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Parkinson’s disease (PD) is a progressive neurodegenerative disorder,

pathologically hallmarked by the loss of dopamine neurons in the substantia

nigra (SN) and alpha-synuclein aggregation. Deep brain stimulation (DBS)

of the subthalamic nucleus (STN) is a common target to treat the motor

symptoms in PD. However, we have less understanding of the cellular changes

in the STN during PD, and the impact of DBS on the STN and SN is limited. We

examined cellular changes in the SN and STN in PD patients with and without

STN-DBS treatment. Post-mortem brain tissues from 6 PD non-STN-DBS

patients, 5 PD STN-DBS patients, and 6 age-matched controls were stained

with markers for neurodegeneration (tyrosine hydroxylase, alpha-synuclein,

and neuronal loss) and astrogliosis (glial fibrillary acidic protein). Changes were

assessed using quantitative and semi-quantitative microscopy techniques.

As expected, significant neuronal cell loss, alpha-synuclein pathology, and

variable astrogliosis were observed in the SN in PD. No neuronal cell loss or

astrogliosis was observed in the STN, although alpha-synuclein deposition

was present in the STN in all PD cases. DBS did not alter neuronal loss,

astrogliosis, or alpha-synuclein pathology in either the SN or STN. This study

reports selective pathology in the STN with deposits of alpha-synuclein in

the absence of significant neuronal cell loss or inflammation in PD. Despite

being effective for the treatment of PD, this small post-mortem study suggests

that DBS of the STN does not appear to modulate histological changes in

astrogliosis or neuronal survival, suggesting that the therapeutic effects of DBS

mechanism may transiently affect STN neural activity.
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Introduction

First described over 200 years ago, Parkinson’s disease (PD)
is a neurodegenerative disorder characterized by debilitating
tremor, rigidity, and bradykinesia (DeMaagd and Philip, 2015).
PD is pathologically characterized at post-mortem by the
abnormal deposition of alpha-synuclein in the form of Lewy
bodies and Lewy neurites (Braak et al., 1999) that deposit
in a progressive pattern throughout the brainstem, limbic,
and neocortical brain regions (Braak et al., 2003). Increased
neuroinflammation and neuronal cell loss are also prominent,
particularly in the substantia nigra (SN) (Fearnley and Lees,
1991; Hardman et al., 1996; Hirsch et al., 2003). Currently, there
are no treatments to halt or slow disease progression but deep
brain stimulation (DBS) of the subthalamic nucleus (STN-DBS)
is highly effective at relieving motor symptoms in PD (Limousin
et al., 1995; Tagliati et al., 2010; Limousin and Foltynie, 2019;
Jakobs et al., 2019). The irregular burst of neuronal firing in the
STN in PD patients is destabilized by DBS (Bergman et al., 1994;
Remple et al., 2011) but less is known about the STN pathology
in PD or how this is impacted by DBS treatment.

Limited preclinical studies in rodents and non-human
primates suggest that DBS may alter disease progression
through a combination of neuroinflammatory and
neurodegenerative changes (Temel et al., 2006; Wallace
et al., 2007). Specifically, animal models show that STN-DBS
decreases neuroinflammation expressed through microglia
and astrocytes in the SN and slows down the loss of dopamine
neurons (Charles et al., 2008; Spieles-Engemann et al., 2010;
Tawfik et al., 2010; Vedam-Mai et al., 2012). However, there are
only two post-mortem comparative neuropathology studies of
PD patients with and without STN-DBS. Pal et al. (2017) carried
out a semi-quantitative assessment of SN depigmentation
and alpha-synuclein pathology and reported that STN-DBS
subjects have higher alpha-synuclein density scores, but do
not display differences in SN depigmentation. The study did
not examine the STN and did not investigate changes in
inflammation. In contrast, Pienaar et al. (2015) investigated
microvascular integrity in PD patients with and without STN-
DBS and reported significant vascular changes and lowered
microglial activation following STN-DBS. Our study provides a
quantitative analysis of cell loss, alpha-synuclein pathology, and
inflammation in the STN and SN in PD cases with and without
STN-DBS compared with controls.

