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Dendritic Cell Vaccination of
Glioblastoma: Road to Success
or Dead End
Angeliki Datsi and Rüdiger V. Sorg*

Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University Hospital, Medical Faculty,
Düsseldorf, Germany

Glioblastomas (GBM) are the most frequent and aggressive malignant primary brain tumor
and remains a therapeutic challenge: even after multimodal therapy, median survival of
patients is only 15 months. Dendritic cell vaccination (DCV) is an active immunotherapy
that aims at inducing an antitumoral immune response. Numerous DCV trials have been
performed, vaccinating hundreds of GBM patients and confirming feasibility and safety.
Many of these studies reported induction of an antitumoral immune response and
indicated improved survival after DCV. However, two controlled randomized trials failed
to detect a survival benefit. This raises the question of whether the promising concept of
DCV may not hold true or whether we are not yet realizing the full potential of this
therapeutic approach. Here, we discuss the results of recent vaccination trials, relevant
parameters of the vaccines themselves and of their application, and possible synergies
between DCV and other therapeutic approaches targeting the immunosuppressive
microenvironment of GBM.
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INTRODUCTION

Glioblastomas (GBM) are highly invasive, malignant tumors of the central nervous system.
According to the 2021 World Health Organization classification, GBM are grade 4 tumors, that
belong to the group of adult diffuse gliomas (1). They lack mutations in the isocitrate-
dehydrogenase (IDH) gene, which now discriminates GBM from IDH-mutated grade 4
astrocytomas, which have been regarded as secondary GBM before. Based on gene expression
signatures, GBM can be further subdivided into mesenchymal, proneural, neural and classical
subtypes (2).

Although representing the most frequent malignant primary brain tumor (~30%–40%), GBM
are rare; the yearly incidence is three to four per 100,000 adults (3). Nevertheless, they are a highly
fatal tumor, responsible for 2% of cancer-related deaths, with a yearly death rate of four to five per
100,000 adults. The established therapeutic standard of care in the first-line therapy for GBM
combines maximal safe resection, fractionated radiotherapy with concomitant alkylating
temozolomide (TMZ) chemotherapy, followed by adjuvant TMZ treatment. This multimodal
approach has improved survival of patients significantly. Nevertheless, prognosis of newly
diagnosed GBM patients is dismal. Median overall survival (mOS) is only 14.6 months, and the
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2-year survival rate is 27.2% (4, 5). In GBM patients with
unmethylated O6-methylguanine-DNA-methyltransferase
(MGMT) promoter, producing the DNA-repair enzyme,
prognosis is even worse [methylated vs. unmethylated mOS is
21.7 vs. 12.7 months; (6)]. Disease recurrence is universal, there is
no effective therapy for recurrent disease, and median survival
after relapse is 6.2 months. Therapeutic alternatives include
lomustine, carmustine, tumor-treating field (TTF) therapy, and
the angiogenesis inhibitor bevacizumab (7–10). Thus, there is a
clear need for novel therapeutic modalities in GBM.

Dendritic cells (DC) are professional antigen-presenting cells,
which are key to the development of T-cell responses (11, 12). As
immature (resting) cells, they reside in most tissues, where they
sample antigens. When activated by pathological changes in the
tissue, they migrate to the draining lymph nodes and present
there as mature (activated) DC peptides processed from the
antigenic material taken up in the tissue on human leukocyte
an t i g en (HLA) c l a s s I and I I mo l e cu l e s , i n an
immunostimulatory context of co-stimulatory and accessory
molecules. Antigen-specific cytotoxic T lymphocyte (CTL) and
helper T cells (TH) recognizing these peptides get activated,
proliferate, and differentiate to effector cells, which execute the
various actions of cellular adaptive immune responses, including
the killing of target cells. DC vaccination (DCV) is an active
immunotherapy seeking to exploit this pivotal role of DC
therapeutically: patients are vaccinated with tumor-associated
antigens (TAA)-loaded DC, with the concept that they migrate
to local lymph nodes, present TAA-derived peptides on HLA
molecules, and initiate an antitumoral T-cell response, which
selectively kills the tumor cells and prevents tumor recurrence,
due to immunological memory (13, 14).

