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Abstract

Background: MS pathogenesis seems to involve both genetic susceptibility and environmental risk factors. Three sequential
factors are implicated in the environmental risk. The first acts near birth, the second acts during childhood, and the third
acts long thereafter. Two candidate factors (vitamin D deficiency and Epstein-Barr viral infection) seem well suited to the
first two environmental events.

Methodology/Principal Findings: A mathematical Model for MS pathogenesis is developed, incorporating these
environmental and genetic factors into a causal scheme that can explain some of the recent changes in MS-epidemiology
(e.g., increasing disease prevalence, a changing sex-ratio, and regional variations in monozygotic twin concordance rates).

Conclusions/Significance: This Model suggests that genetic susceptibility is overwhelmingly the most important
determinant of MS pathogenesis. Indeed, over 99% of individuals seem genetically incapable of developing MS, regardless
of what environmental exposures they experience. Nevertheless, the contribution of specific genes to MS-susceptibility
seems only modest. Thus, despite HLA DRB1*1501 being the most consistently identified genetic marker of MS-
susceptibility (being present in over 50% of northern MS patient populations), only about 1% of individuals with this allele
are even genetically susceptible to getting MS. Moreover, because genetic susceptibility seems so similar throughout North
America and Europe, environmental differences principally determine the regional variations in disease characteristics.
Additionally, despite 75% of MS-patients being women, men are 60% more likely to be genetically-susceptible than women.
Also, men develop MS at lower levels of environmental exposure than women. Nevertheless, women are more responsive to
the recent changes in environmental-exposure (whatever these have been). This explains both the changing sex-ratio and
the increasing disease prevalence (which has increased by a minimum of 32% in Canada over the past 35 years). As noted,
environmental risk seems to result from three sequential components of environmental exposure. The potential importance
of this Model for MS pathogenesis is that, if correct, a therapeutic strategy, designed to interrupt one or more of these
sequential factors, has the potential to markedly reduce or eliminate disease prevalence in the future.
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Introduction

Human diseases such as multiple sclerosis (MS) are often

chronic and have complex etiological bases [1]. Both the genetic

background and environmental events are critical. For example,

an individual from northern Europe or northern North America

has a life-time MS risk of about 1–2 per 1,000 population [2]. Risk

for individuals with an affected family member increases in

proportion to the shared genetic information between themselves

and the proband [2–8]. Monozygotic-twins of an MS proband

have approximately 200 times the risk in the general population

[2–8]. Nevertheless, it is clear that genes are not the only disease

determinants. Otherwise, the proband-wise concordance-rate for

monozygotic-twins would be closer to 100% than the reported 20–

30% in these northern populations [3,9–11]. This conclusion is

even more apparent in southern populations where the concor-

dance-rate for monozygotic-twins is approximately half that in the

north [11–13]. Consequently, that there must be important

environmental or epigenetic factors involved in MS pathogenesis.

Although the present paper explores, through a mathematical

Model, the relationship of genetic predisposition and environ-

mental exposure to recent changes in MS epidemiology, in many

respects, the Model is also applicable to other complex human

diseases.

The Nature of the Environmental Exposure
Important observations regarding MS pathogenesis relate to the

absence of micro-environmental contributions to MS risk. Thus,

studies in adopted individuals, conjugal couples, brothers and

sisters of different birth order, and in siblings and half-siblings

raised together or apart, have demonstrated that micro-environ-

mental influences don’t contribute measurably to MS risk [4,7,14–

17]. Consequently, the relevant environmental events must act at a

population level. Moreover, if, in addition to a genetic predispo-

sition, one or more population level environmental events need to

occur in order for MS to develop, then it is only natural to enquire

as to how many such events are necessary and whether it is

important for these events to occur at any particular time or in any
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particular order. Three sets of epidemiological observations bear

on these issues.

A Very Early Environmental Influence. The first set relates

to a maternal effect in MS [7]. This maternal effect is supported by

three epidemiological observations. The first is that half-siblings,

who are concordant for MS, are twice as likely to share the mother

compared to the father [4,7], indicating that MS susceptibility is

being passed from mother to child through something other than

nuclear genes. An environmental exposure, occurring either in the

intrauterine or in the early post-natal period, is one possibility.

After the child becomes independent of their mother, however,

such a maternal effect would be unexpected from an

environmental factor.

This maternal effect, however, need not be environmental. It

could also be due to mitochondrial genes, from genetic-imprinting

favoring expression of certain maternal genes, or from other

epigenetic factors [18]. With respect to these other possibilities,

there has been an interesting debate about the existence of a so-

called ‘‘Carter effect’’ in MS, whereby paternal transmission

would be favored for certain genetic traits [19,20]. One report

found weak evidence (p = 0.032) for preferential paternal trans-

mission of MS risk [19] whereas a larger Canadian study found no

such effect [20]. Importantly, however, neither study showed the

preferential maternal transmission expected if mitochondrial

genes, genetic imprinting, or epigenetic factors explained the

maternal effect in MS [7]. An environmental cause for the

maternal effect, by contrast, would not be observed in these studies

because the maternal intra-uterine and post-natal environments

are the same regardless of which parent transmits MS risk.

The second observation is that the MS concordance-rate for

fraternal-twins seems to be greater than that for full-siblings [6,10].

Thus, in the large Canadian cohort [10], the MS concordance-

rate in full-siblings was reported to be 2.9% with a standard-error

(SE) of 0.6%, compared to the concordance-rate in dizygotic-

twins, which was 5.4% (no statistical comparison provided). A

recent review [6] reached the same conclusion. Such a disparity

cannot be explained by mitochondrial inheritance, genetic

imprinting, or epigenetic factors because, on average, these should

be similar for siblings and fraternal twins sharing the same

biological parents. Rather, this discrepancy must be due to

environmental factors acting during the shared intra-uterine or

early post-natal period.

The third observation relates to the month-of-birth effect in MS

reported in Canada and northern Europe [21–23]. In a study

combining patients from Canada, Denmark, and Sweden,

significantly more MS patients were born in May and fewer in

November, compared to background rates during the rest of the

year [21]. Another study found more RRMS patients born in May

than November [23]. Finally, in 67 Canadian patients, born in the

southern hemisphere, this month-of-birth effect seemed reversed

[21]. Whether such a reversal is generally found in the southern

hemisphere must await further study.

These observed month-of-birth effects provide clear evidence for

an early environmental influence, involved in MS pathogenesis,

time-locked to birth. As the time interval between the birth and any

environmental event increases, the coupling between birth and the

event should become increasingly less precise and, thus, the birth-

signal should become increasingly less distinct. The fact that this

signal is so clear [21], suggests that the relevant environmental event

occurs very near to the birth itself. Moreover, this environmental

event is periodic and appears coupled to the solar cycle [21]. Of

possible relevance to this circa annum periodicity for MS

susceptibility, is the fact that mothers of May babies (who spend

much of their intrauterine life during the winter months) will

experience less sun exposure during their pregnancies compared to

mothers of November babies. It is tempting to speculate (and has

been speculated), therefore, that this maternal environmental event

is related to a low maternal sun-exposure (perhaps resulting in low

levels of vitamin D) while the child is in utero [21,24].

