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ABSTRACT
◥

The development of single-cell RNA sequencing (scRNA-seq)
technologies has greatly contributed to deciphering the tumor
microenvironment (TME). An enormous amount of independent
scRNA-seq studies have been published representing a valuable
resource that provides opportunities for meta-analysis studies.
However, the massive amount of biological information, the
marked heterogeneity and variability between studies, and the
technical challenges in processing heterogeneous datasets create
major bottlenecks for the full exploitation of scRNA-seq data. We
have developed IMMUcan scDB (https://immucanscdb.vital-it.ch),
a fully integrated scRNA-seq database exclusively dedicated to
human cancer and accessible to nonspecialists. IMMUcan scDB
encompasses 144 datasets on 56 different cancer types, annotated in
50 fields containing precise clinical, technological, and biological
information. A data processing pipeline was developed and organ-
ized in four steps: (i) data collection; (ii) data processing (quality

control and sample integration); (iii) supervised cell annotation
with a cell ontology classifier of the TME; and (iv) interface to
analyze TME in a cancer type–specific or global manner. This
framework was used to explore datasets across tumor locations in
a gene-centric (CXCL13) and cell-centric (B cells) manner as well as
to conduct meta-analysis studies such as ranking immune cell types
and genes correlated to malignant transformation. This integrated,
freely accessible, and user-friendly resource represents an unprec-
edented level of detailed annotation, offering vast possibilities for
downstream exploitation of human cancer scRNA-seq data for
discovery and validation studies.

Significance: The IMMUcan scDB database is an accessible
supportive tool to analyze and decipher tumor-associated single-
cell RNA sequencing data, allowing researchers to maximally use
this data to provide new insights into cancer biology.

Introduction
Tumor immunology has taken central stage in cancer research due

to the relative success of immunotherapy in a large number of
malignancies. However, despite recent progress, themajority of cancer
patients still either does not respond to therapy or eventually relapses
and succumbs to disease. Aside from the tumor cells themselves, the
tumormicroenvironment (TME)has been shown to strongly influence
clinical outcome of immunotherapies. Better characterizing the cellular

composition and molecular characteristics of the TME thus remains an
important and challenging task that could help not only develop novel
anticancer strategies but also to identify biomarkers, better predicting
outcome to current immunotherapies, leading to optimized personal-
ized treatment strategies.

Single-cell RNA sequencing (scRNA-seq) technologies are uniquely
suited to explore the diversity of cellular phenotypes and molecular
pathways present in the TME. They can help addressing an array of
biomedical questions, ranging for identifying cancer-associated cell
states, to predicting intercellular communication, disease resistance
mechanisms, and discovering novel drug targets. The ever-growing
number of cancer related scRNA-seq datasets published in recent years
represent a highly valuable but only partially explored treasure trove
for biomedical research, given that in most published articles the
authors have addressed only a limited number of hypotheses and have
not integrated their data with other complementary studies.

While integrating tumor derived single-cell data into a searchable
database would facilitate access, reanalysis, and comparing published
scRNA-seq datasets doing so is challenging for several reasons: (i)
cancer related datasets are highly heterogenous due to the large
number of different cancer types and clinical contexts such as treat-
ment type and tumor location; (ii) applied single-cell technologies,
experimental protocols, and data analysis methods; (iii) biological and
clinical interpretation of the results.

To address this challenge, scRNA-seq data portals have been created
recently, including scRNASeqDB (1), SCPortalen (2), PanglaoDB (3),
and JingleBells (4). However, only two databases, CancerSEA and
TISCH, are dedicated to hosting tumor related data. CancerSEA has
integrated 41,900 single cancer cells from 25 cancer types (5) and is
focused on identifying functional states associated with specific gene
signatures. It combines datasets from human tumors, but also from
cancer cell lines and patient-derived xenografts. Clinical information is
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minimal and restricted to tumor type annotation. TISCH enables to
browse through cancer scRNA-seq datasets from both human (74
datasets) and mouse (5 datasets) to characterize the various cell types
composing the TME and analyzing the expression of target genes and
signatures (6). Clinical annotation is limited to tumor type, primary
versus metastatic disease, and treatment. The database functionalities
allow comparison of the cellular composition and target gene expres-
sion across various datasets.