Materials and methods

Cases

Formalin-fixed, paraffin-embedded 10 µm serial sections
were obtained from the Sydney Brain Bank (SBB). Tissue was
taken from the SN at the level of the red nucleus and at the most

posterior level of the STN from 6 PD patients without DBS, 5
PD patients with STN-DBS, and 6 age-matched controls. The
STN was delineated on an H&E-stained section as previously
described in Pienaar et al. (2015). Briefly, the STN was identified
as a compact nucleus located medial to the internal capsule and
superolateral to the SN on coronal slices.

The research was carried out under UNSW Human
Research Ethics Committee (HREC) approval (project no.
HC180835). All PD cases met neuropathological criteria for
PD with no coexisting disease (Dickson et al., 2009). PD STN-
DBS cases were chosen on the basis of having an implanted
electrode in the STN during life. All control subjects were
free from neuropathological and clinical neurodegenerative or
neuropsychiatric diseases.

Immunohistochemistry

Immunohistochemistry to detect astrocytes [anti-glial
fibrillary acidic protein (GFAP)] and dopamine neurons (anti-
TH) was carried out using the Novolink polymer detection
system (Leica Biosystems #RE7150-K). Briefly, serial sections
were deparaffinized in xylene and then rehydrated in serial
ethanol dilutions. Sodium citrate buffer (0.1 M, pH 6) was
used for antigen retrieval. Antigen retrieval was performed by
placing the sections in boiling sodium citrate buffer for 3 min.
Sections were then left to cool for 30 min before washing the
slides in deionized water. Endogenous peroxide was neutralized
using Novolink peroxide block for 5 min before the slides were
washed in 0.1 M Tris-buffered saline (TBS, pH 7.3). Sections
were then incubated for a further 5 min with Novolink protein
block followed by three TBS washes. Primary antibodies anti-
tyrosine hydroxylase (AB112, Abcam, 1:750) and anti-GFAP
(AB7260, Abcam, 1:2,000) were diluted in TBS and added
individually to sections placed in a humid box and incubated at
4◦C overnight. On day 2, sections were washed in TBS before
being incubated for 30 min in Novolink Polymer (Anti-rabbit
Poly-HRP-IgG (<25 µg/ml) containing 10% (v/v) animal
serum in TBS/0.09% ProClinTM 950) followed by TBS washes.
Peroxide activity was developed using 3,3′-diaminobenzidine
(DAB) working solution on all sections for 5 min followed by
a rinse with tap water. Slides were then counterstained with
hematoxylin for 3 min before a 5 min wash under running tap
water. Prior to cover slipping, all sections were dehydrated in
ethanol (70%, 95%, and 100%) before being placed in xylene.
Sections were cover slipped with Entellan (ProSciTech, Kirwin,
QLD, Australia).

Immunohistochemistry for alpha-synuclein was performed
on a Discovery XT (Ventana Medical Systems Inc, Tucson,
Arizona) autostainer using OmniMap and ChromoMap
multimer technology detection systems. Antigen retrieval was
performed for 30 min using cell conditioning 1 pretreatment
solution before adding purified mouse anti-alpha-synuclein
(610787, BD Biosciences-US, 1:7000). Slides were incubated
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for 1 h prior to counterstaining with hematoxylin and cover
slipping with Entellan.

Neurons in the STN and SN were identified with H&E
stain. Sections were deparaffinized in xylene two times for
3 min followed by rehydration in 100% alcohol two times
for 3 min. Sections were then transferred to 95% alcohol for
3 min followed by 70% alcohol for another 3 min before being
placed into distilled water for 3 min. Sections were incubated in
hematoxylin for 3 min followed by a rinse under running tap
water. Sections were then incubated with lithium carbonate for
3 min and then washed under tap water. Eosin was added to the
tissue section for 3 min before the slides were placed in 100%
alcohol wash for 3 min two times followed by xylene for 3 min
two times. Slides were then cover slipped with Entellan.

