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Medical image quality is highly relative to clinical diagnosis and treatment, leading to a popular research topic of medical image
denoising. Image denoising based on deep learning methods has attracted considerable attention owing to its excellent ability of
automatic feature extraction. Most existing methods for medical image denoising adapted to certain types of noise have difficulties
in handling spatially varying noise; meanwhile, image detail losses and structure changes occurred in the denoised image.
Considering image context perception and structure preserving, this paper firstly introduces a medical image denoising method
based on conditional generative adversarial network (CGAN) for various unknown noises. In the proposed architecture, noise
image with the corresponding gradient image is merged as network conditional information, which enhances the contrast
between the original signal and noise according to the structural specificity. A novel generator with residual dense blocks
makes full use of the relationship among convolutional layers to explore image context. Furthermore, the reconstruction loss
and WGAN loss are combined as the objective loss function to ensure the consistency of denoised image and real image. A
series of experiments for medical image denoising are conducted with the denoising results of PSNR = 33:2642 and SSIM =
0:9206 on JSRT datasets and PSNR = 35:1086 and SSIM = 0:9328 on LIDC datasets. Compared with the state-of-the-art
methods, the superior performance of the proposed method is outstanding.

1. Introduction

The appearance of noise is random and inevitable, which is
closely related to image quality assessment. Since the
radiation-sensitive property of medical images, various
noises occur during the acquisition process, especially when
radiation dose reduces. As a fundamental step of image pro-
cessing, image denoising needs to remove the noise and pre-
serve image details. In general, image denoising methods can
be divided into two categories: traditional methods and deep
learning methods, including local and nonlocal methods [1].

The common traditional methods deal with noise
according to various filters. Discrete wavelet [2, 3] with sim-
ple structure and fast calculation is one of the popular tradi-
tional filter-based denoising algorithms. For nonlocal filter-
based algorithms [4–6], Zhang et al. employed nonlocal
means-based regularization to measure noise artefacts [5];
Dabov et al. proposed a strategy of block matching and 3D

transform-domain collaborative filtering (BM3D) [6]. Since
the mentioned methods are limited to noise diversities, a list
of parameters is selected for model optimization, such as the
kernel size in the median filter [7], the searching window
definition and weight in the nonlocal means methods [8],
the regularization parameters in the total-variation minimi-
zation [9], and the parameters in the Gaussian filters [10]. In
fact, in the process of image restoration, the related prior
knowledge of noise is difficult to obtain.

With the development of deep learning, some methods
have outperformed traditional image analysis and
computer-aided diagnosis technologies. Deep learning
methods work well for uncertain noise types robustly with
their outstanding ability of high-level feature representation.
Deep convolutional neural networks have made great
achievements in the field of image denoising such as deep
convolutional neural network (DCNN) [11]. The network
of DnCNN [12] is an extension of DCNN with residual
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learning strategy for removing Gaussian noise. Deep learning
methods have already applied to medical imaging denoising,
such as convolutional neural network denoising autoencoder
(CNN DAE) [13]. At present, generative adversarial network
(GAN) achieves great progress for image denoising with a
min-max two-player game between the generative network
and the discriminator network [14, 15]. Nevertheless, as an
unconditional generative model, the samples generated by
GAN in the training process cannot be controlled and lack
diversity [16]. To meet this challenge, the conditional genera-
tive adversarial network (CGAN) is proposed by Mirza et al.
[17], which can be regarded as an extension of basic GAN.
Specifically, CGAN feeds additional information to a genera-
tor and discriminator with different modalities and controls
the generative model with conditional variable. The advanced
research methods based on conditional generative adversarial
networks (CGAN) [18] are employed for image denoising,
owing to its advantage of conversion of image characteristics.
Kim and Lee [1] used CGAN for low-dose chest image denois-
ing. Zhang et al. [19] proposed an image denoising model
based on deep convolution neural network and combined
the batch normalization and residual learning for noised X-
ray images. Chen et al. [20] presented a two-step framework
of GAN-CNN to remove unknown noise. Compared with
lossless images, the restored images have a certain degree of
loss in details and structural changes.