Our objective was to go beyond these efforts, and to build an in-
depth, fully annotated, and integrated scRNA-seq database exclusively
dedicated to human cancer. This studywas performed in the context of
the “Integrated iMMUnoprofiling of large adaptive CANcer patient
cohorts” (IMMUcan) consortium, as part of the European Innovative
Medicine Initiative 2 program and aims at creating and integrating the
clinical, cellular and molecular profile of different tumor types and
their microenvironment. The IMMUcan database offers detailed
clinical annotation allowing to connect cell types and gene expression
patterns to specific clinical patterns. It further offers a large number of
functionalities for the analysis of multiple datasets. We hope the
database will become the gold standard reference tool to support
cancer biomedical research, in the early discovery, hypothesis-generating,
as well as validation settings.

Materials and Methods
Literature search and dataset selection

We searched for peer-reviewed published datasets in PubMed
(ncbi.nlm.nih.gov/pubmed/) using ((cancer[Title/Abstract]) AND
(patient)) AND (single cell RNA sequencing) as key words as well
as for non–peer-reviewed studies in the bioRxiv database (www.
biorxiv.org) using “human cancer single-cell rna-sequencing” as
free-text keywords. We applied a filter to select articles published
from 2016 to 2021 and then manually reviewed all the resulting
article titles and abstracts to check for the availability of scRNA-seq
data, which resulted in a total of 103 publications spanning 144
datasets. For all datasets from human cancer patients with
more than a thousand cells and at least ten samples, we downloaded
the data from Gene Expression Omnibus (GEO), ArrayExpress,
EGA, and BioProject. An exception concerning the number of
patient samples was made when datasets focused on additional
biology such as multiple biopsy sites, treatment information or
longitudinal samples. Using these filters, we finally arrived at 73
datasets covering 56 different cancer indications that were inte-
grated into the IMMUcan scDB.

Capturing of metadata
To structure the data from the 144 selected studies and to allow for

efficiently searching our database we extracted the following metadata
categories from the studies inspired by the guidelines for reporting
scRNA-seq studies (7). The first category captures study wide infor-
mation including manuscript title, abstract, DOI, number of patients
and samples, as well as data access information. The second category
focuses on sample-specific attributes such as cancer type, cancer
localization, treatment, and response. All information regarding the
applied single-cell technology workflow (including tissue dissociation,
cell type enrichment, single-cell isolation, library construction, end
bias, library layout, reference genome, read alignment, read counting,
and expression value format) are part of a third category. Finally,
whenever it was provided, we also annotated and standardized infor-
mation about the single-cell data contained in the study including
enrichment strategy, patient ID, tissue, timepoint of biopsy, location of

biopsy, author annotations, cancer (sub)type, cancer stage, as well as
treatment information including timepoint, drug, and response.
Where possible all metadata such as cancer type, treatment, and cell
type were standardized and mapped to ontologies. Depending on the
type of information the metadata can be either free text, a list from a
controlled vocabulary, Boolean values, or quantitative information.

Data processing
To increase the comparability between studies and because raw read

counts are better suited for most single-cell analysis workflows (8), we
preferentially downloaded this data type whenever available. Every
dataset that contained multiple experiments or cancer indications was
then split into separate files.

To efficiently process all downloaded single-cell data, we developed
an R language-based pipeline, called scProcessoR, that mainly uses
functions form the Seurat package (version 3; ref. 9) for log normalizing
the data, selecting the most variable genes, principal component
analysis transforming and scaling of the data, building knn neighbor-
hoods for each cell, graph-based clustering and generating UMAP
dimensionality reduction plots (Supplementary Fig. S1A). All steps
are performed in a semiautomatic manner based on best practices in
the field (8, 10). The workflow takes as input an expression matrix
formatted to have cells as columns and genes as rows as well as a
metadata file containing the cleaned and standardized information
available for the samples including patient data and cell annotations. To
illustrate theworkflow,weused the dataset SC_UNB_10X_GSE134520,
which includes single-cell transcriptomic profiles of 9 patients with
early stomach carcinoma. For each dataset, to only retain high quality
data we removed all cells that have less than 250 genes with mapped
reads and/or depending on tumor type (10) contain more than 5% to
20% of mitochondrial specific reads (Supplementary Fig. S1B). To
evaluate whether a dataset suffers from severe technical batch effects we
computed for each potential type of batch effect, T (e.g., patient ID), and
each cell in the dataset, C, the Shannon entropy, HTC, given by:

HTC ¼ �
XB

b¼1

qCblog qCb;

where B is the total number of batches of type T in a dataset (e.g., all
patients), and qC is the percentage of cells within the 30 nearest
neighbors of C that come from a given batch b. To end up with a
comparable entropy metric between datasets, HTCnorm, we further
normalized the entropy of every cell by the total entropy of the dataset
HTtotal

HTCnorm ¼ HTC

HTtotal

HTtotal is given by:

HTtotal ¼ �
XB

b¼1

qblog qb;

where B is the total number of batches of type T in a dataset (e.g., all
patients), and qb is the percentage of cells from a given batch b.

