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Abstract: Lycoris longituba, belonging to the Amaryllidaceae family, is a perennial bulb bearing flowers
with diverse colors and fragrance. Selection of cultivars with excellent colored and scented flowers has
always been the breeding aim for ornamental plants. However, the molecular mechanisms underlying
color fading and aroma production during flower expansion in L. longituba remain unclear. Therefore,
to systematically investigate these important biological phenomena, the tepals of L. longituba from
different developmental stages were used to screen and analyze the metabolic components and
relevant genes. Utilizing the Illumina platform, a total of 144,922 unigenes were obtained from
the RNA-Seq libraries. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis
indicated that the phenylpropanoid biosynthesis and flavonoid biosynthesis pathways might play
important roles during color and aroma changes. Metabolomic analysis identified 29 volatile organic
components (VOCs) from different developmental stages of L. longituba tepals, and orthogonal partial
least-squares discriminate analysis (OPLS-DA) revealed that trans-β-ocimene—a terpene—was the
most important aroma compound. Meanwhile, we found the content of anthocyanin was significantly
reduced during the tepal color fading process. Then, we identified two dihydroflavonol-4-reductase
(DFR) and three terpene synthase (TPS) genes, for which expression changes coincided with the
production patterns of anthocyanins and trans-β-ocimene, respectively. Furthermore, a number of
MYB and bHLH transcription factors (TFs) which might be involved in color- and aroma-formation
were also identified in L. longituba tepal transcriptomes. Taken together, this is the first comprehensive
report of the color and fragrance in tepals of L. longituba and these results could be helpful in
understanding these characteristics and their regulation networks.
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1. Introduction

Lycoris longituba, commonly known as Chinese tulip, is a bulbiferous species of the Amaryllidaceae
family and distributed in central eastern China [1]. It can tolerate extremes of drought, waterlogging
and shade, as well as poor soil conditions. Its plentiful flower colors, large tepals, elegant fragrance,
and some medicinal potential make it a popular ornamental plant [2].
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Flower color and fragrance are two critical factors in attracting pollinators; the various colors
and particular scents are also key ornamental traits within landscape plants [3,4]. The coloration of
the plant flowers is mainly attributed to the accumulation of anthocyanins that belong to a class of
plant flavonoid metabolites, which are the most common pigments and best studied compounds in
plants [5–7]. Many enzymes can catalyze anthocyanin synthesis, especially dihydroflavonol 4-reductase
(DFR), which can directly increase anthocyanin accumulation and lead to the flower formation when
heterologously expressed in tobacco [4]. The activity of anthocyanin biosynthesis enzymes is usually
regulated by the MYB-bHLH-WD40 complex which consists of different classes of transcription
factors of R2R3-MYB, basic helix–loop–helix (bHLH), and WD40-repeat [8,9]. In Phalaenopsis
spp., PeMYB11 could regulate variegated pigmentation of tepals by controlling the expression
of anthocyanin biosynthetic genes [10]. In Malus domestica, Fragaria chiloensis, and grapevine,
the MdMYB10, FcMYB1, and VvMybPA2 have been demonstrated to regulate the accumulation of
anthocyanins/proanthocyanidins of fruits [11–13]. Additionally, the MYB transcription factors TT2,
bHLH transcription factors TT8, and the WD40 repeat protein TTG1 could also influence anthocyanin
biosynthesis by regulating downstream gene expression in Arabidopsis thaliana [14].

Floral fragrance is made up of specialized volatile metabolites such as terpenoids, phenylpropanoids
(including benzenoids), and fatty acid derivatives. The content changes of these volatile components in
the blend could directly lead to distinct scents [15]. Terpenoids are the largest class of floral fragrances
and have been taken as the critical members of aroma compounds [16,17]. Up to now, many terpene
synthase genes (TPSs) have been isolated in various species [18–23]. Meanwhile, some scent-related
transcription factors (TFs) which could regulate the expression of TPSs and floral scent formation
have also been identified, such as AtMYC2 in Arabidopsis thaliana [24], HcMYB1 and HcMYB2 in
Hedychium coronarium [25], AaNAC2, AaNAC3, and AaNAC4 in Actinidia arguta [26], and CitERF71
in Citrus sinensis [27]. However, neither the composition of floral scent nor the scent-related gene in
L. longituba is available.

