pathways.
To date, most emergent biological themes in ASDs

have fallen into one of three categories: neuroanatom-
ical, systems, and molecular and cellular [56]. Neuroana-
tomical observations of altered brain growth patterns
[61-63] and minicolumnopathy [64] are the most repro-
ducible clinical signatures of ASDs. Pathways affecting
cellular proliferation such as the PI3K-AKT-mTOR
pathway have been hypothesized to affect abnormal
brain growth in ASD, but no concrete link between such
pathways and brain growth patterns exists as yet [56]. At
the systems level, evidence has accumulated for func-
tional alterations in white matter tracts [65-68] and
overall imbalance between excitation and inhibition in
the brain [69-72]. Cellular and molecular themes have
converged on the function and structure of the synapse.
Rare or de novo, deleterious mutations were found in
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ionotropic glutamate receptors [49,73], voltage-gated so-
dium channels [49,50,74], and voltage-gated calcium
channels [75,76]. Neurexins and neuroligins are involved
in neuronal adhesion and have been heavily implicated
in ASDs by cytogenetic analysis [77], CNV studies
[8,9,11,49] and knockout mouse models [70,72,78]. Simi-
larly, candidate genes SHANK2 and SHANK3 code for
scaffold proteins in the postsynaptic density. Other ASD
candidate genes with protein products in the postsynap-
tic density include FMR1 and associated genes MET,
PTEN, TSC1, TSC2, and NF1, all of which are involved
in translation, as well as genes involved in protein deg-
radation such as UBE3A, PARK2, RFWD2, FBXO40, and
USP7 [56]. In summary, anatomical, physiological, mouse-
model, and human genetic studies have implicated brain
growth, white matter connectivity, synaptic transmission,
and the structure of the synapse as promising biological
themes in ASD.
In this context, our discovery of three pathways related

to neural development—axonogenesis, neurite develop-
ment, and neuron development, which we collapsed to-
gether for analysis—was notable as defects in early
neurodevelopmental processes such as neuronal survival,
differentiation, migration and synaptogenesis may cause
neurobiological abnormalities in ASD [79]. The NO sig-
naling pathway contains genes involved in the glutamate
NMDA receptor, as well as in the calcium/calmodulin
and NO mediated second messenger systems that regu-
late long-term potentiation and other activity dependent
developmental processes. Moreover, neurogenesis was
dysregulated in a subgroup of cases from an independ-
ently collected cohort. Specifically, in the Simons data
set we identified 20.8% of cases and 12.0% of unaffected
family members as neurogenesis outliers.
Outlier samples also showed gene-level differences com-

pared to non-outlier samples. By comparing outliers and
non-outliers, we could identify differentially expressed
genes that were specific to outlier subgroups. Among these,
FEZ1 was recently shown to interact with DISC1, a suscep-
tibility gene for schizophrenia and other mental disorders
[57]. In that paper, the authors show that fasciculation and
elongation protein zeta-1 (FEZ1) acts together with
Disrupted-in Schizophrenia 1 (DISC1) to regulate dendritic
growth in the hippocampus of adult mice. Interestingly,
DISC1 is also an ASD candidate gene; variation in DISC1,
located at 1q42, was correlated with autism in a Finnish co-
hort [58]. While FEZ1 was not differentially expressed be-
tween cases and controls overall in the TGen data set
(P = 0.238), we were able to detect differential expression of
FEZ1 in a subset of cases using our heterogeneity-based
approach (P = 1.85 × 10− 7, q-value = 5.95 × 105). Similarly,
SPON2, whose protein product spondin-2 was shown to
direct the development of hippocampal neurons in rats
[55], was highly over-expressed in neuron development
outliers (P = 2.29 × 10− 19, q-value = 4.48 × 10− 15, differential
expression rank = 1/21,184) but this significance was di-
luted at the group difference level (P = 0.000946, q-value =
0.0430, differential expression rank = 292/21,184). Interest-
ingly, we could recover most outlier cases from the distri-
butions of SPON2 and FEZ1 alone (Figure 2B). While
gene-level analysis detected these two genes at FDR < 5%,
neuron development was not overrepresented among the
outlier genes overall, indicating that other genes in the
pathway also played an important role.
Our method and the two data sets used in our study