Childhood/Adolescent Environmental Influences. The

second set of observations relates to an environmental influence

in persons who migrate from one region to another [2,25–29].

When individuals move (prior to approximately age 15 years) from

a high MS prevalence area to a low prevalence region (or vice

versa), their MS risk is similar to that of the region to which they

moved. By contrast, when they make the same move after age 15,

their MS risk is similar to that of the region from which they

moved. Similarly, children of immigrants from low prevalence

regions (born in high-prevalence areas) have an MS risk similar to

their birth country rather than their country of ethnic origin [25].

These observations implicate an environmental event, involved in

MS pathogenesis, which acts sometime between birth and young

adulthood (,15 years) but does not act thereafter.

Adult Environmental Influences. The third set of

observations relate to the fact that the initial clinical symptoms in

MS are typically delayed by many years (often decades) after this

critical early-period when the maternal factor and the migratory

factor operate [2,25–29]. Perhaps, only these critical early events

are necessary although the apparently low MS penetrance is difficult

to explain, at least with respect to some candidate environmental

factors. Thus, despite the fact that Epstein-Barr viral (EBV)

infection, especially when it causes symptomatic mononucleosis,

has been consistently linked to MS [30–38], fewer than one in 900

individuals with an EBV infection and only a small fraction of

patients with mononucleosis will ever develop MS (Table 1).

Consequently, it seems most likely that subsequent environmental

events dictate the timing of symptom onset.

Causal Factors in MS Pathogenesis. Many factors,

including small pox, typhoid, EBV, other infections, vitamin

deficiencies, low-sunlight, cosmic-rays, occupational hazards,

living with domesticated animals, dietary habits, trauma, stress,

and toxic exposures have all been postulated to be linked to MS

pathogenesis [2]. Of these possibilities, however, vitamin D

deficiency and EBV infection have been gaining the greatest

support for their potential role in MS pathogenesis. Moreover,

each of these factors seem particularly well suited to the

epidemiological scheme outlined above.

Vitamin D. The in vivo production of active vitamin D in

humans requires the conversion of 7-dehydro-cholesterol into

vitamin D3 [39–42]. The first of this two-step transformation (to

pre-vitamin D3) is catalyzed by the exposure of 7-dehydro-

cholesterol in the skin to ultraviolet B (UVB) radiation (i.e.,

electromagnetic radiation having a wavelength of 280–320 nm).

Subsequently, stable Vitamin D3 is formed by an internal

rearrangement of the double bond structure of the pre-vitamin

D3 molecule. Vitamin D3 is then hydroxylated, firstly to 25(OH)

D3 by 25-hydroxilase (mostly in the liver) and secondly by 1-a
hydroxilase in the tissues (including the kidney) to form active

vitamin D (1,25(OH)2D3). Dietary intake of vitamin D3 can bypass

the UVB-dependent part of this pathway and permits

maintenance of normal vitamin D serum levels, even in the

absence of adequate UVB radiation. Unfortunately, however,

there are few natural dietary sources of vitamin D3. It is only found

in certain animals [43] such as oily fishes and reindeer, which

derive it or its precursors from their diet (from phytoplanctonic

algae in the case of fish and from lichen in the case of reindeer).

Interestingly, two human populations with a notably low risk for

MS [43–46] are the Inuit or Eskimos (who consume oily fish on a
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daily basis) and the Sami or Lapps (for whom reindeer meat is a

staple). In both of these populations, their main source of active

vitamin D comes from their diet [43]. For many other human

populations, by contrast, exposure of the skin to the UVB

radiation is of paramount importance for maintaining adequate

active vitamin D levels throughout the year.

In this context, it is of considerable interest that, as latitude

increases (both north and south of the equator), the amount of

effective UVB radiation decreases due to an increase in the angle

of the sunlight reaching the planet surface (i.e., traveling a longer

distance through the Earth’s atmosphere). In central and north-

east Africa (where Homo sapiens evolved) plenty of UVB radiation is

available for vitamin D synthesis throughout the year [47–49].

However, when humans migrated out of Africa approximately

50,000 years ago and began to inhabit the temperate regions of the

globe, adequate UVB exposure throughout the year was no longer

guaranteed. In fact, it has been estimated that the levels of UVB

radiation at the latitude of the US-Canadian border are

insufficient to produce an adequate amount of active vitamin D

during most months of the year, especially in winter [47–49].

Moreover, as has been noted by many authors and consistent with

a role for vitamin D deficiency in MS pathogenesis, world-wide

distribution maps of reduced UVB availability are strikingly

similar to world-wide distribution maps of MS prevalence

[2,47,48,50,51].

Vitamin D acts in the body through binding to its receptor

(VDR). Once such binding takes place, this ligand-receptor

complex is internalized, forms a heterodimer with the retinoid X

receptor (the nuclear receptor for 9-cis retinoic acid), and this

heterodimer is translocated to the nucleus where it acts as a

transcription factor, binding, often together with co-factors, to

vitamin D response elements (VDREs) in the promoter region of

several nuclear genes [41]. Interestingly, and perhaps very

informatively, VDRE has recently been identified in the promoter

region adjacent to the HLA DRB1*1501 allele, an allele and a

portion of the genome that has been consistently linked to MS

pathogenesis in Caucasian populations [2,52]. The binding of

vitamin D to the VDRE regulates the expression of multiple genes,

acting either positively or negatively depending upon the specific

gene involved.

The roles of vitamin D in calcium homeostasis and the

maintenance of bone health are widely recognized [39,42]. Less

well known is its role in other processes, including anti-neoplastic

actions and a variety of immune functions such as cell

proliferation, differentiation, and immunomodulation [40,41,53–

55]. Nevertheless, VDR is widely expressed throughout the body,

including on activated T and B lymphocytes, and on macrophages

[41,53,54] and vitamin D has been implicated in the maturation of

dendritic cells and in the modulation of antigen-specific immune

responses in vivo [53–55]. During gestation, human decidual cells

synthesize active vitamin D, particularly in early pregnancy, and

this has led to the suggestion that vitamin D may help to regulate

both acquired and innate immune responses at the fetal-maternal

interface [56]. Finally, vitamin D deficiency has been implicated in

the likelihood of developing a variety of autoimmune diseases

including insulin dependent diabetes mellitus, rheumatoid arthri-

tis, experimental autoimmune encephalomyelitis (EAE), and

inflammatory bowel disease [53,54,57]. Because these autoim-

mune diseases are more prevalent in females, this raises the

possibility that there might be differences in the physiological

responses to vitamin D between males and females and, in fact,

such gender-specific differences in vitamin D metabolism have

been reported [58,59]. Interestingly, in one of these studies [59]

vitamin D supplementation was found to confer protection against

EAE only in intact female mice but not in males or in

ovariectomized females.