DCV was first evaluated in 1996 in a clinical trial for B-cell
lymphoma (15). In 1999, Dhodapkar et al. reported the
induction of antigenic target-directed T-cell responses by DCV
(16). The authors vaccinated nine healthy individuals with
mature DC loaded with an influenza matrix peptide, keyhole
limpet hemocyanin, or tetanus toxoid and showed induction of
target-specific T-cell immunity after a single application of the
vaccine. The clinical efficacy of DCV was documented in 2006 in
a phase III trial in patients with hormone refractory prostate
cancer (17). Patients were treated with either placebo
(leukocytes) or DC loaded with a fusion protein of prostatic
acid phosphatase and granulocyte-macrophage colony-
stimulating factor (GM-CSF) (Provenge/sipuleucel-T). mOS of
vaccinated patients was significantly improved compared with
that in the placebo-treated control group (25.9 vs. 21.4 months),
results that were confirmed in a second trial (18); and Provenge/
sipuleucel-T was the first (and so far only) DC vaccine approved
by the U.S. Food and Drug Administration in 2010 (19). In
GBM, hundreds of patients have been vaccinated, mainly in
smaller uncontrolled trials. Although the results are promising,
few studies can provide robust evidence, and overall the efficacy
of DCV in GBM is variable, ranging from little or no clinical
response to significant response. Therefore, we address the
questions of which parameters could possibly effect efficacy of
DCV and whether and how it may be possible to improve it.
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DENDRITIC CELL VACCINATION FOR
GLIOBLASTOMA IN ANIMAL MODELS

Already in 1999, Liau and colleagues documented in the 9L rat
glioma model that vaccination with DC pulsed with acid-eluted
peptides derived from 9L glioma cells can prolong survival of
glioma-bearing animals (20). In addition, vaccination was
associated with infiltration of tumors with CD8+ and, to a
lesser extent, CD4+ T cells and the development of glioma 9L
cell-specific CTL responses. In 2000, Heimberger et al., who had
vaccinated mice with DC pulsed with lysates derived from the
spontaneously arising 560 glioma cell line, which had been
transfected with the murine homolog of the mutated epidermal
growth factor receptor variant III (EGFRvIII) (21), reported that
vaccination could protect mice from subsequent intracranial
tumor challenge. Survival of vaccinated animals was
significantly prolonged compared with that in control animals
receiving unpulsed DC. The surviving animals showed
antitumoral memory and were healthy, were neurologically
normal, and showed no signs of autoimmune encephalitis.
Again, vaccination was associated with the development of
glioma-cell-specific CTL responses, but interestingly, those
were not directed against EGFRvIII, but against other
unknown TAA.

Meanwhile, numerous animal studies have been performed in
prophylactic (22–24) and curative DCV settings (25–31).
Overall, there is clear evidence from these initial animal studies
that DCV reduces tumor growth, can prolong survival, induces
tumor-specific IFNg and CTL responses, is associated with T-cell
infiltration of tumors, particularly by CD8+ T cells, and results in
long-lasting antitumoral memory that provides protection from
tumor re-challenge. At the same time, vaccination appears to be
safe and not to be associated with the development of
autoimmunity. Thus, animal studies provided a proof-of-
principle for DCV of GBM. Moreover, they continue to
contribute to the development of vaccination strategies to
increase efficacy (32).
TREATMENT OF GLIOBLASTOMA
PATIENTS WITH DENDRITIC
CELL VACCINATION

Active immunotherapy with DCV has been pioneered by Liau
et al., who described the vaccination of a GBM patient with
recurrent disease with DC pulsed with eluted peptides of an HLA
class I-matched GBM cell culture in 2000 (33). Although
induction of an anti-peptide immune response was observed,
the patient progressed and died 3 months later. Since then,
numerous studies have been published (Table 1), including six
controlled, randomized trials (60, 62, 76, 79, 81, 83), and several
more are underway (88). Patients included mainly adults, but
also children and adolescents (34, 38, 39, 41, 48, 52, 61, 64, 65, 69,
78), and the age of vaccinated patients varied between 1 and
80 years.
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TABLE 1 | Concluded clinical trials and case reports on dendritic cell vaccination of glioblastoma patients.