In previous work, four critical anthocyanins in different colors of L. longituba tepals have been
well identified from 44 floral color natural variants, and the different amounts of these anthocyanin
components were demonstrated as the important determinants for the natural variation of flower
colors in L. longituba [1]. A previous study identified 4992 ESTs of L. longituba from a mixed floral bud
library [28]. To date, a total of 338 putative TFs were identified from three floral tissue EST libraries
of L. longituba, which could significantly contribute to the further analysis of florescence progress [2].
However, due to technical limitations, the TFs obtained from the above research were insufficient,
and the overall molecular regulation mechanisms involved in floral development still need to be
investigated. It has been verified that the genome of Lycoris is very large (>20 Gb) [29]. In absence of a
complete genome sequence, RNA-Seq technology could be taken as the most effective and economical
tool for the whole genome transcriptome analysis. Until now, this strategy has been successfully
used in exploring the molecular mechanism of leaf color change in Paeonia suffruticosa [7], fruit color
change/peel color mutant in Myrica rubra and Ficus carica [30,31], petal color change/spot formation in
Prunus persica [32], and tepal color/bicolor development in Lilium ‘Sorbonne’ [33]. Recently, the aroma
biosynthesis regulation mechanism has also been well characterized by sequencing the flower samples
in Chimonanthus praecox and Osmanthus fragrans [18,34].

L. longituba is a special aromatic species of Lycoris, and the red color of tepals will gradually
shade with the expansion of flowers. In this study, a comparative transcriptomics and metabolomics
analysis was carried out using the tepals from different developmental stages of L. longituba based
on Illumina sequencing and gas chromatography-mass spectrometer (GC-MS). The critical pathways,
as well as structural genes and transcription factors that related to color fading and aroma formation
of L. longituba tepals were systematically identified, which would help to advance the knowledge
and provide a more sufficient genetic resource for further exploration of the molecular regulation
mechanism of tepals’ color and fragrance changes in L. longituba.
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2. Results

2.1. Anthocyanin Level in the Different Tepal Development Stages of Lycoris longituba

In the small bud stage, the red color of L. longituba ‘Pink’ tepal was very deep, and then the
color intensity was significantly decreased with the rapid elongation of tepals, as shown in Figure 1a.
In contrast, the tepal color of L. longituba ‘White’ was always white, as shown in Figure 1a. As shown
in Figure 1b, the anthocyanin content in L. longituba ‘Pink’ was dramatically reduced from S1-P to S3-P,
and nearly no anthocyanin was detected in S3-W, as shown in Figure 1b. These results suggested that
content changes of anthocyanin could be the main reason that led to the tepals’ red color fading of
L. longituba ‘Pink’.
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Figure 1. Lycoris longituba tepals and anthocyanin content at different samples. (a) Tepals of L. longituba
‘Pink’ and ‘White’ used for de novo transcriptome assembly (S1-P: small bud stage of L. longituba ‘Pink’;
S2-P: medium bud stage of L. longituba ‘Pink’; S3-P: opening stage of L. longituba ‘Pink’; and S3-W:
opening stage of L. longituba ‘White’); (b) content of anthocyanin in different tepal stages.

2.2. Transcriptome Sequencing and de Novo Assembly

Twelve total RNA samples were isolated from different L. longituba tepal developmental stages
S1-P, S2-P, S3-P, and S3-W. These RNA samples were at concentrations of about 200–500 ng/µL with
OD260/280 ≥ 1.9 and the RNA Integrity Numbers (RINs) of 8.6–10.0 were used for cDNA library
construction. The Illumina HiSeqTM 4000 platform was used to obtain the dataset of 12 cDNA libraries.
About 663.25 million raw sequencing reads with a length of 150 bp were generated, and after discarding
the low-quality reads, we obtained about 85.23% (565.28 million) clean reads. For all 12 samples, the
quality score above 20 (Q20) was ~98.20% and the GC percentages were 45.55–46.88%. Using Trinity
software, the de novo assembly totally generated 144,922 unigenes, of average length 941 bp, from
the twelve tepal transcriptomes, as shown in Table 1. In this research, the N50 was determined to be
1527 bp, which indicated that the quality of sequence assembly was good. All raw high throughput
sequence data have been deposited in the NCBI Sequence Reads Archive (SRA) with the accession
number PRJNA490415.
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Table 1. Transcriptome assembly statistics for L. longituba.