Quantitation

Slides were visualized on the Olympus BX51 microscope and
captured using Zeiss AxioLab light microscope and software
at 200× magnification. All assessments were performed by
an investigator blinded to case details. Ten representative
images were taken from one section per case, and from
these, three images were chosen at random for quantitation.
Immunoreactive cells were quantified using ImageJ.

In both the SN and STN, neurons were clearly identified
by the presence of a clear cytoplasm and nucleolus. Tyrosine
hydroxylase (TH) immunoreactivity was observed in the cell
soma and proximal axon of neurons in the SN (Kordower et al.,
2013). The number of neurons in each 200× field was counted,
and the average was calculated.

Astrocytes were clearly identified by GFAP
immunoreactivity in the cellular processes surrounding
a nucleus. The total number of astrocytes in each 200×
field was counted using ImageJ, and the average of the 3
fields was calculated.

Alpha-synuclein deposits were identified in the form of
alpha-synuclein-positive Lewy bodies, Lewy neurites, and glial
inclusion (Pal et al., 2017). ImageJ software was used to identify
alpha-synuclein immunolabeling, and the average areal fraction
of the 3 fields was calculated.

Statistics

IBM SPSS Statistics software 27 was used to carry out all
statistical analyses. A power analysis was carried out using
PASS software to calculate the sample size required to detect
various effect sizes with 80% power. With groups of 5 cases,
there was at least an 80% chance of detecting large differences
(where mean differences were between 18 and 24 and standard
deviations of less than 11). Non-parametric Kruskal–Wallis test
statistics was used to assess differences between the three groups.

Significance values were adjusted by the Bonferroni correction
for multiple tests.

Results

Cases

Details of all cases, including age, gender, and disease
duration, are provided in Table 1. All cases were matched for
age (p = 0.17) and post-mortem delay (p = 0.69). Braak Lewy
body stage (p = 0.89) and disease duration (p = 0.22) were not
significantly different between PD and STN-DBS cases. These
variables were therefore not considered further.

Analysis of cell loss and astrogliosis in the
substantia nigra

Means and SEM of cellular counts are presented in Table 2.
Compared with controls, both PD groups showed a significant
decrease in total (PD no DBS p = 0.018, PD STN-DBS p = 0.009)
and TH-positive neurons (PD no DBS p = 0.015, PD STN-DBS
p = 0.011) in the SN with no difference between PD groups (total
neurons p = 1.000, TH-positive neurons p = 1.000). There was a
significant increase in the number of astrocytes in the PD group
compared with controls (p = 0.028) but no significant increase in
GFAP-positive astrocytes in STN-DBS compared with controls
(p = 0.127) and no difference between PD and DBS group
(p = 1.000) (Figures 1A,B).

Analysis of cell loss and inflammation in the
subthalamic nucleus

In contrast to the SN, there was no significant difference in
neuronal density (p = 0.358) or astrocytes (p = 0.612) in the STN
between any groups (Table 2 and Figures 2A,B).

Alpha-synuclein pathology
Consistent with diagnosis, significantly greater alpha-

synuclein pathology was seen in the SN of PD cases compared
with controls (PD no DBS p = 0.008, PD STN-DBS p = 0.007,

TABLE 1 Demographic and clinical characteristics of
all cases included.

Parameters Control
(n = 6)

PD
(n = 6)

PD
STN-DBS
(n = 5)

Sex ratio (M:F) 6:0 6:0 3:2

Age at death (years) 81.33± 3.13 76.833± 1.86 74.40± 2.20

Disease duration (years) N/A 14.667± 2.56 21.400± 2.83

Post-mortem delay (hours) 20.833± 3.84 16.167± 2.71 21.200± 5.68

Duration of STN-DBS (years) N/A N/A 10.2± 1.69

Braak Lewy body stage N/A V (4) VI (2) V (3) VI (2)

Results are shown as the mean± SEM. N/A, not applicable.
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TABLE 2 Means and SEM of cellular analysis in substantia nigra (SN)
and subthalamic nucleus (STN).