In this paper, a novel medical image denoising method
based on CGAN is proposed. Different from traditional
CGAN, the proposed method contributes to preserving
image context relationship and structural information. It is
well known that super-resolution reconstruction can
improve the quality of images and recover the details. To
make full use of the information and relationship of each
layer in CGAN, some residual dense blocks (RDBs) are
embedded in the generator, which are used for superresolu-
tion reconstruction. The noise image and its corresponding
gradient image are merged as conditional information to
input into the proposed model, which enhanced the noise
information in noise image. In addition, the reconstruction
loss and WGAN loss are combined as the objective loss
function.

Here are main contributions of this paper:

(1) This work introduces a novel medical image denois-
ing method based on CGAN, which contributes to
preserving image context relationship and structural
information

(2) We construct a super-resolution generator by
embedding some residual dense blocks (RDBs),
which makes full use of the information and rela-
tionship of each layer in CGAN

(3) In this paper, the noise image and its corresponding
gradient image are integrated as conditional infor-
mation to input into the network. By this way, the
noise information is enhanced. Besides, this paper
employed a structural hybrid loss comprising recon-
struction and WGAN losses to train the model
efficiently

(4) In order to verify the performance of the pro-
posed method, ablation experiments and compari-
son experiments are conducted on JSRT and
LIDC datasets. Besides, the residual images and
two indicators are employed to evaluate the
denoised images. Simulation results demonstrate
that the proposed model achieves higher perfor-
mance while preserving more structural and con-
trast information

To clearly describe and demonstrate the proposed
method, this paper is organized as follows: Section 2 pro-
vides the architecture of our model. In Section 3, some
related experiments are conducted to verify the performance
of the proposed model. Finally, Section 4 shows the conclu-
sion of this paper.

2. Methods

2.1. Modelling for Image Denoising. Noise reduction for
medical images in this paper can be modelled as follows.
Let x ∈ℝN×N represent a noise image, and y ∈ℝN×N is the
corresponding normal image. Usually, the relationship
between x and y can be formulated as

x = σ yð Þ: ð1Þ

The task of noise image denoising is to find a function f
to satisfy

arg min
f

y − f xð Þk k22: ð2Þ

The purpose of the denoising process is to find an adap-
tive function f and map the noise image to a normal image.
This optimization problem can be solved by different objec-
tive functions with different models.

2.2. Foundation and Overview. Generative adversarial net-
work (GAN) [21] as a powerful tool of generative model
has been introduced to image denoising. As shown in
Figure 1(a), basic GAN is divided into two parts, the gener-
ator network G and the discriminator network D. The gener-
ator G tries to produce a synthetic sample according to the
real data distributions, which usually come from low-
dimensional random noise. The discriminator D with the
output of a score plays a role of classification between a syn-
thetic sample and real sample. The generator tries to deceive
the discriminator with an optimization method, while the
discriminator is trained to distinguish synthetic samples
from the real samples. Therefore, a GAN is such a game pro-
cess: if G generates a sample and gets a high score in D,
which proves that G is trained well, and if D can distinguish
easily between the synthetic and real samples, the effect of G
is insufficient. This pair of networks trained alternately until
the samples generated by G is almost indistinguishable from
the real samples. Mathematically, the process of the game
between G and D can be formulated as a two-player
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minimax game as

min
G

max
D

Ex∼Pdata
log D xð Þð Þ½ � + Ez∼P zð Þ

log 1 −D G zð Þð Þð Þ½ �,
ð3Þ

where Pdata and PðzÞ are the distributions of real sample and
synthetic sample, respectively. DðxÞ denotes the probability
which x subjects to the real data, and z is the random noise
which is used as the input of G.