Description Transcripts

Number of transcripts 144,922
Total assembled bases 136,324,908
Average length (bps) 941

N50 (bps) 1527
GC content (%) 46.11

2.3. Functional Classification of Genes during Tepal Development Stages

The assembled unigenes were annotated using blastx against NCBI nonredundant protein (Nr),
Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Cluster of Orthologous Groups
(COG) protein sequence databases with an E-value ≤10−5. A total of 85,563 (59.04%) unigenes could
be annotated while other unigenes had no significant BLAST hit, as shown in Table 2, indicating that
numerous new genes specific to L. longituba are still functionally unknown and need to be further
studied in the future. Remarkably, the plant species with the top three numbers of blastx hits were
Elaeis guineensis (23,200 transcripts; 29.62%), Phoenix dactylifera (19,045 transcripts; 24.31%), and Musa
acuminata (6512 transcripts; 8.31%), as shown in Table S1. These results implied that the assembled
L. longituba transcripts shared similarity with transcripts from several monocotyledons and were
reliable. Based on sequence homology, gene ontology (GO) assignment analysis was performed.
Of the 85,563 annotated unigenes, 44,813 (52.37%) sequences were assigned into three main categories
(biological process, cellular components, and molecular function), which could be further distributed
under 58 GO terms, as shown in Figure S1. Metabolic process, cell, and catalytic activity were the
most highly enriched GO terms in biological process, cellular components, and molecular function
categories, respectively.

Table 2. Summary of the annotations from public databases. Nr: NCBI nonredundant protein; GO:
gene ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes.

Database Number of Annotated Unigenes Percentage of Annotated Unigenes (%)

Nr 78,336 54.05
Nt 63,362 43.72

Swiss-Prot 56,768 39.17
GO 44,813 30.92

KEGG 48,378 33.38
Total 85,563 59.04

2.4. Identify Differentially Expressed Unigenes between Tepal Transcriptomes

To identify differentially expressed unigenes (DEGs) during tepal color fading, the unigenes
that were differentially expressed between developmental stages and opening tepals with different
colors were compared and shown in Figure 2. Among the four comparisons, the smallest number of
DEGs was between the S1-P and S2-P libraries (4674), of which 2330 were up-regulated and 2344 were
down-regulated, and the largest number of DEGs was between the S3-P and S3-W libraries (9958),
with 5786 up-regulated and 5463 down-regulated unigenes. As the tepals faded from S2-P to S3-P, 8110
unigenes were differentially expressed, with 3526 up-regulated and 4584 down-regulated unigenes.
In the S1-P vs. S3-P comparison, 11,024 DEGs were detected, including 5335 up-regulated and 5689
down-regulated unigenes. The comparison between S1-P and the other tepal developmental stages
(S2-P and S3-P) showed that the number of up and down-regulated unigenes were both significantly
increased as the tepals developed.
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2.5. KEGG Pathway Enrichment

According to KEGG pathway enrichment analysis (p-value < 0.05), the phenylpropanoid
biosynthesis (96 DEGs, ko00940), flavonoid biosynthesis (58 DEGs, ko00941), flavone and flavonol
biosynthesis (23 DEGs, ko00944), and anthocyanin biosynthesis (4 DEG, ko00942) pathways which
related to color formation were significantly different as compared to S3-P and S3-W. Interestingly,
except for the anthocyanin biosynthesis and flavonol biosynthesis pathways, the phenylpropanoid
biosynthesis and flavonoid biosynthesis pathways were also identified in the S1-P vs. S2-P, S2-P vs. S3-P,
and S1-P vs. S3-P comparisons. These results suggested that the phenylpropanoid biosynthesis and
flavonoid biosynthesis pathways could play critical roles during red color fading and aroma formation.
The statistically enriched pathways between each two transcriptomes are shown in Figure S2.

2.6. Validation of the Gene Expression Profiles by qRT-PCR

To validate the transcription profile revealed by RNA-Seq data, the expression levels of 21 genes
from the flavonoid biosynthesis pathway were also assessed using qRT-PCR, as shown in Figure 3a.
Linear regression analysis was used to obtain the overall correlation coefficient between RNA-Seq
and qRT-PCR data, which showed a good correlation (R = 0.89) between these two data, as shown in
Figure 3b, indicating that the 12 transcriptomics data were reliable.