As a result of these considerations, vitamin D deficiency seems

to be a good candidate for the early (maternal) event noted above.

Not only is this maternal factor (like vitamin D) coupled to the

solar cycle in temperate regions [21], vitamin D is known to be

involved in immune development and maturation [40,41,53–55],

its deficiency is associated with autoimmunity [53,54,57], the

Table 1. Prevalence of antibodies to EBV in the sera of patients and controls.

Study EBV+ MS Cases (%) EBV+ Controls (%) p value

Sumaya, 1980 [73]{ 155/157 (98.7%) 76/81 (93.8%) 0.05

Bray, 1983 [74]{ 309/313 (98.7%) 363/406 (89.4%) 0.0001

Larson, 1984 [75]{ 93/93 (100%) 78/93 (83.9%) 0.0001

Sumaya, 1985 [76]* 104/104 (100%) 23/26 (88.5%) 0.007

Shirodaria, 1987 [77]{{ 26/26 (100%) 24/26 (92.3%) -

Munch, 1998 [78]{ 137/138 (99.3%) 124/138 (89.9%) 0.0004

Myhr, 1998 [79]* 144/144 (100%) 162/170 (95.3%) 0.008

Wagner, 2000 [80]{ 107/107 (100%) 153/163 (93.9%) 0.01

Ascherio, 2001 [30]{{ 143/144 (99.3%) 269/287 (93.7%) 0.008

Sundström (2004) [32] 234/234 (100%) 693/702 (98.7%) ns

Haahr, 2004 [81]{ 153/153 (100%) 50/53 (94.3%) 0.05

Ponsonby, 2005 [31]{{ 136/136 (100%) 252/261 (96.6%) 0.05

Total 1741/1749 (99.5%) 2267/2406 (94.2%) p,10223

*Study measured antibodies against the Epstein-Barr nuclear antigens (EBNA), the viral capsid antigen (VCA), and the early antigens (EA).
{Study measured antibodies only against VCA.
{Study measured antibodies only against EBNA and EA.
{{Study measured antibodies only against EBNA and VCA. One person was antibody negative to each antigen but it is unclear from the text whether they were the same

person. The review by Haahr in 2006 [81] suggests they were not.
{{Study measured antibodies only against EBNA and VCA.
doi:10.1371/journal.pone.0004565.t001

MS Pathogenesis

PLoS ONE | www.plosone.org 3 February 2009 | Volume 4 | Issue 2 | e4565



world-wide distribution of reduced UVB radiation mirrors that of

MS prevalence [2,47–49], extreme northern populations with high

dietary intake of vitamin D such as the Inuit and Sami people have

a very low MS prevalence [43–46], and there are interactions

between the physiological effects of vitamin D and gender in some

mammals [58,59]. This last aspect of vitamin D physiology might

provide insight to why MS prevalence is gender-specific and,

perhaps, also, to why MS incidence is increasing, especially among

women [60–65].

Epstein-Barr Virus. EBV is a member of the herpes family

of double-stranded linear DNA viruses, which is also referred to as

the human herpes virus 4 (or HHV-4). It is one of the most

common viral infections of humans, with over 90% of individuals

becoming infected at some time during their life [36]. As maternal

antibody protection disappears after birth, infants become

susceptible to infection by EBV. In many parts of the world the

initial EBV infection typically occurs during early childhood and is

either asymptomatic or causes only mild symptoms

indistinguishable from numerous other childhood infections. In

developed regions such as the North America and Europe,

however, the initial infection is often delayed until adolescence or

young adulthood (possibly related to better hygiene), in which case

infectious mononucleosis (glandular fever) develops in 35 to 50%

of instances. The principal targets of the initial viral infection are

the epithelial cells of the oropharynx and the B-lymphocytes.

Once a cell is infected, the viral genome becomes circularized

and persists within the cell as an episome, executing distinct

genetic programs, which result in either a lytic or a latent infection.

Lytic infections produce a large number of free viral particles,

which then can infect other B lymphocytes. Latent infection

ultimately predominates (probably due to the host immune

response) and the latent phase genetic programs cause the infected

B-lymphocytes to proliferate and to be directed to the sites (e.g.,

the bone marrow) where the virus persists indefinitely. Such

persistence is made possible by the virus turning off most of its

genes, only occasionally to be reactivated, to produce fresh virions,

and to cause further cell lysis.

With an acute infection, antibodies to antigens associated with

viral replication, the viral capsid antigen (VCA) and the diffuse

and restricted early antigens (EA), appear during either the late

incubation period or the acute illness [66]. Antibodies to the VCA

are initially of the IgM class. However, this response lasts only 1–2

months, after which the anti-VCA antibody response shifts to the

IgG class. These antibodies persist for the lifetime of the

individual. Antibodies to EA are of the IgG class and often drop

to undetectable levels after 3–6 months. Nevertheless, although EA

antibodies are a sign of active infection, approximately 20–30% of

individuals will have persistent titers for years and these antibodies

are also found in patients with chronic active infections or with

secondary complications such as Burkitt’s lymphoma or nasopha-

ryngeal carcinoma. Antibodies to one or more of the EBV nuclear

antigens (EBNA 1 to 5) that are expressed in latently infected B

lymphocytes, appear 3–6 weeks after the initial infection. These

antibodies persist for the lifetime of the individual. Other than MS,

EBV infection has also been implicated as playing some role in the

pathogenesis of certain malignancies (e.g., nasopharyngeal carci-

noma, EBV-positive Hodgkin lymphoma, and Burkitt’s lympho-

ma) as well as in several autoimmune disorders such as Sjogren’s

syndrome, rheumatoid arthritis, and systemic lupus erythematosus

[67]. In these conditions, persistent titers to EBV are also found,

suggesting that chronic immune activation against EBV may

actually be participating in the pathophysiological process [67].

In contrast to vitamin D, however, EBV cannot be the maternal

factor because infection does not typically occur either in utero or

during the early post-partum period. Rather, EBV seems a much

better candidate for the second environmental event. Nevertheless,

vitamin D deficiency could also act during childhood and, indeed,

some of the direct data supporting a role of vitamin D in MS

pathogenesis actually suggests an effect in childhood or early

adulthood [68–71]. Despite this, however, the evidence for EBV

involvement in MS pathogenesis is compelling [30,31,34–38,72].

Thus, even though EBV infection occurs in over 90% of

populations matched for age and sex with MS patients [30–

32,73–81], the evidence for prior EBV infection in adult onset MS

is essentially 100% and significantly more likely than controls

(Table 1). Even in those rare MS patients who test negatively for

prior EBV exposure, this result could easily be a false negative

finding because, in every such case, the antibody response hasn’t

been measured to the entire set of EBV antigens (Table 1). Also,

the prior nature of the EBV infection seems clear both by the

presence of IgG (not IgM) antibodies to EBV antigens and by the

unequivocal evidence (when it has been possible to measure) of

infection long before the advent of clinical MS symptoms [10–

32,36,37,72–81]. Such a strong association is very hard to ignore.