In order to guide the generation of GAN, the conditional
GAN (CGAN) is introduced [17]. As shown in Figure 1(b),
CGAN is an extension of GAN with conditional information
integrated in both the generator and discriminator. By this
way, CGAN can generate the desired samples. The process
of the game can be formulated as

min
G

max
D

Ex∼Pdata log D x yjð Þð Þ½ � + Ez∼P zð Þ
log 1 −D G zjyð Þð Þð Þ½ �,

ð4Þ

where y is condition information.
Both the basic GAN and the CGAN methods can

recover noise image and improve the quality in vision, while
they ignore the image structure preserving. Medical images
illustrate the location, appearance, and relationship of tissues
and lesions, which are obliged to accurate diagnosis and
treatment. In general, the type of noise is always unknown
for image denoising. Especially, a lot of quantum noise and
some other kinds of noise are commonly generated in med-
ical image acquisition. Therefore, medical image denoising is
required to maintain the consistency of both vision and con-
tent between the recovered image and the real image.
Inspired by this, we proposed a novel medical image denois-
ing method based on CGAN.

The overall architecture of the proposed network is
designed as in Figure 2. In the overall architecture, G has 4
convolution layers and 6 residual dense blocks (RDBs)
which extract abundant context features to generate a syn-
thetic (denoised) image close to the real image. Each convo-
lution layer has a Leakey ReLU after instance normalization.

Then, D with the fully connected layer maps the feature vec-
tor to a confidence value to distinguish synthetic image and
real image in terms of structure consistency. Some modules
in the proposed framework will be introduced in the follow-
ing subsections.

2.3. Gradient Enhancement for Noise Image. Different from
traditional algorithms, the proposed method employs a
mechanism that incorporates gradient information. In this
work, the noise image and its corresponding gradient image
are merged as conditional information to input into the pro-
posed model. In the noise images, one noise point is always
different from the surrounding pixels. Hence, the gradient
information will be larger than normal pixels.

To calculate the image gradient, we need to compute the
gradient for each pixel in an image. The image can be
regarded as a two-dimensional discrete function. The image
gradient is actually the derivation of this two-dimensional
discrete function as

M x, yð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gxð Þ2 + gyð Þ2

q
, ð5Þ

where gx and gy are the horizontal gradient and vertical gra-
dient, respectively. gx and gy can be formulated as Equa-
tions (6) and (7), respectively.

gx = ∂f x, yð Þ
∂x

= f x + 1, yð Þ − f x, yð Þ, ð6Þ

gy = ∂f x, yð Þ
∂y

= f x, y + 1ð Þ − f x, yð Þ: ð7Þ

By calculating the gradient on each pixel, the gradient
map is obtained as in Figure 3. Figure 4 illustrates the pro-
cess of gradient enhancement for noise image. The green
boxes denote different operations in the previous image.
Firstly, the corresponding gradient map is acquired by calcu-
lating the gradient for each pixel in an image. Meanwhile,
the texture and edge information in an image is obtained.
Secondly, taking information such as edges and textures into
account, thresholding approach is used in gradient maps.
That is to say, the points lower than the threshold in the gra-
dient image are considered as edges and texture structures.
In this research, the median of the gradient image is set as
the threshold. Then, we will obtain a new gradient image.
Intuitively, these two gradient maps are represented by his-
tograms as shown in Figure 4. Finally, the noise image is
enhanced by adding up the noise image and the correspond-
ing new gradient image.

2.4. Residual Dense Block. Developing efficient and adaptive
denoising models with prominent structure preserving plays
an important role in medical imaging, which helps clinicians
accurately interpret medical images. In addition, it facilitates
improving the ability of feature recognition in medical
images. Some studies have shown that the application of
image restoration methods based on ResNet is helpful to
the preservation of organs and fine structural details [22].

Discriminator
(D)

Generator
(G)

Noise(z)

Fake(xg)

Real/fake?