had several limitations. Due to their incompleteness and
generality, the pathway definitions from MSigDB imper-
fectly describe the underlying biology of ASD. Neverthe-
less, we chose to use these definitions as opposed to
data-driven pathways to avoid over-fitting. Clinical defi-
nitions of ASD are constantly changing, and include a
broad swath of individuals with heterogeneous disorders;
while this was the motivation for our analysis, it is also
conceivable that misdiagnosis due to overly inclusive cri-
teria led to the inclusion of false-positive outliers in our
study. It is possible that genetically distinct cohorts were
recruited for the two data sets, as samples were collected
at two geographically distant study sites with different
local ancestral structures. Although we tried to reduce
technical variation such as batch effects in each data set,
it is possible that some technical artifacts remained.
There will also inevitably be technical variability between
two genomic profiling facilities and microarray plat-
forms. Therefore, it is unsurprising that we were not
able to replicate all of our results: specifically, we were
unable to identify NO signaling and skeletal develop-
ment signatures in the Simons cohort, and the RANKL
pathway, while perhaps related to skeletal development,
was the top-ranking outlier-enriched pathway in the
Simons data set but not significantly outlier-enriched
the TGen data set. Finally, because we used blood gene ex-
pression profiles as a surrogate for studying genomic alter-
ations in a neurodevelopmental disorder, the difference in
transcriptomic repertoire between blood and brain might
have limited us to characterizing only 50% of samples in
our results. Because of these limitations, this study and its
results should be considered exploratory, showing the po-
tential benefits of a novel approach, but not conclusive.
A large number of samples from different cohorts and

the integration of genetic and transcriptomic profiles are
essential for the identification of subgroups that may
share clinical features, treatment responses, and prog-
nostic characteristics [80]. Along with the alarming in-
crease in ASD prevalence in the last few decades has
come an accumulation of genetic and genomic profiling
data [42,49,50,74,81], and yet the group difference be-
tween ASD and non-ASD is not obvious by any mea-
sure. We characterized 50% of cases with specific
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genomic signatures using an outlier-based approach, which
will be strengthened by the integration of different modal-
ities of genomic data such as whole-genome and whole-
exome sequences. Looking farther into the future, true
personalized medicine will only be achieved when individ-
ual genetic and genomic characteristics are combined with
clinical and other phenotypic information.

Conclusions
In this study, we applied a novel, pathway-based outlier
method to two publicly available autism gene expression
data sets from peripheral blood (TGen and Simons).
Analysis of the TGen data set revealed three non-
identical subgroups of samples with perturbations in the
neuron development, nitric oxide signaling, and skeletal
development pathways. In the Simons data set, we also
found a subset of patients with a perturbed neurogenesis
signature, but were unable to convincingly replicate ni-
tric oxide signaling or skeletal development. A greater
proportion of unaffected family members (Simons con-
trols) manifested a neurogenesis signature than did un-
related children (TGen controls), possibly due to the
shared genetic background between probands and their
family members. While pathway-based classifications of
cancer have been developed, this is both the first applica-
tion of such methods to ASDs, and the first integration of
pathway-based classification with outlier methods. These
results show that pathway-based outlier analysis is useful
for the study of complex disorders, and add to the growing
body of evidence that peripheral blood gene expression
data contain useful markers for neurodevelopmental
disorders.