Brain
region

Positive cell
type

Control
(n = 6)

PD
(n = 6)

PD
STN-DBS
(n = 5)

Substantia
nigra

Dopamine
neurons (TH)

23.33± 2.69 7.50± 0.95* 6.60± 1.20*

Cells (H&E) 27.72± 3.43 9.06± 0.96* 7.67± 1.48*

Astrocytes
(GFAP)

22.67± 2.46 38.39± 4.8* 33.66± 3.54*

Alpha-synuclein 0.00± 0.00 1.50± 0.22* 1.60± 0.24*

Subthalamic
nucleus

Cells (H&E) 17.06± 3.96 11.50± 1.02 11.87± 2.45

Astrocytes
(GFAP)

32.86± 4.37 30.70± 1.10 29.60± 5.15

Alpha-synuclein 0.00± 0.00 1.33± 0.21* 1.60± 0.24*

*p < 0.05 versus control.

Table 2) with no differences between PD groups (p = 1.000,
Table 2 and Figures 3A,B). The majority of alpha-synuclein
pathology was in the form of Lewy neurites with occasional
Lewy bodies present in the SN (see Figure 3B). Alpha-synuclein
was also significantly increased in the STN in PD cases
compared with controls (PD no DBS p = 0.013, PD STN-DBS
p = 0.004) with no difference between PD and DBS groups
(p = 1.000). Alpha-synuclein was predominantly observed in the
form of neurites and glial inclusions in the STN (Figure 3D),
although occasional Lewy bodies and alpha-synuclein-positive
neurons were also seen (Figure 3D inserts).

Discussion

This is the first study to carry out a quantitative assessment
of cell loss, alpha-synuclein pathology, and inflammation in the
SN and the STN of PD patients with and without STN-DBS.
Consistent with diagnosis, our study confirms significant loss
of total and TH-positive neurons (69% of dopamine and 70%
of total cells lost) and an increase in alpha-synuclein in the SN
in PD. In contrast, despite the presence of significant alpha-
synuclein pathology, we did not observe any loss of neurons
or astrogliosis in the STN of our PD cases. Importantly, no
loss of total or dopaminergic neurons, or changes in astrogliosis
or alpha-synuclein deposition were observed following DBS,
suggesting that STN-DBS may not exert its therapeutic effect via
changes in neuronal loss, astrogliosis, or alpha-synuclein.

Our findings do not support previous animal studies
showing that DBS may alter disease progression through
decreased neuroinflammation and reduced dopamine cell loss
(Wallace et al., 2007; Charles et al., 2008; Spieles-Engemann
et al., 2010; Tawfik et al., 2010). Rather, they are consistent
with human imaging studies showing that striatal dopamine
levels are not affected following STN-DBS (Hilker et al., 2003;

Strafella et al., 2003; Thobois et al., 2003). Although there are
limited human brain tissue studies examining cellular changes
following STN-DBS, one study has demonstrated neurogenesis
in the subventricular zone, suggesting that DBS may be capable
of increasing cellular plasticity even at sites remote from the
electrode location (Vedam-Mai et al., 2014). Neuroprotective
molecules such as BDNF have also been shown to be upregulated
in the rodent basal ganglia post-DBS (Fischer et al., 2017; Fischer
and Sortwell, 2018). Although our studies suggest that this is
unlikely to prevent neuronal cell death in the human SN, an
elegant study using optogenetics to elucidate the target cell
types underlying DBS suggests that the therapeutic effects can
be accounted for by selective stimulation of afferent axons,
indicating that disruption of circuit loops could represent a
common pathway for treatment (Gradinaru et al., 2009). Indeed,
clinical studies show a significant increase in motor dysfunction
with overnight “off” STN-DBS conditions compared with
“on” state (Kojovic et al., 2019). A single pulse of STN-DBS
has been recorded between 1 and 400 ms after stimulation
(Baker et al., 2002), indicating DBS is linked to short-
term changes in electrophysiological activity. In PD patients,
electrophysiological recording show signature enhanced neural
firing in the STN (Hammond et al., 2007) which is reduced by
DBS (Eusebio et al., 2011). These studies and the findings from
our histological analysis indicate that the therapeutic effects of
DBS are transient and most likely occur through “inhibition,”
“excitation,” or “disruption” of the cortico-basal ganglia loop
(Chiken and Nambu, 2016).