Real(xr)

(a) Basic GAN

Discriminator
(D)

Generator
(G)

Noise(z)

Real/fake?

Fake(xg) Real(xr)

Condition(c)

(b) Conditional GAN

Figure 1: The architecture of the basic GAN and conditional GAN.
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The residual dense network (RDN) was firstly proposed
by Zhang et al. for image superresolution [23]. More previ-
ously, Lim et al. employed residual blocks to build a wider
network which was called EDSR [24]. Ma et al. used 5 resid-
ual blocks in the generator of GAN for low-dose CT image
denoising [25]. Tai et al. used memory block to construct
MemNet [26]. With the depth of network increasing, the
features in each convolutional layer would be hierarchical
with different receptive fields [23]. Nevertheless, these
methods stack building blocks in a chain way, which ignores
the information from each Conv layer. In view of this, Zhang
et al. proposed residual dense block (RDB) to make full use
of the information and relationship of each layer [23].

In this research, the superresolution reconstruction that
can improve the quality of images and recover the detail is
considered. To make full use of information in each convo-
lutional layer, a super-resolution method is employed to the

generator network. In this paper, the generator with 6 resid-
ual dense blocks (RDBs) is utilized to extract the context
information among layers. The structure of RDB is designed
as in Figure 5; the contiguous mechanism is implemented by
connecting the state of preceding RDB to each layer of cur-
rent RDB directly. In this way, not only the feed-forward
nature is preserved, but also the rich local features are
extracted efficiently. Therefore, the output of nth Conv layer
of dth RDB is formulated as

Fd,n = ReLU Wd,n Fd−1, Fd,1,⋯,Fd,c−1½ �ð Þ, ð8Þ

where Fd−1 and Fd are the input and the output of the dth RDB,
respectively. Wd,n is the weight of the nth convolution layer.

2.5. Loss Function. The definition of loss function is critical
for the performance of GAN-based image denoising
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Figure 2: Overall framework of the proposed model (INorm indicates instance normalization; LReLU denotes Leakey ReLU).
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Figure 3: Some examples of noise images and their corresponding gradient maps.
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method. To a great extent, the loss function of deep learning
influences the noise image restoration process [25]. Many
researchers studied different image denoising models by
employing various loss functions. The mean squared error
(MSE) or L2 loss function is the most widely used for many
GAN-based models [14, 15, 24]. However, it includes the
regression-to-mean problem, which causes oversmoothing
and texture information loss. Furthermore, with the intro-
duction of the networks of VGG-16 and VGG-19 pretrained
on ImageNet, the perceptual loss was proposed to cope with
the problems caused by MSE [27–29]. In this paper, we con-
duct some experiments with perceptual loss, and the perfor-
mance of the results is poor. To effectively deal with various
noises and preserve image structure, a structural loss inte-
grates reconstruction loss and WGAN loss and is defined
as the final objective loss function.

2.5.1. Reconstruction Loss. Some previous studies have found
that it is beneficial to introduce a more traditional loss to the
GAN objective [18, 29]. As we all know, L1 and L2 distances
are the most commonly used loss functions in regression
tasks. Furthermore, it is reported that the L2 loss function
may result in blurring [18]. Therefore, this research employs
the L1 distance as the reconstruction loss rather than L2,
which is constructed with L1-norm and formulated as

LRecon = Iraw −G Inoiseð Þk k1, ð9Þ

where Iraw is the original raw image and Inoise is the image
with artificial noise.

2.5.2. WGAN Loss. The above reconstruction loss focuses on
structure preservation but ignores image details. To conquer
this dilemma, a WGAN loss is added to provide detailed
information.

On the basis of standard GAN loss, WGAN loss [30]
introduces Wasserstein distance instead of JS divergence as
the additional condition to measure the difference between
synthetic and real distributions. Besides, the usage of Was-
serstein distance improves a better measurement between
the ground-truth image and the denoised image, which can
mitigate the problem of gradient vanishment and accelerate
the network convergence effectively.