Diagnosis
All/
nd GBM/
rec GBM
control

Antigenic
target

7DC
maturation

DC
application

DC dose
number vaccines/

cells/vaccine

Clinical outcome
(GBM)
OS/PFS/
others

Immunological
responses (GBM)

DTH
IFNg10

others11

Toxicity9 Ref

rec GBM
1/0/1

Eluted
peptides

- i.d. 3× biweekly
5 × 106

PD -
-
1

None
(33)

rec HGG
8/0/5

HGG/DC
fusion

TNFa i.d. 1–8× triweekly
2.4–8.8 × 106

1× MR, 1× SD -
5/5
-

Erythema
(34)

nd HGG
9/7/0

Eluted
peptides

- s.c. 3× biweekly
1 × 106

nd: 15.0 m/– -
-

4/712

Fever, lymph node swelling, vomiting/
nausea (35)

nd/rec
GBM
42/24/18

Tumor
lysate

– s.c. 3× biweekly ±
1× after 6 weeks
10–40 × 106

(36)

rec HGG
10/0/7

Tumor
lysate

- i.d. + i.t. 1–10× triweekly
10–32 × 106

rec8: 17.7 m/–
4× SD

3/6
2/4
-

Headache, erythema
(37)

rec HGG
9/0/2

Tumor
mRNA

– i.d. + i.v. 3× biweekly
± 3× monthly

5 × 106/m2 (i.v.) +
5 × 106 (i.d.)

PD -
0/412

0/312

None
(38)

rec GBM
1/0/1

Tumor
lysate

TNFa,
IL-1b,
PGE2

i.d. 2× biweekly +
4× monthly
1–9 × 106

CR (2 years) None
(39)

rec HGG
15/0/6

HGG/DC
fusion

TNFa i.d. 3× biweekly
3.6–32.3 × 106

rec8: 8.5 m/–
1× SD (4 m)

-
0/6
0/8

Fever, seizure, erythema,
transient liver dysfunction, lymphopenia (40)

rec HGG
12/0/7

Tumor
lysate

TNFa,
IL-1b,
PGE2

i.d. 2× biweekly +
4× monthly
0.8–18 × 106

1× CR 6/812

-
-

Peritumoral edema (grade 4),
morning stiffness, hematotoxicity,
nocturnal sweating,
meningeal irritation

(41)

nd/rec
GBM
25/11/14

Tumor
lysate/
eluted

peptides

– s.c. 3× biweekly
± 1× after 6 weeks

10–40 × 106

nd: 34.4 m/–
rec: 29.6 m/–

-
40%–60%12

60%9
(42)

nd/rec
HGG
14/1/9

Tumor
lysate

- s.c. 3× biweekly
10–100 × 106

rec: 30.6 m/– -
nd: 0/1; rec: 4/5
nd: 0/1; rec: 2/6

Headache, fatigue, erythema,
seizure (43)

nd/rec
GBM
12/6/6

Eluted
peptides

– i.d. 3× biweekly
1, 5 or 10 × 106

nd8: 27.9 m/16.3 m
rec8: 16.6 m/12.5 m

-
-

nd: 4/6; rec: 2/6

Fever, flu-like, fatigue, myalgia, nausea/
vomiting, erythema, itching, lymph node
swelling, diarrhea/constipation

(44)

rec HGG
24/0/18

Tumor
lysate

- or
OK432

i.d. + i.t. 1–22× (i.d.) 0-18×
(i.t.) triweekly
1–32 × 106

rec8: 15.5 m/–
2× MR, 2× SD

8/15
6/13
-

Headache, erythema
(45)

rec GBM
1/0/1

Tumor
lysate

– i.v. 5× biweekly Fever
(46)

nd GBM
6/6/0

Tumor
lysate

TNFa,
IL-1b,
IFNg

i.d. 2× biweekly
2 × 106

nd8: –/6.0 m -
0/5
-

Headache
(47)

rec GBM
56/0/56

Tumor
lysate

TNFa,
IL-1b,
PGE2

i.d. 3–7×: 2 biweekly +
others monthly or
3–9× biweekly or

4× weekly
0.7–25.7 × 106

rec: 9.6 m/3.0 m 9/17
-
-

Peritumoral edema (grade 4),
hematotoxicity, hemiparesis, dysphasia,
headache, vomiting, flu-like, seizure,
fatigue, myalgia, hygroma, intratumoral
hemorrhage, erythema