2.7. Metabolome Analysis of Lycoris longituba Tepal Development Stages by GC-MS

To investigate the volatile metabolic components changes of L. longituba tepals in the opening
processes, we obtained the GC-MS total ion current (TIC) chromatograms for nine L. longituba tepal
samples from three typical developmental stages (S1-P, S2-P, and S3-P), as shown in Figure 1a.
The obvious differences of chromatographic peaks were observed between sample groups, and the
retention times were fairly consistent and reproducible, as shown in Figure 4a. In this study, a total of
29 metabolites were identified in our sample libraries across all samples, as shown in Table 3.

To assess the volatile components profile changes during L. longituba tepal development, the
orthogonal partial least-squares discriminate analysis (OPLS-DA) plot was generated from the GC-MS
metabolite data of S1-P, S2-P, and S3-P tepals and showed clear metabolic differences between two
stages. Remarkably, S1-P, S2-P, and S3-P tepals could be completely separated sufficiently by use of
two principal components. The first principle component (PC1, accounting for 49.89%) and the second
component (PC2, accounting for 32.96%) of the variation in the data could separate all three types of
tepals with no outliers, as shown in Figure 4b. The contribution of each variable to PC1 and PC2 was
also calculated by giving each variable a weight value. The top two core differential metabolites of PC1
and PC2 discrimination were caryophyllene and trans-β-ocimene, as shown in Figure 4c. Interestingly,
the trans-β-ocimene, which had a high content in S3-P, was not detected in S1-P and S2-P, as shown in
Table 3.
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gene using RNA-Seq analysis. Error bars indicate the standard errors. (b) Correlation analysis of the
gene expression value from RNA-Seq and qRT-PCR.

2.8. Analysis of Candidate Genes Related to Color and Fragrance Metabolics

To explore the genetic regulation of L. longituba tepal color fading and aroma emission, the genes
which have been reported to be involved in these two metabolic pathways were selected. With the
development of tepals, several anthocyanin biosynthesis structural genes had the lowest expression
levels in S3-P, such as the DFRs, CHIs, CHS2, F3’H1, and FLSs, as shown in Figure 3a. Especially,
the DFR-annotated unigenes (DFR2-1 and DFR2-2) which had more than a 7-fold down-regulated
expression level in S1-P vs. S3-P, as shown in Figure 3a. Five TPS genes were also identified from
the DEGs, and interestingly three (Unigene81776, CL6106.Contig2, and Unigene3859) of them were
predominantly expressed in S3-P, as shown in Figure 5c.

The spatial and temporal expression of pigment structural and aroma genes were usually controlled
by transcription factors from MYB and bHLH [14,25]. In this study, 35 MYBs and 29 bHLHs with
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fragments per kilobase per million fragments (FPKM) ≥ 5 were identified from DEGs, as shown in
Figure 5a,b. Among them, six MYBs and four bHLHs (in black frames) had the similar down-regulated
expression trends with DFR2-1 and DFR2-2, and four MYBs and one bHLH (in red frames) had the
similar up-regulated expression patterns with the above three TPSs, as shown in Figure 5.
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Figure 4. GC-MS metabolomic analysis of L. longituba tepals. (a) Typical chromatograms of L. longituba
tepals under S1, S2, and S3. (b) Score plot and (c) loading plot of tepal GC-MS profiles of L. longituba
according to different developmental stages using orthogonal partial least-squares discriminate analysis
(OPLS-DA). Top 15 metabolites coded in the loading plot are: (1) caryophyllene, (2) trans-β-ocimene,
(3) benzoic acid, methyl ester, (4) hexadecane, (5) benzoic acid, 2-phenylethyl ester, (6) β-myrcene,
(7) butyl aldoxime, 3-methyl-, (8) 3-methoxy-5-methylphenol, (9) 1-butanol, 3-methyl-, benzoate,
(10) benzyl nitrile, (11) benzene, (3-nitropropyl)-, (12) benzenepropanoic acid, α-(hydroxyimino)-,
(13) 2,4,6-octatriene, 2,6-dimethyl-, (E,Z)-, (14) 1,6,10-dodecatrien-3-ol, 3,7,11-trimethyl-, (E)-, (15)
octanoic acid, methyl ester.

Table 3. The floral volatile organic compounds detected in L. longituba tepals.