Although this apparent high prevalence of prior infection in MS

could conceivably be the consequence of either false negative tests

within the general population or false positive tests in MS patients,

both possibilities seem unlikely. Thus, the near 100% prevalence

cannot be due to a general hyper-immune state in MS patients

because their antibody responses to other common pathogens

(e.g., cytomegalovirus, measles, mumps, chicken pox, herpes

simplex, etc.) are not similarly increased [30–32,74,81]. Moreover,

a recent pathological study found evidence of EBV infection in a

substantial proportion of those B lymphocytes infiltrating the

central nervous system in 21 of 22 MS cases examined at

postmortem [82]. In addition, evidence of viral reactivation

seemed to be restricted to ectopic B-cell follicles in the meninges

and in acute lesions [82]. Finally, the increased risk of MS, either

with delayed exposure to EBV [30,31,35,81] or following

symptomatic mononucleosis [32,34,35,38], strongly suggests that

the association between MS and this particular pathogen is

genuine. Taken at face value, this near 100% association indicates

that EBV is a necessary (but not a sufficient) condition for adult

MS to develop and, therefore, that EBV must be a part of the

causal pathway leading to MS. If EBV infection is permissive in

this way then, like the second environmental factor in MS

pathogenesis, it probably acts during childhood or adolescence

(when both late infection and mononucleosis occur). There are no

leading candidates for the third (or other) environmental factor or

factors.

Changing Environmental Influences. It is also of note that

MS epidemiology has changed in important ways over the past

several decades. Thus, the incidence (prevalence) of MS is

increasing [60–65,83–86], especially in women [60–65]. As a

consequence of this, the sex-ratio has been altered [65] and,

recently, a switch in the latitude gradient for MS incidence has

been reported [60]. Because MS genetics seems unlikely to have

shifted in so short an interval, these observations presumably relate

to a change in the environmental determinants of MS. Although

many wide-spread environmental changes are known to be taking

place (e.g., increasing atmospheric concentrations of CO2, CH4,

and other pollutants; increasing global temperatures; a depletion

of stratospheric ozone; a greater dietary consumption of trans-fats,

etc.), one recent change (potentially relevant to the possible role of

vitamin D deficiency) is that people are increasingly encouraged to

avoid prolonged sun-exposure and to use sun-block to prevent skin

cancer [87]. Nevertheless, sun-block with sun-protective-factor

(SPF)-15 blocks approximately 94% of the incoming UVB

MS Pathogenesis

PLoS ONE | www.plosone.org 4 February 2009 | Volume 4 | Issue 2 | e4565



radiation and higher SPF levels block even more [87]. As a result,

any wide-spread use of sun-block and sun-avoidance will

exacerbate any population deficiency of vitamin D synthesis and,

presumably, will increase the likelihood of diseases related to

vitamin D deficiency. By contrast, the pattern of EBV infection

seems to have changed little over this interval [88].

Results and Methods

The Causal Model
Thus, there seems to be clear epidemiological evidence for at

least three distinct environmental events contributing to MS

pathogenesis. Consequently, it is unnecessary to choose between the

vitamin D and the EBV hypotheses. They may both be correct.

Nevertheless, even if these two environmental events are part of a

pathway to adult MS, they may not be on the same or the only

pathway. Indeed, assuming that each is part of some causal

pathway, there are several possible arrangements for how these

environmental-events might produce MS (Figure 1). No pathway

can be excluded entirely although, if prior EBV infection is

necessary for adult MS (Table 1), then pathways 1 and 2 (Figure 1)

must occur rarely, if at all. Similarly, if pathway 4 were the major

pathway, an observable maternal effect would not be anticipated.

Consequently, only pathway 3 (implying sequential environmental

events) seems to form a necessary part of causal cascade to adult

MS. The first two events may be an appropriately-timed vitamin

D deficiency and an appropriately-timed EBV infection (as in the

Figure). However, these particular associations with the first and

second environmental events are not a necessary component of the

Model and, if it turns out that these two factors are not relevant,

then two suitable alternatives would simply need to be substituted

into the equations without any alteration of the Model itself.

Definitions for the terms used in the Model are presented in

Table 2. The life-time probability of getting MS (PMS) will be

equated with the prevalence of MS in the general population

(Table 2). This is an approximation, which is accurate only if

disease incidence is unchanging, mortality is unaffected, the

population size is stable, and the diagnostic sensitivity (over the

entire life-span) is unchanged. None of these conditions pertain

exactly. Nevertheless, this assumption seems reasonable as a rough

approximation, especially because the error introduced by

increased mortality (in the estimate for individuals currently aged

35–40 years) will be opposite in direction from the others. The

probability of genetic susceptibility (PG) will refer to the probability

of an individual possessing any of possibly several ‘‘susceptible’’

genotypes and will refer to the susceptibility conferred by genetic

determinants present at conception. Alterations of genetic

expression subsequently will be considered environmental events

although the genotypes that permit such alterations to occur would

still be included within the group of ‘‘susceptible’’ genotypes.

Because mitochondrial genes linked to MS have not been found

[2] and because, as discussed above, preferential maternal

transmission has not been observed [19,20], genetic susceptibility

will be attributed to nuclear genes.

Initially, the probability (PE) will be used to describe the

combined occurrence of an entire set of environmental events

(taking place at appropriate times) that could cause MS in, at least,

some genetic backgrounds. Such an occurrence will be referred to

as an individual experiencing a ‘‘sufficient’’ set of environmental

events. Here, it is understood that it is possible that every

‘‘sufficient’’ set of environmental events may not be ‘‘sufficient’’ for

every ‘‘susceptible’’ genotype. However, the set of environmental

events does need to be ‘‘sufficient’’ for, at least, one such genotype.

Under these conditions, the probability that any individual will

develop MS is described by the equation:

PGð Þ PE Gjð Þ PMS G,Ejð Þ~ PG,Eð Þ PMS G,Ejð Þ~PMS ð1Þ

where (PE|G) is the conditional probability of an individual

experiencing a ‘‘sufficient’’ set of environmental events given that

they are genetically susceptible to MS. The last term (PMS|G, E) is

Figure 1. Possible causal pathways (1–4) leading to MS, which include genetic factors (G), vitamin D deficiency (VD), Epstein-Barr
virus (EBV) infection, and other unidentified environmental factors (O1–O4). The other environmental factors along the different pathways
to MS have been designated O1–O4 because these relevant (but unknown) factors need not be the same along each path. In the Figure, the first two
environmental events are represented as an appropriately-timed vitamin D deficiency and an appropriately-timed EBV infection. However, the
association of these specific events with the first and second environmental events (discussed in the text) is not a necessary part of the Model itself.
doi:10.1371/journal.pone.0004565.g001
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the conditional probability of MS developing in an individual

having both an appropriate genetic make-up and experiencing a

‘‘sufficient’’ set of environmental-events. As such, this last term

allows for different probabilities of developing MS in persons with

different combinations of ‘‘susceptible’’ genotypes and ‘‘sufficient’’

environmental exposures. It also allows for a purely stochastic

factor, in which only a fraction of individuals will actually develop

MS, even when they are genetically susceptible and when they

experience an environmental exposure ‘‘sufficient’’ for MS to

develop given their particular genotype. Importantly, however,

Equation (1) is neither speculative nor controversial and it does not

limit the environmental or genetic possibilities. It is simply the

definitional statement for these various conditional probabilities.