Values for HTCnorm range from 0 (corresponding to a cell being
surrounded only by cells from the same batch), to 1 (corresponding to
the 30 nearest neighbors of C coming with equal frequency from all
different batches of type T in the dataset). If themedian entropy across
all cells in a dataset had a value of ≤ 0.5 for a given type of batch effect,
we corrected for the corresponding batch effects using the Harmony
package (version 0.1; ref. 11) with supplied default parameters
(Supplementary Fig. S1C and S1D).
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Cell clustering and cell type annotation
Unsupervised clustering of cells from a given datasets was

performed using Louvain graph-based clustering implemented in
the Seurat package (12) with the resolution parameter set to 1. To
assign cell types to each cluster, we first performed automatic cell
annotation using the supervised CHETAH algorithm (13), which
uses the 500 most variable genes to compare each cell in a dataset to
a predefined reference compendium (Supplementary Fig. S1E). We
used standard parameters except for the confidence threshold for
classification, which we set to a more lenient value of 0.05. As
reference data, we reannotated the integrated human TME scRNA-
seq compendium provided with the CHETAH package to now also
include plasmacytoid dendritic cells as separate cell type (Supple-
mentary Fig. S2A). To delineate malignant cells, we then applied the
CopyKAT algorithm (14), which uses an assessment of copy number
aberrations to identify malignant cells. To increase CopyKAT’s
prediction accuracy, we provided the macrophage cluster in each
dataset as healthy reference cells (Supplementary Fig. S2B).

With the help of these automatic annotations, i.e., themost frequent
CHETAH annotation per cluster and aneuploidy over diploidy levels
from copyKAT, as well as a compendium of cell type specific markers
derived from bibliographic searches, we then performed manual
annotation of each cluster (Supplementary Table S1). We thereby
adhered to three levels of cell type resolution. In the lowest resolution
referred to as “annotationmajor,”we classified tenmain cell types such
as fibroblasts and T cells. In “annotation immune,” we added higher
resolution to immune cell types distinguishing for instance CD4 and
CD8T cells (Supplementary Fig. S2C and S2D). Finally, in “annotation
minor,” we applied even greater resolution on myeloid and lymphoid
cell subtypes (Supplementary Fig. S2E; Supplementary Table S2)
giving rise to a total of 17 cell subtypes. All normalized and
annotated datasets were stored as Seurat objects and converted to
h5ad files by sceasy (15) to be loaded into and visualized by the web
portal described below.

Gene, cell cluster, and dataset ranking
To be able to rank genes based on their specificity for a given cell

cluster we computed three measures. The first metric is based on
Holm-corrected nonparametric Wilcoxon rank sum test P values
comparing for each gene its expression in the cells from a cluster of
interest to its expression across all other cells in the dataset. To speed
up corresponding P value calculations, larger datasets were randomly
downsampled to 20,000 cells. As a second metric, we computed for
each gene log fold changes between its average expression across the
cells from a cluster of interest to its average expression across all other
cells in the dataset. Finally, we also determined for each gene the
percentage of cells in the cluster of interest that express the gene. In the
interface, users can sort genes for each cluster or annotated cell type
based on each of these three measures.

To allow users to identify datasets in which a gene of interest is
specifically expressed in a cluster or cell type, we applied the R based
genesorteR package (bioRxiv 10.1101.676379) using default para-
meters. GenesorteR first computes for every gene and every cluster
from all the datasets in the database an entropy-based score, the closer
this score is to 0 themore exclusively a gene is expressed in all cells from
only one cluster. For each cluster, the algorithm then ranks all the genes
based on their entropy scores. Finally, it returns for every dataset the
best rank that the gene of interest achieved across all the clusters in the
dataset. These best ranks are then used to sort the datasets, i.e., a dataset
containing a cluster for which the gene of interest obtained an entropy
score of close to 0 will be ranked near the top while a dataset where the

gene of interest is broadly expressed across all its clusters will be ranked
near the bottom.

For fast browsing of the data, the following metrics and rankings
have been precomputed: cell count, entropy gene index, expression,
and differential expression results for CHETAH, major, immune,
minor and authors annotation, metadata of full dataset and sub-
sampled h5ad and metadata object.