(48)

nd/rec
HGG
13/7/2

Irradiated
tumor cells

MCM i.d. 2–13×: 6×
biweekly +

every 6 weeks
1 × 106

nd8: 11.0 m/–
rec8: 5.0 m/–

None related to DCV
(49)

nd/rec
HGG
44/11/23

Tumor
lysate

– s.c. 3× biweekly +
1× after 6 weeks
10–40 × 106

-
17/3412

-

No grade 3/4
(50)

(Continued)
Frontiers in Im
munology |
 www.frontiers
in.org
 3
 November 2021 | Volume 12 | Article 770
390

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Datsi and Sorg Immunotherapy of Glioblastoma
TABLE 1 | Continued

Diagnosis
All/
nd GBM/
rec GBM
control

Antigenic
target

7DC
maturation

DC
application

DC dose
number vaccines/

cells/vaccine

Clinical outcome
(GBM)
OS/PFS/
others

Immunological
responses (GBM)

DTH
IFNg10

others11

Toxicity9 Ref

nd GBM
12/12/0

EGFRIII
peptide-
KLH

conjugate

TNFa,
IL-1b,
IL-6

i.d. 3× biweekly
30–100 × 106

nd: 22.8 m/10.2 m 5/9
-

10/12

Increased erythrocyte sedimentation rate,
increased rheumatoid factor level (51)

rec HGG
45/0/23

Tumor
lysate

TNFa,
IL-1b

± PGE2

i.d. 3–7×: 2 biweekly +
others monthly or
4–16× biweekly or

4× weekly
0.5–23.8 × 106

rec8: 12.2 m/4.3 m Fatigue, headache, fever, itching,
vomiting, flu-like (52)

nd GBM
8/8/0

Tumor
lysate

TNFa,
IL-1b,
PGE2

i.d. 4× weekly
2–24 × 106

nd: 24.0 m/18.0 m 2/7
5/8
-

Lymphopenia, focal epileptic insult,
dysphasia, fatigue, malaise, myalgia,
ischemic event (grade 4), hematotoxicity
(grade 3), status epilepticus (grade 4)

(53)

nd/rec
HGG
17/8/6

Heat-
shocked
irradiated

cells

- s.c. 4× weekly +
2× biweekly +
4× monthly
10–60 × 106

nd8: 12.1 m/–
rec8: 31.8 m/–

Lymphopenia (grade 3/4), transient
hepatic dysfunction, seizure,
hydrocephalus, anemia, myalgia, skull
wound infection

(54)

nd GBM
10/10/0

Tumor
lysate

TNFa,
PGE2

i.n. 3× biweekly
30 × 106

nd: 28.0 m/9.5 m 0/10
4/10
-

Neck pain
(55)

rec HGG
22/0/13

Peptides1 TNFa,
IL-1b,
IFNa,
IFNg,

poly(IC)

i.n. 4× biweekly +
5× monthly

10 or 30 × 106

rec8: 12.0 m/4.0 m
1× CR (>13 m),
1× PR

-
5/12
5/10

Erythema, flu-like, fatigue, myalgia, fever,
chill/rigor, headache, lymphopenia (56)

nd/rec
GBM
23/15/8

Tumor
lysate

– i.d. 3× biweekly ±
≤10× 3-monthly
1 or 5 × 106

nd: 35.9 m/–
rec: 17.9 m/–

Fatigue, nausea/vomiting, diarrhea,
arthralgia, fever, lymphadenopathy,
erythema, myalgia, shingles, allergic
rhinitis, pruritus, headache, constipation,
heartburn, dermatitis/rash, anorexia,
abdominal pain