Nevertheless, although it is clear that genetic susceptibility plays

a key role in MS pathogenesis, theoretically, it could also turn out

that everyone in the population might become susceptible to MS

in response to some very special environmental circumstances,

regardless of their genetic make-up. In this case, Equation (1)

would require some modification (see Appendix S1). Despite this

possibility, however, the available experimental evidence suggests

that the large majority (perhaps all) of MS is due to the effect of

specific environmental events acting on genetically susceptible

individuals and, thus, that Equation (1) adequately characterizes

the causal pathway leading to MS (see Appendix S1 for an

expanded discussion of these issues).

For a monozygotic-twin of an MS proband, (PG) should be close

to 100%. Even though gene copy numbers can vary and

epigenetic factors may differ to a degree between monozygotic-

twins, especially as the individuals age [89,90], in general, any

monozygotic-twin of an MS proband will be genetically suscep-

tible if this is conferred solely by nuclear genes inherited at

conception. Moreover, as discussed in Appendix S1, for a

Table 2. Definition of Terms used in the Model.

Time Period 1 = the period of (1941–1945)*

Time-Period 2 = the period of (1976–1980)*

R = Percentage of women in the MS population (i.e. if the ratio of women to men in the population is 3.2:1, then: R = (3.2)/(4.2) = 0.76).

PG = the probability (i.e., the prevalence) of genetic susceptibility (gender not specified)

PGW = the probability of genetic susceptibility in women

PGM = the probability of genetic susceptibility in men

PE = probability that a ‘‘sufficient’’ environmental exposure occurs (all factors; gender not specified)

PEW = probability that a ‘‘sufficient’’ environmental exposure occurs (all factors; in women)

PEM = probability that a ‘‘sufficient’’ environmental exposure occurs (all factors; in men)

PG,E = the probability that both genetic and environmental exposures occur (gender not specified)

CRMZ = the proband-wise monozygotic-twin concordance-rate (gender not specified)

Zm = the proband-wise concordance-rate (CRMZ) in men

Zw = the proband-wise concordance-rate (CRMZ) in women

PE* = (PE|G)(PMS|G, E) = CRMZ

= the probability of an ‘‘effective’’ exposure in a ‘‘susceptible’’ individual, including both the necessary environmental and random
events (gender not specified)

PEW* = (PEW|GW)(PMS|GW, EW) = Zw

= the probability of an ‘‘effective’’ exposure in a ‘‘susceptible’’ individual, including both the necessary environmental and random
events in women

PEM* = (PEM|GM)(PMS|GM, EM) = Zm

= the probability of an ‘‘effective’’ exposure in a ‘‘susceptible’’ individual, including both the necessary environmental and random
events in men

PVD = probability of a ‘‘sufficient’’ vitamin D deficiency at an appropriate time

PEBV = probability of a ‘‘sufficient’’ EBV infection at an appropriate time

PO = probability of a ‘‘sufficient’’ exposure to other unidentified factors at an appropriate time

PMS = the probability (prevalence) of MS in the population (expressed in cases per 100,000 population; gender not specified).

C = (PMS1) / (PMS2)

= the ratio of the previous to the current prevalence (probability) of MS in the population; (C$0).

r = the hazard-rate for ‘‘effective’’ exposure to environmental factors

x = the level of actual environmental exposure experienced by the population.

l = lw2lm

= the difference in threshold level of actual environmental exposure between men (i.e., when: rx+lm = 0) and women ((i.e., when:
rx+lw = 0). This threshold is the level of exposure below which disease is not possible. (NB: lw = lm+l)

X = r ? x

= the product of the actual level of exposure and the hazard-rate for ‘‘effective’’ exposure to environmental factors. One exposure
unit (whatever this represents) is defined such that: rx2 = rx1+1. (i.e., the exposure unit is scaled such that: X22X1 = 1)

*Subscripts are used to designate the level of different parameters at different time-periods [e.g., X1, Zw1, Zm1, R1, PEW1*, PEM1*, and PMS1 are the levels of these
parameters in (1941–1945); and X2, Zw2, Zm2, R2, PEW2*, PEM2*, and PMS2 are the levels of these parameters in (1976–1980)].

doi:10.1371/journal.pone.0004565.t002
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monozygotic-twin of an MS proband, the lifetime probability of

developing MS (PMS) is equal to the proband-wise concordance-

rate of MS (CRMZ). Thus, in this special case, where (PG<1) and

where (PMS<CRMZ), Equation (1) simplifies to:

PE Gjð Þ PMS Gj ,Eð Þ~PMS~CRMZ ð2Þ

Thus, the product of the conditional probability of experiencing a

‘‘sufficient’’ environmental exposure and the probability of an

appropriate outcome from a random (stochastic) process is equal to

the proband-wise monozygotic-twin concordance-rate (which is also

equal to the penetrance of the complex genetic trait). This

relationship is independent of whether any specific factor is in the

causal path to MS and the value of [(PE|G)(PMS|G, E)] can be

determined regardless of whether genetic susceptibility, environ-

mental exposure, and any stochastic processes are independent of

each other. As a result, if both (PMS) and (CRMZ) are known for any

particular region, the prevalence (probability) of genetic susceptibility

(PG) in the population for that region can always be approximated as:

PG~ PMS½ �= PE Gjð Þ PMS G,Ejð Þ½ �~PMS=CRMZ ð3Þ

Note that in deriving Equation (3), beyond ascribing suscepti-

bility to nuclear genes, no assumptions have been made with

respect to the environmental events, the genetic variables or their

interactions. As noted, Equation (1) follows directly from the

definition of conditional probability and Equations (2) and (3) are

immediate consequences of this. Moreover, each of the potential

errors (discussed earlier), which arise from equating (PMS) with the

prevalence of MS in the general population, will also arise from

equating (CRMZ) with the prevalence of MS in monozygotic-twins

of an MS proband. Therefore, in Equation (3), these errors

(whatever they are) should largely cancel.

As an example, for far northern populations [9–11], the range

of estimates for (CRMZ) is 20–30% and for (PMS) is 0.1–0.2%.