Web portal
The front-end of the web portal has been developed using theVueJS

framework (https://vuejs.org/, version 2.6), the Bootstrap CSS library
(https://getbootstrap.com/, version 4.6), the echarts visualization
library (http://echarts.apache.org/, version 4.9) and the d3js library
(https://d3js.org/, version 5.16). The back-end has been developed
with PHP (version 7.1) and the SLIM framework (https://www.slim
framework.com/, version 3.12). Once a dataset is selected by the user
the corresponding h5ad file is parsed to the portal via a custom Python
script using the scanpy library (scanpy.readthedocs.io/, version 1.7.2).

Statistical analysis
In all boxplots, boxes represent the interquartile range with a

horizontal line indicating the median value. Whiskers extend to the
farthest data point within a maximum of 1.5 x the interquartile range,
and colored dots present outliers.

Data availability
All public datasets we gathered in IMMUcan scDB are available

from GEO, ArrayExpress, EGA, or BioProject (Supplementary
Table S3). All accession codes as well as the public datasets that were
processed and integrated into the database are available at https://
immucanscdb.vital-it.ch/.

Code availability
The source code for processing all the collected datasets is available

as a repository on GitHub (https://github.com/ImmucanWP7/immu
can-scdb).

Results
Literature-based creation of the IMMUcan scRNA-seq database

The IMMUcan scRNA-seq database (scDB) was created through
four main steps: (i) an exhaustive literature search for human cancer
scRNA-seq studies; (ii) a manual review and curation of each relevant
article; (iii) the collection of the corresponding datasets through web
repositories or by contacting the authors; (iv) the processing and
integration of the datasets and all associatedmetadata to the IMMUcan
scDB (Fig. 1A).

All available annotations, data, and metadata were integrated into
the IMMUcan scDB and can be searched through a user-friendly
interface (immucanscdb.vital-it.ch) that enables users to query data-
sets based on the annotated metadata such as cancer type, treatment
type, or the presence of a given cell type (Fig. 1B). In addition, the user
can rank datasets for the specific expression of a given gene of interest
in a subset of clusters or cell types. Once a dataset is selected, the user
can mine the data and visualize the contained clusters and cell types as
well as plot the expression of multiple genes across the clusters or
against each other. The user can also download the normalized (batch
corrected) and standardized datasets.

A total of 103 publications and corresponding metadata were
successfully integrated into our database, corresponding to 144 data-
sets (Fig. 1B). Fifty-six cancer types were included. The most frequent
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cancer types were melanoma (13 datasets with a total of 192 patients
with melanoma), followed by breast cancer (12 datasets, 187 patients),
and glioblastoma (10 datasets, 121 patients; Fig. 1C). Less frequent
tumor types included acute T-cell leukemia, renal cell carcinoma, and
certain childhood tumors like medulloblastoma. The majority of the
datasets were generated from single-cell suspensions with no prior
enrichment (unbiased; 61 datasets), followed by immune cell selection
through CD45 enrichment (23 datasets), and T-cell enrichment (15
datasets; Fig. 1C). Overall, 21 different types of enrichment protocols
were applied across the different studies. Patient treatment was known
and described for 61% of the patients, corresponding to 56% of the
datasets. This information allows for specific analyses such as iden-
tifying cell type and transcriptomic changes specific to certain cancer
treatments. Lastly, the database contains data generated via eleven
different single-cell sequencing technologies with most studies having
employed SMART-seq2 or 10X Genomics single-cell sequencing
(Fig. 1C).

Cell type–based exploration of the IMMUcan scDB
To demonstrate the usefulness of the IMMUcan scDB we first

focused on the cell type–specific use case of identifying cell types
overrepresented in ICI treatment responders versus nonresponders.

To this end, we searched in the scDB interface for datasets from
immunotherapy-treated patients and then selected the melanoma
dataset MEL_IMM_SS2_GSE120575 because it contains a compre-
hensive set of around 17,000 TME cells from patients before and after
anti–PD-1 therapy.