Methods
Gene expression data sets
We analyzed two previously published blood gene ex-
pression data sets. The first data set was from the Transla-
tional Genetics Research Institute (TGen), and consisted
of 144 CEL files from Affymetrix HG-U133 Plus 2.0 chips
(78 from ASD samples and 66 from controls). Quality
control left 130 arrays (70 case and 60 control). This data
set is available on the Gene Expression Omnibus (GEO)
as GSE25507 [82]. The second data set was from the
Simons Simplex Consortium (SSC), and consisted of 439
Illumina Whole Human Genome Array Human REF-8
version 3.0 arrays (233 case and 206 control). After quality
control, 412 samples remained (221 case and 191 control).
The 191 controls consisted of 188 unaffected siblings and
3 mothers. All 3 mothers had a child among the probands,
and there were 168 proband/sibling pairs. The other 20
controls were unaffected siblings of probands not in-
cluded in the study. We refer to this data set as the
Simons data set; it is available on GEO as GSE37772 [42].
See “Preprocessing” for detailed microarray preprocessing
steps. Phenotype information for both data sets is summa-
rized in Additional file 9.
Genesets
Prior knowledge-based genesets consisting of Entrez
Gene Identifiers (Entrez IDs) were downloaded in Gene
Matrix Transposed (GMT) format from the Molecular
Signatures Database (MSigDB) version 3.0 [48]. Of the
available genesets, we used those that are expert-curated,
namely C2:CP (canonical pathways), and C5 (modified
Gene Ontology term genesets). After filtering out large
(>300 genes) and small (<10 genes) genesets, there were
2157 genesets in these categories as of January, 2012. To
this we added genesets consisting of differentially ex-
pressed genes from the comparison of blood gene expres-
sion profiles from patients with Fragile X syndrome and
15q duplication to controls [19], and two sets of de novo
mutation-containing genes from exome sequencing stud-
ies [49,50], resulting in a total of 2161 genesets. These
genesets were mapped to probesets on the Affymetrix
HG-U133 Plus 2 array using the annotation table from the
Affymetrix website dated June 9th, 2011. Probesets ending
in “x_at” were discarded because this suffix indicates that
the probeset may bind to multiple transcripts. In total,
these genesets contained 9,347 unique Entrez IDs, 98% of
which (9,175) mapped to at least one probeset on the
Affymetrix chip, covering 35% of all probesets. Through-
out this paper, the terms “geneset” and “pathway” are used
interchangeably.
Preprocessing
TGen samples were quantile normalized and background
adjusted with Probe Logarithmic Intensity Error using
Affymetrix Power Tools Version 1.14.4 [83]. All 144 chips
had high mean inter-array correlation (≥ 0.9). Further
array-level quality checks were performed by visually
inspecting MA plots from Bioconductor’s AffyPLM pack-
age [84]. The TGen data set did not exhibit strong batch
effects (Additional file 10), and the case and control
groups were balanced for race (Additional file 9). There-
fore, we decided not to use batch effect correction such as
ComBat [85] because we observed that this can introduce
bias to the data. However, we noticed that TGen data set
contained a group of samples that were outliers in almost
every pathway. These samples also correlated with the first
surrogate variable from Surrogate Variable Analysis [86],
indicating that they were technical outliers. We defined
“total outlier” samples as the top 90th percentile of the
mean Mahalanobis distance distribution across all path-
ways, and removed them to ensure that remaining sam-
ples were not array-wide outliers but rather outliers in a
specific set of pathways, leaving 130 arrays (70 case and 60
control). See Additional file 10 for PCA plots of the entire
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TGen data set before and after the removal of total outlier
samples.
For preprocessing of the Simons data set, we followed

the procedure of the original authors [42]. Based on
hierarchical clustering using inter array correlation
(IAC) as the distance metric, 27 arrays were discarded,
leaving 412 (221 case and 191 control). The remaining
samples were quantile normalized, and ComBat was
performed with the default parameters to reduce batch
effects. We then fit the data set to a linear model with
collection batch, sex, and age as independent variables
and kept the residual values. See Additional file 10 for
PCA plots of the Simons data set before and after ComBat
and linear modeling.

Propensity sampling
To check that our results were not due to the influence
of confounders, we performed repeated propensity sam-
pling [87]. There was a significant difference in the age
distributions of case and control samples in TGen, with
cases being younger in general (see Additional file 9).
We performed logistic regression of diagnosis on age,
and binned the resulting probabilities into five bins.
Then we sampled each bin so that numbers of cases and
controls were matched. The resulting data set is said to
be “propensity matched”. This procedure was repeated
100 times to include unused samples, and for each iter-
ation the reduced data set was run through the rest of
the procedure. The resulting p-values were averaged and
compared to p-values generated from the full data set.

Mahalanobis distance and outlier vs. non-outlier
classification using the chi-squared distribution
We used a similar approach as described in Kong et al.
to project samples into dimensionally-reduced geneset
subspaces, aggregating the signal at the pathway level to
improve robustness to gene level noise [53]. In the sub-
set of the expression matrix corresponding to each
geneset, we projected the data onto the space of first n
principal components that account for ≥ 90% of variance
(Figure 4 step 1) [51]. For the TGen data set, raw expres-
sion levels, as output by PLIER, were input to PCA. For
the Simons data set, residual values after linear modeling
were used. In each dimensionally-reduced geneset sub-
space, we calculated each sample’s Mahalanobis distance
to the centroid of all samples, using the Fast Minimum
Covariance Determinant algorithm to estimate the robust
pooled covariance matrix and centroid [30] (Figure 4
step 2). The Mahalanobis distance formula is:

DM xð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ‐μð ÞTS‐1 χ‐μð Þ

q

where x is the sample in question, S is the robustly esti-
mated covariance matrix of the pathway subspace, and μ
is the robust mean vector. Performing the Mahalanobis
distance calculation for each pathway produced a dis-
tance matrix of pathways by samples. Theoretically, the
Mahalanobis distance will follow a chi-squared distribu-
tion, with the number of degrees of freedom equaling
the number of principal components used to calculate
the distance. We defined the outlier cutoff as the stand-

ard value
ffiffiffiffiffiffiffiffiffiffiffiffi
χ2d;:975

q
, the square root of the 97.5th percentile

of the chi-squared distribution with d degrees of freedom,
generating a binary matrix of pathways by samples where
1/0 represents outlier/non-outlier (Figure 4 step 3). One
problem with the Mahalanobis distance is that as the de-
gree of freedom increases, samples yield increasingly simi-
lar values [24]. We surmount this problem by applying the
Mahalanobis distance to a small number of principal com-
ponents (typically less than 10) rather than the complete
multidimensional gene space (10–300 genes per pathway).

Selection of significant pathways using Fisher’s exact test
Once we had defined which samples were outliers in each
pathway, we used Fisher’s exact test to select pathways
where outliers were predominantly case or control sam-
ples (Figure 4 step 4). Because our tests were symmetric
with respect to diagnosis, pathways could be enriched for
case or control outliers. The inclusion of control-enriched
pathways provided an automatic estimation of the false-
positive rate for pathway detection. Fisher’s test p-values
were transformed to FDR estimates following the q-value
method of Storey and Tibshirani [88]. We defined a sig-
nificance threshold of FDR < 10% and called any pathway
that passed this threshold “outlier-enriched”.

Pathway-specific differential expression
Differential expression was evaluated for each pathway
by comparing outliers in that pathway to the remaining
samples (Figure 4 step 5). Multiple probe sets were col-
lapsed to the gene level by taking the maximum expressed
probe sets, then Welch’s t-test was then performed on log
(base 2) expression values for each gene. We corrected for
multiple comparisons using the q-value FDR estimation
with a significance threshold of FDR < 5%.

Group difference comparison
For comparison, we also tested group differences be-
tween cases and controls at the pathway level using
hypergeometric tests on differentially expressed genes.
To calculate differential expression, probes were log
(base 2) transformed and collapsed to the gene level by
taking the maximum probe for each Entrez gene ID. We
filtered for robustly expressed genes by requiring that at
least 2/3 of samples had log (base 2) expression > 7, and
we performed t tests on the remaining genes with an
FDR cutoff of 5%. We then performed hypergeometric
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Figure 4 Analysis flow chart. In brief, the steps of the method were: 1) project samples onto the principal components (PC) of pathway
subspaces, 2) calculate the 1-dimensional Mahalanobis distance distribution of samples in the PC space of each pathway, 3) classify samples as
“outliers” or “non-outliers” in each pathway based on the 97.5th percentile of the chi-squared distribution, 4) employ Fisher’s exact test to identify
pathways that are specifically enriched for case or control outliers, using the False Discovery Rate (FDR) q-value of Storey and Tibshirani to correct
for multiple hypothesis testing [88], 5) for each subgroup of samples corresponding to the outliers in a candidate pathway, perform standard
differential expression analysis to determine the genes responsible for the grouping.
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tests for enrichment of these genes among the MSigDb
pathways. We also performed GSEA on all pathways
using Gene Pattern [89] with 1000 sample label permu-
tations, ranking genes by signal to noise ratio.

Gene-level outlier analysis
We also compared pathway-level outlier analysis to gene-
level outlier analysis. The expression set was collapsed to
the gene level by taking the maximum probe for each gene.
Then, only robustly expressed genes were retained by re-
quiring that the log (base 2) expression level be at least 7
for at least 2/3 of samples. We performed this filter for
gene-level analysis because low- or un-expressed genes are
noisy when examined individually. Next we normalized
genes by subtracting the median value and dividing by the
median absolute deviation. This scaling method is ideal be-
cause it is robust to outlier values. Two classes of outliers
were then defined: high-outliers had expression values
greater than the median plus the interquartile range (IQR),
and low-outliers had expression values less than the median
minus the IQR. Fisher’s exact tests were performed on con-
tingency tables of high- or low-outliers by diagnosis, and
the lower of the two p-values was kept. The Fisher’s exact
tests were one-sided for ASD specificity. P-values were ad-
justed for multiple hypothesis testing using the q-value
FDR estimation. Pathway enrichment was calculated for
these outlier genes using hypergeometric tests on the
MSigDB pathways.
Unless otherwise specified, all calculations were performed

in R version 2.14. A complete R script is available from the
authors upon request.
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