No. Name S1-P S2-P S3-P

1 Benzoic acid 0.0018 ± 0.0007 4.5579 ± 0.5830 162.3274 ± 15.1509
2 E-2-Hexenyl benzoate 0.0032 ± 0.0007 - -
3 Octanoic acid 0.0025 ± 0.0003 - -
4 3-Methoxy-2,5-dimethylpyrazine 0.0053 ± 0.0018 - -
5 Hydroxylamine 0.0016 ± 0.0004 - -

6 7,9-Di-tert-butyl-1-oxaspiro(4,5)
deca-6,9-diene-2,8-dione 0.0003 ± 0.0001 - -

7 Hexadecanoic acid 0.0056 ± 0.0006 0.2546 ± 0.1015 -
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Table 3. Cont.

No. Name S1-P S2-P S3-P

8 1,3,6-Octatriene - 13.0954 ± 5.7992 -
9 Benzenepropanoic acid - 0.7522 ± 0.1997 1.5608 ± 0.5570

10 5-Amino-2-methoxy-4-picoline - 0.2054 ± 0.0275 -
11 Octadecane - 0.1720 ± 0.0195 -
12 Caryophyllene - 0.1357 ± 0.0225 0.6197 ± 0.0981
13 Hexadecane - 4.5644 ± 0.8763 12.3402 ± 1.8746
14 α-Farnesene - 0.3350 ± 0.1492 -
15 Nonadecane - 0.0984 ± 0.0116 -
16 1-Hexadecanol - 0.0735 ± 0.0295 -
17 Heptacosane - 0.2135 ± 0.0520 -
18 Butyl aldoxime - - 2.5247 ± 0.4620
19 trans-β-Ocimene - - 85.4689 ± 5.0140
20 Benzyl nitrile - - 10.2698 ± 2.6025
21 Benzoic acid - - 145.0866 ± 12.9669
22 1-Butanol - - 15.5708 ± 3.5003
23 β-Myrcene - - 1.4760 ± 0.2479
24 Eucalyptol - - 2.7087 ± 1.0158
25 2,4,6-Octatriene - - 2.6357 ± 0.8897
26 α-Terpineol - - 0.6584 ± 0.4979
27 3-Methoxy-5-methylphenol - - 0.6302 ± 0.1412
28 Benzene - - 1.9492 ± 0.4702
29 1,6,10-Dodecatrien-3-ol - - 0.0591 ± 0.0181

Plants 2019, 8, x 9 of 15 

 

down-regulated expression trends with DFR2-1 and DFR2-2, and four MYBs and one bHLH (in red 
frames) had the similar up-regulated expression patterns with the above three TPSs, as shown in 
Figure 5. 

 

Figure 5. The expression profiles of differential expressed candidate genes. The heatmaps are 
generated according to the average expression levels of MYB (a), bHLH (b), and TPS (c) genes based 
on log2 transformed FPKM data. Green means low expression, and red means high expression. 

3. Discussion 

Flower color and fragrance are considered to be two critical characters that influence plants’ 
ornamental value and insect pollination. The pigmentation and aroma formation processes involve 
multiple gene expression networks and complex biochemical pathways. However, the underlying 
molecular regulation mechanism of flower color fading and fragrance synthesis in L. longituba 
remains to be uncovered. To date, transcriptome sequencing technology has been widely used in 
exploring the critical metabolic pathways and functional genes that are involved in color biosynthesis 
and aroma formation in various species, even those that lack reference genomes. In this study, the 
tepal transcriptomes in small bud, medium bud, and opening stages of L. longituba were compared. 
The phenylpropanoid biosynthesis, flavonoid biosynthesis, and flavone and flavonol biosynthesis 
pathways which related to the color and aroma formation were highlighted between each two 
transcriptomes by KEGG pathway enrichment analysis, as shown in Figure S2. This result implied 
that these pathways could play critical roles in the two ornamental characters formation in L. longituba 
tepals. 

It has been demonstrated that the different content of anthocyanidin was a critical reason for red 
color alteration in plant organs [9,35]. In this research, tepal color was altered from deep red to pink 
accompanying L. longituba flower bud development, as shown in Figure 1a. Remarkably, the 
anthocyanidin level of the tepal was significantly reduced during the color fading processes, as 
shown in Figure 1b. This result suggested that the decreasing of anthocyanidin accumulation could 
be the directly responsible for the color fading of L. longituba. 