Selecting a dataset directly opens a panel showing an UMAP
visualization of the data. In this plot, cells can be colored
according to various levels of annotation such as the automatic
CHETAH cell type assignments, their tissue of origin, or patient
treatment (Fig. 2A). The interactive legend allows to select and
deselect cell groups and displays group names and sizes. To
increase plotting speed, a pulldown menu next to the UMAP
plot allows to limit the visualization to a random selection of
10,000 cells. Next to the UMAP plot, for a given annotation such
as CHETAH cell type assignments, a stacked bar chart visualizes
the corresponding cell type composition of each sample in the
study. By selecting a clinical annotation on top of the bar chart
such as “treatment response,” multiple plots are created that allow
for comparing the cell type composition between responders and
nonresponders (Fig. 2B). Our bar chart visualization shows that B
cells were increased in melanoma patients responding to anti–PD-1
therapy.
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Figure 1.

scRNA-seq database workflow. A, Strategy used to create the IMMUcan scRNA-seq database (scDB). B, Overview of the home page of the database web
interface. C, Statistics of the database content represented as lollipop plot. The information (cancer type, cell type enrichment, treatment, and technology) is
shown on the y-axis while the related number of datasets is shown on the x-axis. Point size correspond to the number of patients and the color-gradient
represents the number of cells per 100,000.
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IGHD 2.612 0.667 0.034 0 B immunoglobulin heavy constant delta ENSG00000211898 P01880 3495 HGNC:5480

FCER2 2.591 0.599 0.04 0 B Fc fragment of IgE receptor II ENSG00000104921 P06734 2208 HGNC:3612

CR2 2.555 0.463 0.034 0 B complement C3d receptor 2 ENSG00000117322 P20023 1380 HGNC:2336

Figure 2.

Cell-based exploration of IMMUcan scDB looking at B cells involvement in melanoma patients treated with anti–PD-1. A, UMAP plot of MEL_IMM_SS2_GSE120575
dataset. The cells are colored according to their major annotation. B, Bar plots of the percentage of cells per cell types in the whole dataset and per response to
treatment status. The cell types are colored according to themajor annotation.C andD, Expression ofMS4A1, amarker genes of B cells, visualized on a UMAP plot (C)
and violin plot (D). Below violin plots are pie charts representing the proportion of expressing cells (“non-zero”) and below the absolute number. The colors
correspond to major annotation. E, Table of the average expression of genes and differential expression of genes. Here, the top differentially expressed genes of B
cells are ranked by descending average log2-fold change compared with the rest of the cells in the dataset.
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Two gene tables are automatically loaded on the bottom of the page
that show the average expression of each gene per cell type aswell as the
level of differential expression of each gene between a user selected cell
type and all other cells in the dataset. The expression of each gene can
be visualized on an additional UMAPplot (Fig. 2C) and as a violin plot
(Fig. 2D). To improve the interpretation of these plots, the absolute
cell number is represented as a pie chart below the violin plot and the
percentage of cells expressing the gene appears in a mouseover
(Fig. 2C). In addition, the expression of the selected gene is also
displayed in a separateUMAPplot.We visualized the expression of the
top marker gene of B cells showing here that MS4A1 (CD20) is the
most selective gene expression marker for B cells (Fig. 2E).

Gene-based searching of the IMMUcan scDB
Recently, a study ofmultiple bulk transcriptomic cancer datasets has

shown that CXCL13 and CXCL9 could be used as predictive biomar-
kers for checkpoint immunotherapy response (16). As use case for a
gene centric search, we employed IMMUcan scDB to identify the cell
types expressing these two genes across different cancer types.

Upon entering a gene in the corresponding search field at the top
right side of the entry page, the IMMUcan scDB displays a heatmap
of the gene’s average expression in each cell type in every dataset in
which the gene is expressed. We searched for CXCL13 and using
“annotation minor” as cell type resolution observed that it is most
highly expressed in T follicular helper cells (Tfh) and exhausted
CD8þ T cells (CD8þ T ex) in most cancer indications including
basal cell carcinoma (BCC), melanoma (MEL), and non–small cell
lung cancer (NSCLC; Fig. 3A–C). On the other hand, and in line
with recent publications, CXCL9 was found to be expressed across
myeloid cells with highest levels in LAMP3 positive dendritic cells
and macrophages (17) from various indications including hepato-
cellular carcinoma (HCC), NSCLC, and melanoma.

Evaluating gene coexpression in the IMMUcan scDB
The IMMUcan scDB also makes it possible to quantify the co-

expression of two genes. To this end, after selecting a dataset on the
entry page, the user can select the “GeneXvs.GeneY expression”panel
and enter the names of two genes. A scatter plot is then created with
one point per individual cell. Cells are colored on the basis of the
selected cell type resolution level. The legend lists all cell types
expressing both genes together with the corresponding number of
cells and associated Pearson correlation coefficients. In addition, Venn
diagrams are displayed that visualize for each cell type the number of
cells coexpressing both genes and a P value for the significance of the
overlap. To demonstrate the coexpression features we selected the
BCC study BCC_BIA_10X_GSE123813 based on the high expression
of CXCL13 in exhausted CD8þ T cells within this dataset. We
investigated the coexpression of CXCL13 with PD1 (PDCD1), another
well-known marker for T-cell exhaustion and observed highly signif-
icant coexpression of the two genes in exhausted CD8 T cells with an
overlap P value of 2.9�10�5 (Fig. 3D–F).