Therefore, (PG) in these regions can be approximated as 0.3–1.0%

(Table 3). In more southerly regions of North America and

Europe, both rates are approximately half those in the north [11–

13], implying that (PG) is in the same range (Table 3). In fact,

applying Equation (3) to every region in which (PG) can be

calculated from the available epidemiological data, (PG) seems to

be in a very similar range everywhere [9–13,91,92], without any

obvious north-south gradient (Table 3). It may be (as is often

suggested) that the probability of genetic susceptibility is different

in some ethnic populations than in others although, at present,

based on the apparent absence of any difference in susceptibility

between the ethnically different populations of Europe and North

America (Table 3), such a possibility is pure speculation. Thus, all

Table 3. Prevalence (probability) of genetic susceptibility in populations in different geographic regions.

Location
MS Prevalence{

(PMS)
MZ Concordance*
(CRMZ) Latitude % Susceptible** (PG)

North America

Canada [10] 68–248 25.3% N45–60u 0.3–1.0

Canadian Women*** 152.4 34.0% 0.45

Canadian Men*** 47.6 6.5% 0.73

Northern US [11] 100–160 31.4% N41–45u 0.3–0.5

Southern US [11] 22–112 17.4% N30–41u 0.1–0.6

Europe

Finland [91] 52–93 46.2% N60–70u 0.1–0.2

Denmark [92] 110 24% N55–58u 0.5

British Isles [9] 74–193 40.0% N50–59u 0.2–0.5

France [12] 32–65 11.1% N44–50u 0.3–0.6

Sardinia [13] 144–152 22.2% N39–41u 0.6–0.7

Italy [13] 38–90 14.5% N38–46u 0.3–0.6

{Per 100,000 population. The prevalence of MS (i.e., the measure used to estimate PMS) for each region is taken from data provided in [51]. A range is given because,
often, a range of estimates are available for a particular region.

*Studies (9,11, and 12) reported pair-wise monozygotic-twin (MZ) concordance-rates and these have been converted into proband-wise rates assuming a random
sampling of twin-pairs (see Appendix S1). Also, the error associated with the estimate of CRMZ for each region has not been taken into account.

**Calculated according to Equation (3):

PG~ PMS½ �= PE Gjð Þ PMS G,Ejð Þ½ �~PMS=CRMZ

See text for details. Because the prevalence of possessing at least one copy of the HLA DRB1*1501 susceptibility allele is 30% in the general populations of northern
Europe and northern North America(i.e., PHLA+) and 55% in the MS populations(i.e., PHLA+ MS) from these regions [2,103] and assuming approximately equal penetrance
for the different susceptibility genotypes [10], the observation that (PG<0.5%) indicates that only about 1% of individuals who carry this allele are even susceptible to
MS. Thus:

PGð Þ PHLAz MSð Þ= PHLAzð Þ~0:275%=30%~0:9%

.
***Because both men and women come from the same Canadian population, the actual disease prevalence is irrelevant and, therefore, a range of estimates is

unnecessary. Nevertheless, the current prevalence of MS in Canada (for the purpose of these calculations) was taken to be 100 per 100,000 population [10] and
divided according to the current sex ratio of 3.2:1 in Canada [65].

doi:10.1371/journal.pone.0004565.t003
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that can be said at the moment is that throughout Europe and

North America, the probability of being genetically susceptible is

remarkably consistent (Table 3).

Nevertheless, it is clear that a person’s genetic make-up is, by

far, the most important determinant of MS risk, despite the fact

that the contribution of individual genes to that risk seems to be

small and that several genome-wide screens have not provided

evidence for strong associations other than at the HLA DRB1

locus [2]. Thus, by this probabilistic analysis, over 99% of

individuals seem to be genetically incapable of getting MS,

regardless of what environmental events they experience during

their lives. Paradoxically, however, because the (PG) term is so

similar in different areas (Table 3), it is the environmental events

(i.e., the PE term) that determine the observed regional variations

in MS epidemiology. In addition, the mechanisms underlying

genetic susceptibility to MS are likely to be quite complex. Thus,

even though the HLA DRB1*1501 allele has the largest and most

consistent association with MS susceptibility of any genetic marker

identified to date [2], approximately 99% of the individuals who

carry this susceptibility allele are not even genetically susceptible to

getting MS (Table 3).

For the purposes of this Model, only two time-periods from the

Canadian study will be considered in detail although, in fact, the

observed change in sex-ratio seems steady and consistent over the

entire study-interval [65] and the parameter estimates derived

from each these different sex-ratio data points (see Appendix S1) is

quite similar (Table 4). The first interval considered is (1941–1945)

because, of the older data points, this is the oldest with a very

narrow confidence interval [65]. The second is (1976–1980),

which will be considered ‘‘current’’ because this is the youngest 5-

year cohort whose members have lived long enough (i.e., 35–40

years) for MS to declare itself. Also, this time-period is the most

likely to match-up with ‘‘current’’ estimates of the monozygotic-

twin concordance-rates. Obviously, these point estimates, are

associated with error terms [10,65], so that estimates derived from

them are only valid within the limits set by these potential errors.

Nevertheless, knowing that the sex-ratio in the (1976–1980) time-

frame is 3.2 [65] and using an estimate of 0.1% for MS prevalence

in Canada [2,51], a gender-specific MS prevalence of 152.4 and

47.6 per 100,000 population can be calculated for women and

men respectively (Table 3). Moreover, the proband-wise monozy-

gotic-twin concordance-rate for women (0.34) is significantly larger

(p,0.001) than the same rate (0.065) for men [10].

From Equation (3), and as shown in Table 3, men seem to be

60% more likely to be genetically susceptible to getting MS than

are women (i.e., PGM.1.6 PGW). This result is independent of the

actual prevalence of MS in Canada and, consequently, the greater

current MS prevalence in women, presumably, is due to the fact

that the [(PE|G)(PMS|G, E)] term in Equation (1) is presently

larger for women than for men.

This gender-specific environmental effect might reflect a true

difference in exposure (e.g., maybe women use more sun-block or

sun-avoidance than men, maybe they spend less time out of doors,

or maybe they have better hygiene as children and therefore

acquire EBV later). It could also reflect gender-specific differences

in vitamin D metabolism, which causes men and women to

experience a deficiency at different absolute exposure levels

[53,54]. It may also reflect women having a greater probability

of actually developing MS once the necessary environmental and

genetic events have come together or it could be that some

combination of these factors contributes to the observed gender-

specific differences.

Regardless of the explanation, however, the existence gender-

specific differences necessitates that Equation (1) be re-written

separately for both women and men as:

PGWð Þ PEW GWjð Þ PMS GW,EWjð Þ~PMS for womenð Þ

and

PGMð Þ PEM GMjð Þ PMS GM,EMjð Þ~PMS for menð Þ

In the Model, these gender-specific terms [(PEW|GW)(PMS|GW,

EW) and (PEM|GM)(PMS|GM, EM)], will be referred to (collectively)

as the probability of an ‘‘effective’’ exposure (i.e., an exposure that

actually produces disease in a susceptible individual). These gender

differences also necessitate the use of gender-specific monozygotic-

twin concordance-rates (Zw and Zm), as defined in Table 2.