Although gliosis is a normal response to brain injury and
is commonly observed in neurodegenerative disorders such as
Alzheimer’s disease, reports of astrogliosis in the SN of PD
patients are conflicting (Urbanc et al., 2002). Indeed, some post-
mortem studies have reported mild increases in GFAP-positive
astrocytes in the SN in PD (Mirza et al., 2000; McGeer and
McGeer, 2008), while others have reported that the number and
morphology of astrocytes remain unchanged (Knott et al., 1999;
Tong et al., 2015). While our study did identify an increase in
astrogliosis in the SN of our non-DBS PD cases, no significant
change was seen in the SN of the STN-DBS cases, and no
astrogliosis was present in the STN of either PD group, despite
significant alpha-synuclein deposition. This is interesting, as
primate studies suggest that DBS reduces glutamate toxicity
(Wallace et al., 2007) and/or astrocyte-mediated abolition of
spontaneous spindle oscillations (Hardman et al., 1996, 1997;
Temel et al., 2006; Wallace et al., 2007) and may lower
neuroinflammation. Recent studies also suggest that there is a
relationship between astrocytic dysfunction and alpha-synuclein
accumulation in PD (Tong et al., 2015) but this was certainly
not observed in the STN in our study. It is clear that the role
of astrocytes in PD is likely highly complex, and changes in
astrocyte function are not easily captured using generic markers
such as GFAP. Indeed, A1 astrocytes have been shown to be
neurotoxic in PD (Hendrickx et al., 2017) and are involved in an
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FIGURE 1

Quantitation of neuronal loss and astrogliosis in the substantia nigra (SN) of control, Parkinson’s disease (PD) and PD STN-DBS cases.
(A) Significant differences between control and PD cases were observed in neuronal loss (p < 0.018), TH neurons (p < 0.015), and astrogliosis
(GFAP: p = 0.028). Comparison of PD patients with STN-DBS and PD patients without STN-DBS showed no differences in neuronal loss
(p = 1.000), TH neurons (p = 1.000), or inflammatory marker (GFAP: p = 1.000). (B) Representative photomicrographs of TH (black arrows
showing dopamine neurons), neuronal density identified by hematoxylin and eosin (black arrows showing H&E stained neurons), GFAP (black
arrow showing astrocyte) in control, PD, and PD STN-DBS in the SN. All images were taken at 200×magnification. All values are expressed as
mean ± SEM. ∗ Indicates p < 0.050. Scale bar = 50 microns.
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FIGURE 2

Quantitation of neuronal loss and astrogliosis in the subthalamic nucleus (STN) of control, Parkinson’s disease (PD) and PD STN-DBS cases.
(A) Between control and PD patients no significant difference was observed in neuronal (p = 0.358) or inflammatory marker (GFAP: p = 0.612).
(B) Representative photomicrographs of neuronal density (black arrow showing H&E stained neuron), GFAP (black arrow showing astrocyte) in
control, PD, and PD STN-DBS patients in the STN. All values are expressed as mean ± SEM. Scale bar = 50 microns.

intimate relationship with microglia to control the inflammatory
response (Röhl and Sievers, 2005; Jo et al., 2017; Liddelow et al.,
2017). To determine whether STN-DBS exerts a therapeutic
effect via modulating neuroinflammation, future studies should
utilize glial markers that recognize the morphologically and
functionally diverse states of both astrocytes and microglia.
Analysis of inflammatory cytokines and chemokines would also
be informative. Although these studies would require access
to frozen brain tissue, which is seldom available from DBS

cases due to the need for whole brain fixation to delineate the
electrode tract and termination point.