The process of the game between G and D also can be
formulated as a two-player minimax game as

min
G

max
D

Ex∼Pdata
D x ∣ yð Þð Þ − Ez∼P zð Þ

D G z ∣ yð Þð Þ: ð10Þ

With Wasserstein distance and conditional information,
the WGAN loss can learn a generative model which can fit
the distribution of the real samples and prevent overfitting
effectively. In Equation (10), this paper integrates the noise
image and its corresponding gradient image as conditional
information as in Section 2.3. Once the augmented image
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Figure 4: The process of gradient enhancement for noise image.
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Figure 5: Architecture of the residual dense block (RDB).
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is conducted as conditional information, the denoised
images will be outputted. Therefore, the objective function
of Equation (10) can be rewritten as

LW‐GAN = max
D

E D xð Þ −D x′
� �h i

, ð11Þ

where x = fIgrad aug, Irawg, x′ = fIgrad aug, Idenoisedg, Igrad
aug is the augmented image, Iraw is the original raw image,
and Idenoised generated by the generator G denotes the
denoised image.

2.5.3. Final Loss Function. During the training process of the
model, the total loss between the normal image and the
denoised image is computed, which can be back-
propagated for the proposed model to update the parame-
ters. The final structural loss function of the proposed net-
work consists of reconstruction loss LRecon and WGAN loss
LW‐GAN, defined as

min
G

max
D

LW‐GAN D,Gð Þ + λ1LRecon Gð Þ, ð12Þ

where λ1 is a hyperparameter.

3. Results and Discussion

3.1. Dataset and Evaluation Indicators

3.1.1. Dataset. In the experiments, the raw X-ray images
from the public Japanese Society of Radiological Technology
(JSRT) dataset [31] were adopted, consisting of 246 PA chest
radiographs collected from thirteen Japanese institutions
and one American institution. In addition, we added various
unknown artificial noises including Gaussian noise, salt and
pepper noise, and some random noise to the chest X-ray
images to generate 246 pairs of images with the resolution
of 256 ∗ 256. Some example images from the adopted data-
set are illustrated in Figure 6.

Another dataset used in this paper was the Lung Image
Database Consortium and Image Database Resource Initia-
tive (LIDC-IDRI or LIDC) [32]. The LIDC dataset is a
web-accessible international resource, which is commonly
used for diagnosis, detection, and classification of lung nod-
ules. This dataset consists of 1018 subjects of thoracic, and it
is annotated by 4 radiologists. The resolution of each slice of
the CT is 512 ∗ 512, and the thickness of each slice ranges
from 0.6 to 5.0mm. For the experiments, we adopted the
first 2 patient ids (LIDC-IDRI-0001 and LIDC-IDRI-0002)
comprising of 394 CT slices. Furthermore, we added various
unknown artificial noises including Gaussian noise, salt and
pepper noise, and some random noise to the chest X-ray
images to generate 394 pairs of images with the resolution
of 256 ∗ 256. Some example images from the adopted data-
set are illustrated as Figure 7.

3.1.2. Evaluation Indicators. The experimental results were
evaluated in terms of peak-signal-to-noise ratio (PSNR)
and structural similarity index (SSIM). These two indicators
were defined as in Equations (13) and (14), respectively.

PSNR = 10 log10
2n − 1ð Þ2
MSE

 !
, ð13Þ

SSIM X1, X2ð Þ =
2μX1

μX2
+ C1

� �
2σX1X2

+ C2
� �

μ2X1
+ μ2X2

+ C1
� �

σ2X1
+ σ2X2

+ C2
� � ,

ð14Þ
where MSE was the mean square error between two image
patches. μX1

and μX2
were the sample means of patch X1

and patch X2, respectively. σ
2
X1

and σ2X2
denoted the sample

variances of patch X1 and patch X2, respectively. σX1X2
was

the crosscovariance between the two image patches; C1, C2
were the stable constants. When X1 and X2 were more sim-
ilar, the value of SSIM was closer to 1.