(57)

rec HGG
9/0/7

Peptides2 TNFa,
IL-1b,
IFNa,
IFNg,

poly(IC)

i.d. 4× weekly ± ≤ 6×
10, 20, or 50 × 106

PD 4/7
4/6
-

Transient hepatic dysfunction
(58)

nd GBM
77/77/0

Tumor
lysate

TNFa,
IL-1b,
PGE2

i.d. 4× weekly
0.24–55 × 106

nd: 18.3 m/10.4 m Fatigue, rash/itching, shoulder pain,
anorexia, myalgia, nausea/vomiting,
seizure, confusion, humerus fracture,
lethargy, ectopic cerebral lesion,
depression, dysphasia, esophagitis, otitis
media serosa, lymphopenia, leukopenia;
grade 3/4 seizure, allergic reaction to
TMZ, cerebral abscess, deep vein
thrombosis, hydrocephalus, ischemic
bowel perforation, lung and peripheral
edema, osteoporotic fracture, dementia,
focal status epilepticus, ischemic stroke,
status epilepticus, thrombocytopenia,
lymphopenia, leukopenia; grade 5:
overwhelming infection

(59)

nd GBM
18/18/0
16

Tumor
lysate

- s.c. 4× weekly +
2× biweekly +
4× monthly
20-50 × 106

nd: 31.5 m/8.5 m Hepatic dysfunction, lymphopenia,
hemiplegia, pancytopenia, intracranial
pressure, nausea/vomiting

(60)

rec HGG
8/0/5

IL-13Ra2
peptides

TNFa,
IL-1b,
IL-6

i.d. 2–6× biweekly
10 × 107

rec8: 7.0 m/–
1×MR, 2× SD (2-4 m)

-
2/3
2/3

Fatigue, erythema
(61)

(Continued)
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TABLE 1 | Continued

Diagnosis
All/
nd GBM/
rec GBM
control

Antigenic
target

7DC
maturation

DC
application

DC dose
number vaccines/

cells/vaccine

Clinical outcome
(GBM)
OS/PFS/
others

Immunological
responses (GBM)

DTH
IFNg10

others11

Toxicity9 Ref

nd GBM
13/13/0
12

Tumor
lysate

TNFa,
IL-1b,
PGE2

s.c. 2× weekly +
2× biweekly
6 × 106

nd: 17.0 m/11.9 m
3× CR (89 m),
6× PR, 1× SD (9 m)

-
Increase

-

Fever, erythema
(62)

nd GBM
5/5/0

Tumor
lysate

TNFa,
IFNa,
poly(IC)

? 4–14: 2×
bimonthly + 2×

monthly +
4× bimonthly +
others quarterly
0.8–10 × 106

nd: 27.4 m/16.1 m -
-

3/3

Seizure
(63)

nd HGG
7/5/0

Tumor
lysate

- i.d. 2–4 biweekly
1 × 106

-
-
-

Headache, injection site erythema,
elevated alkaline phosphatase (grade 4) (64)

rec GBM
15/0/15

Tumor
lysate

TNFa
IL-1b
IL-6
PGE2

i.d. 3–4 × biweekly
2× monthly
1/2 × 107

rec: 8 m/4.4 m -
Increase

NK cell response

Ependymitis/hydrocephalus, anemia
grade 2, fever, cutaneous induration,
cutaneous flushing, seizures, cerebral
edema, tumor bleeding

(65)

nd/rec
GBM
19/16/3

Peptides3 TNFa i.d. 3× biweekly
10 × 106

nd: 38.4 m/16.9 m -
5/1512

5/1512

Diarrhea, fatigue, flushing, pruritus, rash,
vomiting (66)

nd/rec
HGG
27/23/4

Tumor
lysate/
peptides

–/
TNFa,
IL-1b,
IL-6,
PGE2

i.d. 3× biweekly/3×
biweekly + 3×

monthly

nd 34.4 m/18.1 m
rec: 14.5 m/9.6 m

-
-

Increase

Grade 1–2 flu-like (headache, low-grade
fever, nausea, vomiting, fatigue), injection
site reactions, lymphadenopathy, rashes