In line with the results from the above gene-based search, CXCL9
and CXCL13 were not coexpressed in any of the cell types from the

BCC_BIA_10X_GSE123813 dataset (Supplementary Fig. S3) as
expression of CXCL9was restricted to cells of myeloid origin. Accord-
ingly, the Venn diagrams show no overlap between the CXCL9 and
CXCL13 positive cells and the scatter plot shows no cells expressing
both genes.

Identifying commonchanges in cell type frequencies associated
with malignant transformation

We next used the opportunity of having a large collection of
harmonized single-cell datasets to identify changes to the T-cell and
macrophage compartments observed consistently across the TME of
different cancer types. To this end we selected all 25 datasets from the
IMMUcan scDB containing both tumor and normal tissue and then
compared both changes inmacrophage and T-cell subtype frequencies
and corresponding changes in gene expression patterns associated
with malignant transformation.

We found a total of 705 upregulated and 611 downregulated
genes over 11 cell types with log-fold change differences greater
than 1 and a multiple testing corrected P value of 0.001. Many of the
top DE genes were corresponding to dissociation-artefacts (18) such
as heat shock proteins and tissue specific genes such as alveolar and
surfactant genes. Therefore, we created a gene blacklist removing all
genes all genes associated with these effects from downstream
analyses. The gene blacklist contained heatshock proteins, other
dissociation-associated genes such as DNAses, FOS and JUN, immu-
noglobins,mitochondrial genes, tissue-specific genes, ribosomal genes,
and ERCC spike-ins. Resulting differentially expressed genes were
prioritized by the average fold change over all datasets, excluding genes
that were observed in less than 20% of the datasets (Fig. 4A).

As shown in Fig. 4Awe find the TME to be associated with a drastic
increase in regulatory T cells (Treg) across multiple cancer types
including NSCLC, CRC, and HCC. In particular, activated Tregs
appear to be present almost exclusively in the TME while being nearly
absent in corresponding normal tissues. In contrast, we see a consistent
decrease in the percentage of na€�ve CD4 and CD8 T cells in the TME
compared with normal tissue (Fig. 4A). In line with the observed
changes in cell type frequencies we observe significantly lower expres-
sion of genes associated with na€�ve T cells such as TCF7 while genes
related to T-cell activation such as TNFRSF4, TNFRSF9, and
TNFRSF18 and T-cell exhaustion such asHAVCR2 andCTLA4 appear
higher expressed in theTME (Fig. 4B). In addition, next toCXCL13, an
attractant of B cells, we also findmarkers for activated Tregs including
CCR8 and LAYN as highly tumor specific. In line with this observation,
CCR8 has recently been identified as a tumor Treg-specific target,
leading to anti-CCR8 antibodies currently being tested in clinical trials
for Treg depletion approaches (19).

For macrophages, we find a strong upregulation of SPP1 and APOE
in the TME (Fig. 4B). Interestingly, this upregulation is absent in
tumor indications like HCC and glioblastoma while most other
indications such as CRC and breast cancer show drastic upregulations
of both genes (Fig. 4C). SPP1 is hypothesized as a mediator of pro-
inflammatory pathways and immunotherapy response in NSCLC (20)
while APOE is hypothesized to promote immune suppression in

Figure 3.
Gene-based exploration of the IMMUcan scDB using CXCL13, a predictive biomarker for immunotherapy response.A,Heatmap of CXCL13 expression across datasets
(y-axis) and annotation minor cell types (x-axis). B and C, UMAP plots of BCC_BIA_10X_GSE123813 dataset colored by cell type (minor annotation; B) and CXCL13
expression (C). D and E, Coexpression plot of CXCL13 and PDCD1 (PD1), cells are colored according to the minor annotation displaying all cell types (D) and only
exhausted CD8þ T cells (T CD8 ex) and Tfh (E). The legend indicates the cell type with the number of expressing cells and the Pearson correlation coefficient in
brackets. F,Venn diagram showing the coexpression of CXCL13 and PDCD1 by T CD8 ex (top) and Tfh (bottom). The P value of a hypergeometric test is shown in the
top-right corner of each plot; a pie chart representing the proportion of expressing cells for one of the two genes is in the bottom-right corner of each plot.
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pancreatic cancer (21). The fact that we observe these genes to be
highly upregulation in tumor-associated macrophages from nearly all
datasets suggests that their effect on immune suppression could be
more widespread than previously suggested.