MS epidemiology in Canada has been changing in the 35 year

interval between (1941–1945) and (1976–1980). First, MS

prevalence may have doubled (in which case C would be equal

to 0.5) and the sex-ratio of women-to-men has increased from

2.2 to 3.2 [2,51,65]. From these two pieces of information, and

assuming both that PGW and PGM are unchanged and that the

current MS prevalence is 0.1%, it follows that the gender-specific

MS prevalence in (1941–1945) was 68.8 and 31.2 per 100,000

population for women and men respectively and that the gender-

specific term for the probability of ‘‘effective’’ exposure during

this period (Table 2) is (0.307*C = 15.3%) for women and

(0.085*C = 4.3%) for men (see Appendix S1). Moreover,

knowing these values permits the relationship between the

probability of an ‘‘effective’’ exposure and the actual exposure

level of the population to be defined rather precisely (see

Appendix S1).

If the hazard-rate for ‘‘effective’’ exposure is constant and the

same for men and women, which seems plausible for a stochastic

Table 4. Parameter estimates using different the sex-ratios
(Female:Male) reported in Canada over the period from 1931
to 1980*.

Time-
Period a b b/a l Cmax

**

1931–1935 0.083 0.477 5.73 20.270 0.76

1936–1940 0.079 0.465 5.86 20.396 0.73

1941–1945 0.078 0.449 5.75 20.373 0.76

1946–1950 0.075 0.434 5.77 20.462 0.75

1951–1955 0.074 0.417 5.60 20.377 0.80

1956–1960 0.072 0.403 5.58 20.448 0.79

1961–1965 0.072 0.385 5.37 20.231 0.89

1966–1970 0.070 0.370 5.31 20.188 0.92

1971–1975 0.067 0.356 5.37 20.772 0.75

Mean
(sd)

0.074
(0.005)

0.417
(0.042)

5.59
(0.2)

20.391
(0.17)

0.79
(0.06)

*Values derived from reference [65] for the condition where (C = 0.5) and
assuming the change in the environmental factor (whatever this is) has been
steadily increasing (i.e., linear) over the time-interval (sd = standard deviation).
The estimates for the parameters a and b trend downward in the more recent
time-intervals because the definition of a unit of environmental change (see
Table 2) becomes smaller with more recent observation periods. The other
estimates are unaffected by this circumstance (see Equations 14, 17, and 21).

**Values for the maximum value that C could take (see text); extrapolated
backward to the (1941–1945) time-period for comparison.

doi:10.1371/journal.pone.0004565.t004
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process related only to the actual exposure level received by the

population (see Appendix S1 for a discussion of these issues), the

most general equations describing the approach to maximum

probability of ‘‘effective’’ exposure are exponential and are given

by:

Zw~ PEW GWjð Þ PMS GW,EWjð Þ~b 1{e- rxzlmzlð Þ
� �

for women

and

Zm~ PEM GMjð Þ PMS GM,EMjð Þ~a 1{e- rxzlmð Þ
� �

for men

In these equations, a and b are positive constants (#1), which

represent the maximum probability of ‘‘effective’’ exposure for

men and women, x ($0) represents the actual exposure level

received by the population, and r ($0) is the hazard-rate for

‘‘effective’’ exposure. The threshold exposure level at which

disease becomes possible and is defined as the exposure-level (rx)

such that:

rxzlw~0 or rx~{lw in women

rxzlm~0 or rx~{lm in men

The parameter (l) represents the difference (between men and

women) in this threshold exposure-level, so that:

rx menð Þ{rx womenð Þ~l~{lm{ {lwð Þ

or : l~lw{lm:

By virtue of a few basic epidemiological observations [10,65],

we can specify two points on these gender-specific response curves

and, therefore, each curve can be defined within narrow limits (see

Appendix S1). Thus, based upon the current proband-wise

monozygotic-twin concordance-rates [10], allowing for an accu-

racy (61 SE), and based upon the observed changes in sex-ratio

[65], it can be shown that (b.a), that (0.018,a,0.154), that

(0.335,b,0.576), that (2.7,b/a,26.1), and that (l,20.1). It is

therefore apparent that women are more responsive to the

environmental changes that have taken place (whatever they are)

than men. Despite this, however, men have a lower threshold of

actual environmental exposure for the disease to develop than

women. Such a circumstance might explain why the earliest

reports of MS were often in men [2,93] and why a 1922 study

reported that of 363 MS patients from the United States and of

1,142 cases from Europe, approximately 58% (in both regions

separately) were men [94]. Moreover, it can be shown that, at a

minimum, there must have been a 32% increase in the prevalence

of MS in Canada over the 35 year interval of study. Some increase

Figure 2. Derived response curves for men and women of an ‘‘effective’’ exposure to the environmental factors (PE*) with
increasing levels of actual exposure (x), as described in the text and in the Appendix. These curves are based upon the ‘‘current’’
proband-wise monozygotic-twin concordance-rates for men and women in Canada [10] and upon the change in the sex-ratio observed in Canada
between the two time-periods [65]. However, in deriving this set of curves, two further assumptions have been made. First it has been assumed that
the currently observed values for Zw2 and Zm2 are accurate [10]. Second, it is assumed that C (defined in Table 2) is equal to one half (i.e., that the
prevalence of MS has doubled between the two time intervals). Of course, the actual level of environmental exposure (whatever this represents) is
unknown. Nevertheless, the environmental exposure has been scaled such that the difference in the actual exposure level between these two time-
periods (whatever this is), multiplied by the unknown hazard rate, is assigned the arbitrary value of one exposure unit (see Table 2). In these curves,
the probability of a ‘‘sufficient’’ exposure to the entire set of environmental events (PE) is assumed to have changed (in some manner) as the actual
level of exposure (x) of the population has increased between the two time intervals of study. This change in (PE), however, could be due to a change
in only one, in some, or in all of the relevant environmental factors. NB: Although the two time-periods of (1941–1945) and (1976–1980), which were
used for parameter estimation, are shown along the x-axis, this axis represents an increasing (but unknown) environmental exposure. It is not a time-
axis.
doi:10.1371/journal.pone.0004565.g002
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in MS prevalence might be expected from better diagnostic

techniques although, because this minimum increase in MS

prevalence depends only upon the observed change in the sex-

ratio (see Appendix S1), this explanation seems unlikely. Indeed,

assuming that MS prevalence has doubled over the 35 year

interval [2,51], and that the ‘‘current’’ estimates for Zw2, Zm2, R2,

and R1 are accurate, every parameter can be determined precisely

[i.e., b = 0.449, a = 0.078, b/a = 5.751, and l = 20.373] and the

theoretical response curves constructed exactly (Figure 2). Finally,

these parameter estimates are quite stable for all of the changes in

sex-ratio that have been observed over time in Canada (Table 4).