Figure 6: Some examples selected in the JSRT dataset.

Figure 7: Some examples selected in the LIDC dataset.
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3.2. Parameter Settings. As the foundation of the proposed
method, the images with random artificial noise were used
as the condition of the CGAN to input into the network.
For the super-resolution generator, 6 residual dense blocks
(RDBs) were embedded in, to make full use of the informa-
tion in each convolutional layer and extract the context
information among the convolutional layers. Different from
the traditional conditional GAN, image patches were
extracted. The proposed method cut the input into the image
patch with the size of 70 ∗ 70 at random. In addition, the
integration of Wasserstein distance and L1-norm was
employed as the objective loss function. The hyperpara-
meters were set as follows: λ1 was 0.5, batch size was 1,
learning rate was 2e-3, and epoch was 1500.

In the training stage, a pair of images from the training
set were inputted to both the generator and discriminator,
where the generator would produce a denoised image and
the discriminator would map the image into a confidence
value. With the method of Adam, the generator would be
optimized to produce a better result of denoised image
which should be close to the ground truth to earn the confi-
dence of the discriminator. Finally, the trained network
tested the test noise images and output the denoised results.
The overall process of the proposed algorithm is described in
Algorithm 1.

3.3. Ablation Analysis

3.3.1. Residual Dense Blocks. Generally speaking, the
methods based on super-resolution reconstruction can
improve the quality of images and recover the details. The
6 residual dense blocks (RDBs) were used for superresolu-
tion reconstruction in the generator in this paper. To prove
its superiority, an ablation experiment without residual
dense block (RDB) was implemented on the JSRT dataset.
By adding some unknown noise to the dataset, the SSIM of
each result is shown in Figure 8; some denoised examples
are shown in Figure 9. From Figures 8–9, we can see the
advantage of RDBs in image super-resolution reconstruc-
tion; the method with RDBs can keep details and remove
noise to a large degree.

3.3.2. Gradient Enhancement. In conditional GAN, the noise
image and its corresponding gradient image were integrated
as conditional information to input the network in this
paper. In noise images, the isolated noise is different from
the surrounding pixels; therefore, its gradient will be larger
than normal pixels. Besides, the method of thresholding
was adopted to ignore the edge and texture information in
the gradient maps. Therefore, adding gradient information
is beneficial to enhance noise in theory. To test our idea, this
paper also made an ablation experiment without gradient
enhancement. In this experiment, only the noise image was
adopted as conditional information for comparison. The
superparameter epoch was set as 500; the coefficient of
reconstruction loss was 0.5. The denoised results are shown
in Figure 10 in which the evaluation of PSNR and SSIM was
listed. The method with gradient enhancement achieved sat-
isfying results.

3.3.3. Objective Loss Function. Previous studies have proved
that reconstruction loss can focus on structure preserving,
but at the same time, it also ignores the image details. More-
over, the WGAN loss attempts to learn a generative model,
which is aimed at fitting the distribution of the real samples

1.Require: Set hyper-parameters: λ1 = 0:5, batch size =1, α = 2 × 10−3, Nepoch = 1500
2.Get Inoise by adding some artificial noise in raw image Iraw
3.Obtain the corresponding gradient map Igrad by calculating the gradient for each pixel in Inoise
4.The median T of the gradient map is set as the threshold in Igrad, then obtain Inew grad
5.Get the gradient enhancement images Igrad aug by adding up the Inoise and Inew grad
6.Initialize the parameters of generator θG and discriminator θD
7.for num epoch = 0,⋯,Nepoch do
8.Sample a batch of raw image patches Iraw and the image to be processed patches Igrad aug
9. Idenoised ⟵GðIgrad augÞ
10. Concatenate x = fIgrad aug, Irawg, x′ = fIgrad aug, Idenoisedg
11. Update the discriminator D by Adam optimizer according to the original GAN loss
12. Update the generator G by Adam optimizer according to the Equation (12)
13.end for

Algorithm 1: The training process of the proposed medical image denoising method based on conditional generative adversarial network.