Figure 5. The expression profiles of differential expressed candidate genes. The heatmaps are generated
according to the average expression levels of MYB (a), bHLH (b), and TPS (c) genes based on log2
transformed FPKM data. Green means low expression, and red means high expression.



Plants 2019, 8, 53 9 of 15

3. Discussion

Flower color and fragrance are considered to be two critical characters that influence plants’
ornamental value and insect pollination. The pigmentation and aroma formation processes involve
multiple gene expression networks and complex biochemical pathways. However, the underlying
molecular regulation mechanism of flower color fading and fragrance synthesis in L. longituba
remains to be uncovered. To date, transcriptome sequencing technology has been widely used in
exploring the critical metabolic pathways and functional genes that are involved in color biosynthesis
and aroma formation in various species, even those that lack reference genomes. In this study,
the tepal transcriptomes in small bud, medium bud, and opening stages of L. longituba were
compared. The phenylpropanoid biosynthesis, flavonoid biosynthesis, and flavone and flavonol
biosynthesis pathways which related to the color and aroma formation were highlighted between
each two transcriptomes by KEGG pathway enrichment analysis, as shown in Figure S2. This result
implied that these pathways could play critical roles in the two ornamental characters formation in
L. longituba tepals.

It has been demonstrated that the different content of anthocyanidin was a critical reason for
red color alteration in plant organs [9,35]. In this research, tepal color was altered from deep red
to pink accompanying L. longituba flower bud development, as shown in Figure 1a. Remarkably,
the anthocyanidin level of the tepal was significantly reduced during the color fading processes, as
shown in Figure 1b. This result suggested that the decreasing of anthocyanidin accumulation could be
the directly responsible for the color fading of L. longituba.

Dihydroflavonol-4-reductase (DFR), which is a downstream enzyme in anthocyanin biosynthesis,
could regulate the critical rate-limiting step of anthocyanin biosynthesis processes by catalyzing
dihydroflavonols to leucoanthocyanidins [4,36]. Recently, a series of DFR gene homologs have
been identified in various plant species such as in Rosa rugosa [4], Camellia sinensis [37], Populus
trichocarpa [38], and Calibrachoa hybrida [39]. The previous works have confirmed that overexpression
of DFR genes within tobacco and petunia could accelerate the anthocyanin accumulation and promote
the red coloration of flowers [4,39]. Here, two LlDFRs (DFR2-1 and DFR2-2) were isolated from
DEGs. Both of them had the highest expression levels in the S1-P stage (deep red bud), then
significantly reduced in the S2-P stage (pink red bud), which were positively correlated with the
content variation trend of anthocyanins in L. longituba tepals, as shown in Figures 1b and 3a. Previous
studies have demonstrated that the expressions of anthocyanin biosynthesis structural genes are
controlled by the MYB, bHLH, and WD40 transcription factors [40], such as PhAN11 in Petunia
hybrida [41], PeMYB11 in Phalaenopsis spp. [10], MdMYB10 and MdbHLH3 in Malus domestica [11,42],
CmMYB6 in Chrysanthemum [43], AtMYBL2 in Arabidopsis thaliana [44], FaMYB1 in Fragaria ananassa [45],
as well as PpMYB16 and PpMYB111 in Prunus persica [46]. In this study, several MYB and bHLH genes,
which had similar expression patterns with anthocyanidins and DFR genes, were identified in these
transcriptomes, as shown in Figure 5. This evidence indicated that the down-regulated expression of
DFR genes during the tepal developmental processes might be controlled by the above transcription
factors, and these TFs could directly control the flower color fading.

Recently, GC–MS technology has been successfully used to analyze qualitative and quantitative
differences in aroma-related metabolomics, and some important volatile terpenes which play dominant
roles in the floral scent formation have been well demonstrated, such as in Lilium [47], Chimonanthus
praecox [18], and Osmanthus fragans [19]. Here, a total of 29 floral volatile organic compounds (VOCs)
and 6 volatile terpenes were identified from three developmental stages of L. longituba tepals, as
shown in Figure 4. In previous studies, linalool has been verified as one of the critical aroma
metabolites in various plants [18,19]. Conversely, linalool was undetected in the tepals of L. longituba,
as shown in Table 3, which indicated that the composition of L. longituba floral aroma could be very
particular. Interestingly, some VOCs were specifically emitted in the different stages; especially the
trans-β-ocimene and β-myrcene which belong to the monoterpenes, which were only detected in the
strongest aroma period of opening flowers, as shown in Table 3. Meanwhile, OPLS-DA loading values
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showed that the top two critical components were caryophyllene and trans-β-ocimene, as shown in
Figure 4c, and the content of trans-β-ocimene was much higher than caryophyllene in the full-blooming
floral tepals (S3-P), as shown in Table 3. Taken together, we concluded that the trans-β-ocimene could
be the most important aroma compound during the L. longituba floral fragrance emission.