Thus, there can be no doubt that the environmental factors

have been changing over the past several decades and probably for

much longer. Nevertheless, it is possible that only some of these

implicated environmental factors have changed and, thus, only

these particular factors may be responsible for the changes that

have taken place in MS epidemiology over the past several

decades. If, as discussed earlier, the sequential pathway 3 (Figure 1)

plays the dominant role in adult MS pathogenesis, then it follows

that the ‘‘total’’ environmental term (PE) can be re-written as:

PE~ PVDð Þ PEBV VDjð Þ PO VD, EBVjð Þ ð4Þ

In this equation, (PVD) is the probability of a ‘‘sufficient’’

exposure to vitamin D deficiency, the term (PEBV|VD) is the

conditional probability of a ‘‘sufficient’’ EBV exposure given a

‘‘sufficient’’ vitamin D exposure, and (PO|VD, EBV) is the

conditional probability of the other ‘‘sufficient’’ environmental

exposures given the fact that the individual has already

experienced ‘‘sufficient’’ vitamin D and EBV exposures.

If individuals are equally likely to receive a ‘‘sufficient’’ exposure

to each of these three environmental events (VD, EBV, and

Other), if (PMS|G, E) is 100%, and if the conditional probabilities

are approximately equal to the probabilities themselves, then it

follows that 63% of northern European and northern North

American populations [9,10] have experienced what would have

been a ‘‘sufficient’’ exposure to each of the three implicated

environmental events in a genetically susceptible individual. Thus,

in this circumstance:

CRMZ½ � 1=3ð Þ
~ 0:25½ � 1=3ð Þ

~0:63

Even in the more southerly regions of these continents [11], a

‘‘sufficient’’ exposure to each of the events would still be

experienced by 53% of the population. It is only because genetic

susceptibility is so infrequent that the disease is uncommon.

Moreover, if (PMS|G, E) is less than 100% (as seems likely), these

numbers will only increase further as this probability declines.

Consequently, the necessary environmental exposures in the

causal pathway to MS seem likely to be very common events.

Indeed, because both vitamin D deficiency and EBV infection are

both very common population-wide events, this conclusion is fully

consistent with these factors being the first two environmental

events involved in MS pathogenesis. Thus, vitamin D deficiency

(at least to some degree) is anticipated in the large majority of

individuals living in low sun-exposure regions [95] and EBV is an

extremely prevalent pathogen in human populations (Table 1).

Discussion

If, as suggested by the above Model, the causal pathway leading

to adult MS involves sequential environmental events or factors

(pathway 3; Figure 1) then, theoretically, modification or

disruption of any one of these factors has the potential to

completely prevent the disease [1]. The simplest factor to modify

in this way would be vitamin D deficiency because vitamin D can

be supplemented easily and cheaply. However, due to the low

incidence of MS, any test of such a therapeutic strategy will be

very difficult to undertake. First, it will require following thousands

of individuals for many (.30) years. Second, the cost of using a

randomized, placebo-controlled design in this setting is prohibi-

tive, even disregarding the ethical and logistical problems of using

a placebo for such a prolonged period. And finally, any study

designed to enrich the study-cohort for high-risk individuals by

including only first-degree relatives of MS probands [37] will fail if

the critical time for environmental exposure occurs in utero, during

the early post-natal period, or even during childhood. Thus, by the

time that MS probands are identified, most of their brothers and

sisters will have already passed their window of therapeutic

opportunity.

Therefore, in order to test this hypothesis, it will require the use

of an open-label, observational study design that includes all

women who want to become pregnant. Moreover, it will need to

employ statistical methods for minimizing bias in the analysis of

non-randomized data [e.g., 96–99]. Adequate vitamin D supple-

mentation will need to be recommended both before and during

pregnancy for the mother and thereafter for both the mother and

child. However, because the amount of supplementation necessary

to achieve adequate blood-levels of vitamin D (i.e., in the normal

range) may be quite high, it should be anticipated that some

(perhaps many) obstetricians or pediatricians will be unwilling to

recommend such large dosages of vitamin D either to their

pregnant or to their pediatric patients. Such a circumstance,

however, does not detract from the study design. In fact, a large

variation in physician and patient behavior (with respect to the use

and magnitude of vitamin D supplementation) will actually make

the final data analysis easier [96–99]. As a result, in order to

conduct such a trial, there is no need to encourage reluctant

physicians to recommend supplementation, especially when large

numbers of MS patients around the world are already consuming

large quantities of oral vitamin D on a daily basis.

The current FDA recommendations suggest that 400 interna-

tional units (IU) of vitamin D per day is an adequate amount of

supplementation, although this recommendation is derived mostly

from the effects of vitamin D on calcium homeostasis. The

requirements for immune modulation, however, are likely to be

higher [100]. For example, healthy men have been estimated to

use between 3,000 and 5,000 IU/day [101]. Moreover, even with

calcium supplementation, doses of vitamin D between 7,000 and

40,000 IU/d seem to be safe and unaccompanied by toxicity,

including elevations in serum calcium concentrations or in the

calcium-to-creatinine ratios [101,102]. Consequently, dosages of

between 1,000 and 10,000 IU/d day would not seem unreason-

able or unsafe.

However, if physicians do recommend supplementation (at

whatever level), they should monitor their patients’ blood-levels to

ensure that these don’t exceed the range of normal. Importantly,

however, the hypothesis that early vitamin D supplementation

influences the subsequent likelihood of developing MS can be

tested solely by acquiring observational data and does not require

anyone to agree to any specific treatment plan. Nevertheless, as

mentioned earlier, the conduct of such a study will require patients

and their children to be followed prospectively for long periods of

time – a design that, realistically, is only feasible in situations

where large population-based centralized medical records are

available (e.g., countries with universal health care) or in non-
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mobile communities where complete ascertainment and longitu-

dinal follow-up is possible. Physicians (and their patients) could be

informed about the nature of the hypothesis being tested (possibly

through the MS societies or other outlets) and about the ranges of

vitamin D dosages being considered (including current FDA

guidelines). Such a study would be cost-effective (only information

already available needs to be captured), it would be easy to

accomplish (everyone can participate and can take whatever

supplementation they choose), and it would pose no ethical

dilemmas (each person and each physician is free to choose what

they feel is best for themselves or for their patients). Moreover, this

seems like an extremely important study to begin, especially in

health care systems where persons and their offspring can be easily

tracked. Certainly, such a study seems to carry minimal risk, it

requires little cost, and, if successful, it would provide inestimable

benefit for future patients. However, because it will take up to 30

years to arrive at an answer, the prospective acquisition of this kind

of data should begin now.
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