(67)

nd GBM
7/7/0

GBM
CSC
mRNA

TNFa,
IL-1b,
IL-6,
PGE2

i.d. 9–18×: 2×/week +
3× weekly +

others monthly
10 × 106

nd: 25.0 m/22.8 m 1/7
-

7/7

Fatigue, anorexia, nausea, seizure,
constipation, fatigue (grade 3) (68)

rec HGG
8/0/6

Apoptotic
bodies

allogeneic
CSC

GBM6-AD

TNFa,
IL-1b,
IFNa,
IFNg,

poly(IC)

s.c. 1–9×: 5× biweekly
+

5× monthly

3× SD -
0/613

3/613

Fatigue, erythema, induration (grade 1)
(69)

rec GBM
14/0/14

Irradiated
tumor
cells

MCM i.d. 3× biweekly
6× monthly
4 × 106/
1 × 106

rec8: 23.0 m/5.0 m
2× PR, 1× SD (31.5 m)

0/14
2/9
-

Nausea/vomiting, headache, seizure,
thrombocytopenia, syncopal event (grade
3), bilateral cataracts (grade 3)

(70)

nd GBM
13/13/0

CMVpp65
mRNA

TNFa,
IL-1b,
IL-6,
PGE2

i.d. 3× biweekly +
others monthly

20 × 106

nd: 18.5 m/10.8 m -
Durable

-

None related to vaccine
(71)

rec HGG
10/0/6

WT-1
peptides/
tumor
lysate

OK432,
PGE2

i.d. 5–7× biweekly +
≤23×

7–99.4 × 106

rec: 18.0 m/–
1× SD

5/5
-

3/4

Erythema, fever, fatigue
(72)

nd/rec
GBM
32/22/10

GBM/DC
fusion

TNFa i.d. 3× monthly +
6/12-monthly
0.72–2.5 × 106

nd: 30.5 m/18.3 m
rec: 18 m/10.3 m

-
Positive
4/4

Injection site reaction
(73)

nd GBM
11/11/0

CMVpp65
mRNA

TNFa, IL-
1b, IL-6,
PGE2

i.d. 10× biweekly and
monthly
20 × 106

41.1 m/25.3 m -
10/11

Increase

No AE related to DCV except for GM-
CSF autoantibody (grade 3) (74)

nd GBM
32/32/0

Tumor
lysate

TNFa,
IFNa, poly

(IC)

i.d. >6
10 × 106

23.4 m/12.7 m -
8/25

No change

No AE related to DCV
(75)

nd GBM
34/34/0
42

Tumor
lysate

IFNg, LPS i.n. up to 15×: 4×
weekly, 5×

monthly, 3-monthly
1–5 × 106

18.8 m/6.8 m More AE in DCV group; more TMZ related
AE in DCV group (thrombocytopenia
more frequent in DCV); related to DCV:
local pain, local reactions, fever, joint pain,
general weakness

(76)

(Continued)
Frontiers in Im
munology |
 www.frontiers
in.org
 5
 November 2021 | Volume 12 | Article 770
390

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Datsi and Sorg Immunotherapy of Glioblastoma
TABLE 1 | Continued

Diagnosis
All/
nd GBM/
rec GBM
control

Antigenic
target

7DC
maturation

DC
application

DC dose
number vaccines/

cells/vaccine

Clinical outcome
(GBM)
OS/PFS/
others

Immunological
responses (GBM)

DTH
IFNg10

others11

Toxicity9 Ref

nd GBM
43/43/0
42

Tumor
lysate

IFNg, LPS i.n. Up to 15×: 4×
weekly, 5×

monthly, 3-monthly
1–5 × 106

-
Increase
Increase

(77)

nd GBM
27/27/0
20

Tumor
lysate of
irradiated
tumor cells

- 10×: 4× biweekly,
6× monthly
20–50 × 106

31 m/–
(78)

nd GBM
232/232/0
99

Tumor
lysate

– i.d. 3× every 10 days,
3× monthly, every 6

months
2.5 × 106

23.1 m/– 2.1% of pts grade 3/4 AE related cerebral
edema, seizures, nausea, lymph gland
infection; non-serious: injection site
reactions, fatigue, low-grade fever, night
chills

(79)

nd GBM
24/24/0

Tumor
lysate

TNFa, IL-
1b, IL-6,
PGE2

i.d. 4× biweekly, 2×
monthly, 1× 2
month later
5/10 × 106

20.1 m/10.5 m -
Increase

NK cell response

1 pulmonary embolism, 1 deep venous
thrombosis + embolism, 1 disseminated
intravascular coagulation, seizures,
convulsion, myositis, skin reaction with
itching, erythema, urticaria, inflammation