It has been demonstrated that the TPSs could control the β-ocimene biosynthesis at the
transcriptional level [48–50]. In this study, the expression patterns of three TPSs were in excellent
agreement with the emission trend of trans-β-ocimene in L. longituba tepals, as shown in Figure 5c
and Table 3, implying that the three TPS members might directly influence the protein abundance of
ocimene synthase. Some members of the MYB and bHLH families have also been confirmed that could
control the floral aroma formation, such as the CpMYC2 [18], AtMYC2 [24], HcMYB1, and HcMYB2 [25].
In this research, several MYB and bHLH genes which had the consistent expression patterns with
trans-β-ocimene and TPS genes were identified, as shown in Figure 5a,b, suggesting that these genes
could be involved in the regulation of aroma formation.

The color fading and aroma formation during the L. longituba tepal development could be two
very complex and dynamic processes. While many candidate genes have been identified in this work,
the functions of these members still need to be investigated in our future studies.

4. Materials and Methods

4.1. Plant Materials

Plants of L. longituba ‘Pink’ and ‘White’ were grown in the Lycoris Experimental Plantation of
Nanjing Forestry University in Nanjing, China. The L. longituba tepals of three typical developmental
stages were selected based on tepal length, which were S1-P (15 ± 5 mm tepals at small bud stage),
S2-P (55 ± 5 mm tepals at medium bud stage), S3-P (90 ± 5 mm tepals at opening stage) of ‘Pink’,
and S3-W (90 ± 5 mm tepals at opening stage) of ‘White’, as shown in Figure 1a. At each stage, the
fresh samples of tepals were harvested and immediately frozen in liquid nitrogen and stored at -80 ºC.

4.2. Anthocyanin Level Measurement

Freeze-dried tepals were finely ground and 0.2 g was extracted with 2 mL acidic methanol (0.1%
hydrochloric acid) at 4 ºC in darkness for 12 h, mixing the extract up and down every 6 h. Then,
the extract was centrifuged at 12,000 rpm for 10 min, the supernatant was diluted 4 times with acidic
methanol, and the absorbances were tested spectrophotometrically at 530 and 657 nm. Finally, total
anthocyanin was defined using the equation: Q = (A530 − 0.25 × A657) × FW − 1, where Q = total
anthocyanins; A530 = absorption at 530 nm; A657 = absorption at 657 nm; FW = fresh weight of tepals
(g). Three biological replicates were performed for each group.

4.3. RNA-Seq and de Novo Assembly

Total RNA from three biological replicates was independently isolated from the tepals of
L. longituba using RNAiso Reagent (Takara, Otsu, Japan) according to the previously described
method [51]. The RIN value of total RNA sample was examined with Agilent 2100 Bioanalyzer
(Agilent Technologies, Palo Alto, CA, USA), and the concentration was assessed using NanoDrop
(Thermo Scientific, Waltham, MA, USA).

Twelve cDNA libraries which consisted of separate RNA samples from L. longituba ‘Pink’ tepals of
three different developmental stages (S1-P, S2-P, and S3-P) and L. longituba ‘White’ tepals (S3-W) were
prepared using the TruSeq RNA Sample Preparation Kit (Illumina, San Diego, CA, USA) according to
the manufacturer’s instructions. Firstly, the enriched mRNA were fragmented into short fragments
and reverse transcripted into first-strand cDNA. Then after second-strand cDNA synthesis, end repair,
adapter ligation, and PCR amplification, the cDNA library products were sequenced on an Illumina
HiSeqTM 4000 (Illumina, San Diego, CA, USA) instrument using paired-end sequencing technology by
staff at Gene Denovo Biotechnology Corporation (Guangzhou, China). After the raw reads removing
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the adapter sequences, reads with more than 20% low-quality bases (quality value <20) and ambiguous
nucleotides (denoted with an “N” in the sequence trace) of the raw reads, the high-quality clean
reads were accomplished assembled using Trinity software [52]. In order to avoid the interference of
alternative splicing transcripts, only the longest transcript was taken as the unigene in this research.