In conclusion, here we present the IMMUcan scDB, a curated
database of scRNA-seq studies of the human TME that is easily
searchable and explorable. By means of three use cases, we showed
that the IMMUcan scDB is an efficient tool to validate observations
from literature, to generate new hypotheses and to provide novel
biological insights.

Discussion
The number of scRNA-seq studies in human cancer has increased

exponentially in recent years. The first studies provided a large-scale
description of tumor cells and TME (“atlas” view), extending from
common tumor types (melanoma, breast cancer, NSCLC) to rare
cancers, such as atypical teratoid rhabdoid tumor (22) or less frequent
molecular subtypes, such as triple-negative breast cancer (23). We
anticipate that scRNA-seq “atlas” studies will gradually focus on an
even broader diversity of tumor types, and include increasing numbers
of patients, samples, and cells. Parallel to these descriptive studies,
scRNA-seq was applied more recently to identify mechanisms of
resistance (24), or response to immune checkpoint inhibitors (25).
Such hypothesis-driven studies should also grow in numbers and
magnitude, with the diffusion and the increased accessibility of
scRNA-seq technologies. Another type of study design includes the
comparison of different anatomical sites, such as primary versus
metastatic tumor location (26). The number and diversity of
scRNA-seq studies justifies a resource that would be fully dedicated
to human cancer datasets, to provide a detailed annotation, easy and
efficient search functions, aswell asmultiple implementedmethods for
meta-analysis. We believe this to be themost optimal way to cope with
an anticipated number of several hundred datasets in the coming years.
In this respect, we will pay particular attention to the prospective
integration of newly published datasets according to the standardized
strategy that we have established. Within the IMMUcan consortium
we will maintain the database with monthly updates.

Public data repositories offer access to an increasing number of
large-scale (“omics”) datasets, in particular genomics and transcrip-
tomics. However, clinical annotation is often missing or reduced
to a minimal amount of information, such as the tumor type. This
greatly limits the possibilities for integration of clinical and biological
data in the analysis and interpretation. Single-cell portals, such as
UCSC Cell Browser (27), Broad Institute Single Cell Portal (available
from: https://singlecell.broadinstitute.org/single_cell) and single-cell
expression atlas (28), do not include this level of annotation. Cancer
scRNA-seq databases such as CancerSea (5) or TISCH (6), include
minimal clinical information, restricted to tumor type, primary or
metastatic stage, and treatment type. In our study, we have gone
through the manual process of extracting and mapping to reference
ontologies detailed clinical features (9 items) associated to each patient
cohort anddatasets. In comparisonwith the other resources, IMMUcan

scDB is the only database specifically dedicated to human cancer single-
cell transcriptomic datasets (Table 1). It integrates the information of
144 studies, including 73 datasets. The tumor clinical annotations are
one of the most detailed among all existing resources. IMMUcan
scDB allows most of functionalities that are offered by other resources
and is the only such database with interactive graphs (allowing to
display graph according to clinical features of interest, such as splitting
graph according to tissue type, treatment, or patients). This should
allow biologists and clinicians to focus on datasets corresponding to a
particular clinical scenario, and to compare datasets across clinical
settings. It should also provide important insight into cell types, cell
states and associated signatures.

Different from bulk transcriptomics, scRNA-seq generates data
from a large number of cells even in individual samples. Assuming
that cell numbers are sufficient, this offers the possibility for robust
characterization of cellular clusters and associated gene expression
programs in individual patients. In parallel, the aggregated analysis of
several datasets fulfilling common conditions is also important to
identify unifying patterns associated to a tumor type, a specific
anatomical location, or a treatment effect. A recent study has con-
structed a “pan-cancer blueprint” of stromal cell heterogeneity using
original scRNA-seq datasets from four cancer types (29). It revealed
shared gene expression programs in infiltrating immune cells. In our
IMMUcan scDB, we have implemented robust methodologies to
integrate several samples to identify common patterns and increase
statistical relevance to a given clinical setting. As a result, users may
apply focused strategies on individual patient samples.