0.95
0.93
0.91
0.89
0.87
0.85

SS
IM

0.83

1 2 3 4 5 6 7 8 9 10 11 12 13

Data

The proposed method
Without RDBs

14 15 16 17 18 19 20 21 22 23 24

Figure 8: Evaluation the quality of denoised image with SSIM. The
green line represents without RDBs.
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and preventing overfitting effectively. As a result, the
WGAN loss is added to supplement detailed information
for reconstruction loss in this paper.

From some ablation experiments with different objective
loss functions, we found that perceptual loss will damage the
structural information in images, which is described in Sec-
tion 3.4, and the proposed method outperforms in vision
and content.

3.4. Comparison Analysis. We compared the performance of
the proposed method with several state-of-the-art methods
and ablation experiments on the datasets of Section 3.1.1
for medical image denoising. As follows, Figure 11 gives
the denoising results of different methods. In order to quan-
tify the denoising results of Figure 11, this paper made resid-
ual images between the ground-truth and the denoised
images. The residual image was obtained by calculating the

absolute difference between the noise image and the
denoised image pixel-wisely. Then, the values in residual
images were normalized to interval [0-1], and the final
results were visualized as shown in Figure 12. The values
of pixels closer to 1 indicate that the denoising results are
poor and change the structural information of image. To
further verify the denoising results of different methods,
PSNR and SSIM were adopted to evaluate the performance.

In Figure 11, Figure 11(a) illustrated the synthetic noise
image with various unknown artificial noises. This paper
implemented the method of [27], which integrated Wasser-
stein distance and perceptual loss as the objective loss func-
tion on the basic conditional GAN. By comparing on the
same experimental dataset setting, the denoising results are
shown in Figure 11(c). On this basis, we used the basic
GAN loss instead of Wasserstein distance and combined it
with the perceptual loss; the results are shown in

(a)

PSNR/SSIM=23.2/0.48

PSNR/SSIM=23.3/0.45

(b)

PSNR/SSIM=22.0/0.76

PSNR/SSIM=20.8/0.76

(c)

PSNR/SSIM=28.79/0.86

PSNR/SSIM=29.4/0.88

(d)

Figure 10: (a) Is ground truth; (b) is noise images; (c) is the method only with noise image as conditional information; (d) denotes the
results of our proposed method.

(a) (b) (c) (d)

Figure 9: Examples of denoising results: (a) ground truth; (b) noise images with unknown noise; (c) denoised results without RDBs; (d)
denoised results with the proposed method.
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Figure 11(d). The method by combining the basic GAN loss
and reconstruction loss which was proposed by Zhang et al.
[33] was implemented in this paper; the denoising results are
shown in Figure 11(e). Figure 11(f) shows the denoising
results by the proposed method which used the sum of Was-
serstein distance and reconstruction loss as the objective loss
function.

From the comparative experiments of Figure 11, it is
obvious that the details of (c) and (d) are visually clearer
than others. Then, we quantified the denoising results of
each group of experiments by making residual image

between denoising result and ground truth. The residual
image was obtained by calculating the absolute difference
between the noise image and the denoised image. The resid-
ual images of Figures 11(c) and 11(d) are visualized in
Figures 12(a) and 12(b), respectively. Both the denoised
images of Figures 11(c) and 11(d) severely damaged the
structure of the image.

The residual images of Figures 11(e) and 11(f) are shown
in Figures 12(c) and 12(d), respectively. Figures 11(f) and
12(d) are the denoised results of the proposed method in this
paper. From Figures 12(c) and 12(d), it can be seen that the

(a) (b) (c) (d) (e) (f)

Figure 11: Some generative denoised results by different methods: (a) noise image; (b) ground truth; (c) WGAN+perceptual; (d) perceptual
+CGAN; (e) L1+CGAN; (f) the proposed method.