In contrast to Pal et al. (2017), we did not observe an increase
in alpha-synuclein pathology in the SN following STN-DBS.
Although differences in the methods of analysis and cohort size
may explain the discrepancy between these studies, differences
in the methods used for alpha-synuclein detection may also be
relevant. Indeed, Pal et al. (2017) used Thioflavin S staining to
identify Lewy bodies within the SN, whereas we carried out
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FIGURE 3

Quantitation of alpha-synuclein pathology in the substantia nigra (SN) and subthalamic nucleus (STN) of control, Parkinson’s disease (PD) and
PD STN-DBS cases. (A) No alpha-synuclein pathology was seen in the SN control cases. Alpha-synuclein pathology was significantly higher in
PD (p = 0.008) and STN-DBS cases (p = 0.007). No changes in alpha-synuclein expression were seen in the SN in PD and STN-DBS patients
(p = 1.000). (B) Asterisks indicate pigmented neurons in the SN. Both Lewy bodies (black arrows) and Lewy neurites (red arrows) were observed
in the SN PD and Deep brain stimulation (DBS) cases. (C) In the control cases, no alpha-synuclein was present in the STN. Alpha-synuclein
aggregates were significantly higher in PD (p = 0.013) and STN-DBS (p = 0.004) compared to controls with no differences between PD and
STN-DBS cases (p = 1.000). (D) Lewy neurites (red arrows) and Lewy bodies (blue arrows) were observed in the STN in all PD cases (inserts in D).
Occasional Lewy bodies and alpha-synuclein positive neurons were also seen (D inserts). All values are expressed as mean ± SEM. Scale
bar = 50 microns.

alpha-synuclein immunohistochemistry on a Ventana stainer
(see Section “Materials and methods”), which is considered the
gold standard for Lewy body and Lewy neurite detection (Beach
et al., 2008). Alpha-synuclein pathology in the STN has not
been well investigated in PD with or without DBS. However,
our findings are consistent with a previous case study that
reported Lewy body formation in the STN in a PD case without
DBS (Ohama and Ikuta, 1976). Most of the alpha-synuclein
pathology we observed was in the form of Lewy neurites,
although occasional Lewy bodies and neuronal cytoplasmic
staining were seen (see Figure 3), which may also be attributable
to the sensitive methods of immunohistochemical detection that
were used in this study. Lewy neurites in axons appear prior to
Lewy bodies and represent some of the earliest pathology seen in
the PD brainstem (Braak et al., 1999, 2003). The predominance
of Lewy neurites in PD cases both with and without DBS in
the absence of significant neuronal loss suggests that the STN
is affected later in the disease process as it may be more resistant
to neurodegeneration in PD.

A significant limitation of this study is the number of
cases that were available for analysis. However, access to well-
characterized brain tissue from PD cases with DBS is limited,
and we utilized all of the available cases in the SBB. While

we could have increased the number of PD and control cases
examined, we do not believe this would significantly impact
our results as our observations in the PD without DBS and
control cases were representative of findings from previous
studies (Pienaar et al., 2015).

In conclusion, our findings demonstrate no significant effect
of DBS on total or dopaminergic cell loss, alpha-synuclein
pathology, or astrogliosis in the SN and STN. The absence
of neuronal loss is consistent with other clinical and imaging
studies indicating that STN-DBS may not be neuroprotective
and most likely has a transient therapeutic effect (Lilleeng
et al., 2014). While we did not observe a change in GFAP-
positive astrogliosis in STN-DBS, it is widely acknowledged
that PD-related neuroinflammation is a complex process, and
we did not undertake a thorough analysis of glial subtypes
or inflammatory modulators. Future studies should therefore
address this limitation.
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