The IMMUcan scDB offers large possibilities for biomedical
applications. Exploratory analysis allows an early discovery process
to generate hypotheses for further validation. For example, com-
parison of cell type–specific signatures from different clinical set-
tings may reveal interesting mechanisms of immune activation or
immune escape, or novel therapeutic targets. Conversely, hypoth-
esis-driven analyses may establish the expression pattern of specific
genes or signatures according to different annotation terms. Finally,
our database can be used to validate findings established in an
independent study. The large and increasing number of scRNA-seq
datasets offers unique possibilities for cross-validation of results
coming from different technologies, such as proteomics, genomics,
or spatial transcriptomics.

Integrating such a large number of scRNA-seq datasets into a
single database has potential risks and limitations. As all literature-
based resources, sample quality and dataset annotation rely on the
quality of the information provided in the original publication. In
this respect, we found tremendous heterogeneity in patient cohorts’
description, both in the amount and in the quality of the clinical
information. An important step forward would be the improvement
and generalization of standardized terminologies, such as the
human disease ontology (9) and cell ontology (30), as well as a
more systematic and thorough clinical annotation within existing
genomics data repositories, along with a unified data storage
procedure. The processing of scRNA-seq datasets generated in
different studies, using various tissue dissociation and enrichment

Figure 4.
Transcriptional changes between normal and tumor-associated immune cells of 25 datasets from the IMMUcan scDB.A,Composition of CD8 (top) andCD4 (bottom)
T-cell subtypes in normal tissue and TME. Every dot represents onedataset, and the gray line represents samples from the samedataset. PairedWilcoxon-ranked sum
test, Bonferroni corrected. B, Top 10 upregulated and downregulated genes between normal and tumor-associated cells in a selection of cell types. Genes ranked by
the average log2-fold change over all datasets and filtered for a prevalence of detection as differentially expressed gene in at least 20% of the datasets. C, Log
normalized expression of SPP1 and APOE between macrophages from matched normal and tumor samples in four selected datasets. CRC, colorectal cancer.
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protocols, as well as potentially different technological platforms, is
certainly challenging and subject to technical biases. In our proces-
sing pipeline, we have implemented robust and validated method-
ologies at each step. We have selected Harmony as a method to
reduce experimental bias during multiple datasets integration.
Harmony uses reiterative clustering to remove batch effects between
experiments and patients. From recent benchmark studies on
scRNA-seq data integration (31–33), Harmony was among the top
performers and it is recommended as integration method over
methods such as CCA (34), Liger (35) and UMI downsampling
(bioRxiv 2021.11.15.468733) for its good performance. In addition,
we have seen no substantial differences between harmony and other
integration algorithms when we tested this on a selection of
IMMUcan scDB datasets (Supplementary Fig. S4). Users should
be aware of all limitations and possible biases and may use their own
cross-validation methodologies to increase the robustness of their
findings. Improving the performance of our data processing will
remain a top priority in the coming years. Overall, we believe that
the power and possibilities offered by integrating such a large
number of datasets largely outweighs the limitations and weak-
nesses inherent to meta-analysis. We hope that our resource will
facilitate the exploitation of publicly available scRNA-seq datasets
to address existing and novel challenges in human cancer research.
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Table 1. Comparison of content and functionalities of seven resources gathering human single-cell transcriptomics datasets.

scRNASeqDB SCPortalen PanglaoDB JingleBells CancerSEA TISCH SPICA IMMUcanDB
Data Number of datasets 38 66 1368 302 74 79 21 144 [73]a

Number of human oncology datasets 3 2 10 14 20 75 4 144 [73]a

Number of criteria for datasets query 3 5 6 3 2 9 2 7+
Sample type Cell lines X X X X X – – –

Xenograft X X X X X – – –

Mouse samples – X X X X X X –

Human tissues/blood X X X X X X X X
Clinical
annotations

Tumor type – – – – X X X X
Tissue site – – X – X X – X
Primary vs metastatic – – – – – X – X
Treatment type – – – – – X – X
Response to treatment – – – – – X X X
Cell enrichement strategy – – – – – X – X

Availability of
processed
data

BAM – X – X – – – –

Average gene expression per cell type – X X – X X Xb X
Differentially expressed genes X – – – – X X X
Single-cell object – – – – X

Gene specific
functionality
across datasets

Gene expression distribution X X X – – X X X

Signature expression among datasets – – – – – X – –

Dataset filtering X – X – – X – X
Visualisation UMAP X X X – – X X X

Cluster proportion – – – – – X X X
Gene signature expression – – – – – X – X
Interactive graphs – – – – – – – X

aDatasets with integrated data.
bOnly for integrated reference atlas.
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