(1) WGAN+perceptual (2) Perceptual+CGAN (3) L1+CGAN (4) The proposed method 

Figure 12: Residual images between comparative experiment and ground truth: (a) denotes Figures 8(c) and 8(b); (b) represents
Figures 8(d) and 8(b); (c) indicates Figures 8(e) and 8(b); (d) shows Figures 8(f) and 8(b).

9Computational and Mathematical Methods in Medicine



effect of denoising of Figure 11(e) was lower than the pro-
posed method. Moreover, our method worked best in terms
of structure and contrast preservation.

Figure 11 shows some denoised samples by various
methods, and the Figure 12 illustrates the residual images
between the denoised image and the noise-free image. From
Figure 11, all methods removed most of the noise. However,
Figure 12 reveals that the proposed method preserved more
structural details and displayed better defined contrast. Fur-
thermore, it would be of great significance for the field of med-
ical image analysis. Therefore, we can infer that the objective
loss function with perceptual loss will affect the structural
information in the process of denoising. And our method
achieved a better effect than other comparative experiments.

Table 1 displayed the performance evaluation about the
denoising results based on ground truth with different
methods. The performance of the results was measured by
PSNR and SSIM indicators. The SSIM evaluation revealed
the similarity between the experimental results and the
ground truth. The PSNR values illustrated the quality of
the processed images compared to the ground-truth. From
Table 1, it was clear that the noise images had relatively
low SSIM and PSNR because they were damaged by some
specific distribution of noise on the ground truth. Since the
restored images removed noise effectively, SSIM and PSNR
were improved slightly. Ledig et al. [28] proposed a SRGAN
model based on generative adversarial network by combing
adversarial loss and perceptual loss. The first three denoising
methods took perceptual loss as a part of their objective loss
function. We also implemented these three denoising
methods on JSRT and LIDC datasets. In this research, the
feature extractor was a 19-layer VGG network consisting
of 16 convolutional layers and followed by 3 fully connected
layers. The outputs of the 16th convolutional layer of VGG
were extracted as features in the perceptual loss function.
However, the first three denoising methods obtained poor
performance. Therefore, combined with the results of
Figures 11 and 12, we can conclude that the methods with
perceptual loss destroyed the original structure in images
and caused lower mean PSNR and mean SSIM about image
quality. Reference [33] combined GAN loss and L1 loss to
train the model. Zhong et al. [14] used DenseNet CNN as
the generator network and employed WGAN loss and L2
loss as its objective loss function. From Table 1, these com-
parative methods cannot achieve a satisfactory performance

for medical image denoising. The proposed method
achieved the best performances in quantitative analysis and
also reduced the noise to a large degree. Finally, we can con-
clude that our method removed the noise successfully while
preserving structural and contrast information of the
images, and our proposed method was promising for practi-
cal applications.

4. Conclusions

We develop a novel medical image denoising model based on
conditional GAN. Instead of focusing on the complex network
structure construction, this paper is dedicated to image con-
text exploration and structure preservation. Firstly, a genera-
tor with super-resolution reconstruction is used to improve
the quality of denoised image against other generators. Sec-
ondly, different from traditional denoising GAN models, this
paper combines the noise image with its corresponding gradi-
ent image as conditional information of conditional GAN,
which enhanced the noise information. Thirdly, the model is
trained based on residual calculation by combining synergistic
loss functions so that the denoised results are as close to the
ground truth as possible. Finally, residual images and evalua-
tion indicators are used to quantify the denoised results on
JSRT and LIDC datasets. Compared with different denoising
models, the proposed model not only improves the quality
of denoised images but also maintains the detailed structure
consistent with the lossless images.
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