4.4. Sequence Annotation and Gene Expression Difference Analysis

The assembled unigenes functional annotations were performed through a blastx search
against four public protein databases including NCBI nonredundant protein (Nr), Swiss-Prot, Kyoto
Encyclopedia of Genes and Genomes (KEGG), and Cluster of Orthologous Groups (COG) of proteins,
with an E-value of less than 1e-5. The Blast2GO software (http://blast2go.bioinfo.cipf.es/) was used
to acquire GO terms of the unigenes.

The expression level of unigenes was calculated using fragments per kilobase per million
fragments mapped (FPKM) method [53]. In this study, the false discovery rate (FDR) ≤ 0.001 and the
absolute value of log2Ratio ≥ 2 were taken as the threshold for significantly differential expression of
unigenes. All differentially expressed unigenes (DEGs) were mapped to the KEGG pathway database
and the numbers of unigenes for every KEGG Orthology (KO) term were calculated. Significantly
enriched KO terms from the set of DEGs were identified by comparing the observed DEG count to the
expected count of the genes involved in a given pathway with a random distribution of the L. longituba
tepal transcriptome using the formula of the hypergeometric test [54].

4.5. qRT-PCR Analysis

Using TransScript One-Step gDNA Removal and cDNA Synthesis SuperMix kit (Transgene,
Beijing, China), 2 µg of total RNA was reverse transcripted to the first-strand cDNA on the basis of the
manufacturer’s instructions. The SYBR Premix Ex TaqTM II kit (Takara) was used to perform qRT-PCR
in the ABI 7500 Fast Real-Time PCR System (Applied Biosystems, Applied Biosystems, Cheshire, UK
according to the manual’s description [55]. The relative expression level of genes was calculated by
the 2−∆∆CT method. To ensure reliability, the expression data of each gene was obtained from three
independent biological replications (each biological replication included three technical replications).
The data are shown as mean values ± SE (standard error). All primer pairs were designed by Primer 5
software and listed in Table S2, and the specificity of them was assessed by the sequencing of amplified
qRT-PCR products. The ELF gene was used as an internal reference control [56].

4.6. GC-MS Analysis

Fresh tepals at three different stages (S1-P, S2-P, and S3-P), defined by the size of the flower as
shown in Figure 1a, were picked from the plants at the same time as samples that were collected for
the above transcriptome studies. Sampling was replicated four times, and the samples were quickly
put into polyethylene bags impermeable to gases, kept in the ice-box, and analyzed immediately.
Headspace solid phase microextraction (SPME) combined with GC-MS was used to determine the
identity and quantity of the fragrance volatiles. Tepals (0.3 g) were placed in a 4 mL solid-phase
microextraction vial (Supelco Inc, Bellefonte, PA, USA), 1 µL of 1000x diluted ethyl caprate (Macklin
Inc, Shanghai, China) was added, and vials were capped with a 65 µm DB-5 ms extraction head
(Supelco Inc). The oven temperature was programmed at 60 ◦C for 2 min, increasing at 5 ◦C/min to
150 ◦C, then increasing at 10 ◦C/min to reach 250 ◦C, followed by maintaining the temperature of the
transfer line at 250 ◦C and helium was used as the carrier gas at a linear velocity of 1.0 mL/min. Mass
detector conditions on MS were carried out according to our previous method [57]. The quantities of
the volatile aroma compounds were calculated by normalizing the peak-areas and volatile compounds
were first identified using the NIST98 database (Agilent). SIMCA-P 11.5 software (Umetrics AB, Umea,
Sweden) was selected to test the differences in the metabolite levels of L. longituba tepals from different
developmental stages by orthogonal partial least-squares discriminate analysis (OPLS-DA).

http://blast2go.bioinfo.cipf.es/
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Supplementary Materials: The following are available online http://www.mdpi.com/2223-7747/8/3/53/s1.
Figure S1: GO classification of DEGs among different samples in L. longituba, Figure S2: The KEGG enrichment of
DEGs among the different samples, Table S1: Species distribution of the BLAST hits for all homologous sequences,
Table S2: Primers used for qRT-PCR.
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