(80)

nd/rec
GBM
22/13/9
21

CSC lysate – i.d. 3× weekly
2–4 × 106

13.7 m/6.9 m12 -
Increase

-

Mild fever, erythema
(81)

rec GBM
20/0/20

Tumor
lysate

TNFa, IL-
1b, IL-6,
PGE2

i.d. 3× biweekly, 2×
monthly

20/10/5 × 106

-
Increase

-

Brain edema, vomiting, asthenia, seizure,
dysphasia, dizziness, cognitive
disturbance, hyposthenia, vaccination site
reaction: erythema, pruritus, pain,
induration

(82)

nd GBM
81/81/0
43

Peptides4 IFNg, LPS i.d. 4× weekly, 4×
monthly, every 6

months
11 × 106

17 m/11.2 m -
34/68

-

No AE related to DCV; fatigue,
convulsions, nausea (83)

nd GBM
23/23/0

CMVpp65
mRNA

TNFa, IL-
1b, IL-6,
PGE2

i.d. 3× biweekly,
monthly
20 × 106

41.1/41.4 m/–
(84)

nd HGG
16/14/0

Peptides5 TNFa, IL-
1b, IFNa,
IFNg, poly

(IC)

i.d. 3× weekly, 2×
biweekly, 5×

monthly
10–50 × 106

19 m/11 m 27%
67%
-

Only ≤grade 3
(85)

nd/rec
GBM
5/3/2

Individual
TAA

mRNAs

TNFa, IL-
1b, IL-6,
PGE2

i.d. 3–8×: 2–4 weeks
of intervals

No severe AE; others: skin rash, fever
(86)

rec GBM
1/0/1

CMVpp65 i.d. 3× weekly
5 × 106

No grade 3/4; mild fever, lymphopenia
(TMZ) (87)
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rec, recurrent; nd, newly diagnosed; HGG, high grade glioma (grade III and IV); EGFRvIII, epidermal growth factor receptor variant III; KLH, keyhole limpet hemocyanin; IL-13Ra2,
interleukin-3 receptor a2; CSC, cancer stem cells; mRNA, messenger ribonucleic acid; CMV, cytomegalovirus; WT-1, Wilms’ tumor 1; PB, peripheral blood; TNFa, tumor necrosis factor a;
IL-1b, interleukin-1b; PGE2, prostaglandin E2; OK432, preparation of streptococcus pyrogenes; IFNg, interferon-g; MCM, monocyte-conditioned medium; IL-6, interleukin-6; IFNa,
interferon-a; poly(IC), polyinosinic:polycytidylic acid; LPS, lipopolysaccharide; i.d., intradermal; s.c., subcutaneous; i.t., intratumoral; i.n., intranodal; i.v., intravenous; SD, stable disease;
PR, partial response; MR, mixed response; CR, complete remission; OS, overall survival; PFS, progression-free survival; DTH, delayed-type hypersensitivity.
1EphA2, IL13Ra2, YKL-40, GP100.
2WT-1, HER2, MAGE-A3, MAGE-A1, GP100, KLH.
3HER2, TRP-2, GP100, MAGE-1, IL-13a2, AIM-2.
4TRP-2, GP100, HER-2/NEU, Survivin.
5MAGE-1, AIM-2, HER2, TRP-2, GP100, IL13Ra2.
6WT-1, HER2, MAGE-A3, MAGE-A1, GP100, (KLH).
7In all studies, monocyte-derived DC were used.
8OS/PFS calculated from data provided in the manuscript.
9Toxicities have not clearly been attributed to DC vaccination.
10IFNg responses have been detected by ELISA, enzyme-linked immuno spot (ELISPOT) assay, intracytoplasmic staining and flow cytometry, or quantitative PCR (qPCR).
11Others include proliferative or cytotoxic responses towards targets, tetramer staining, and flow cytometry and increase in GM-CSF, TNFa, IL-2, and IL-17a secretion upon specific
restimulation and in tetramer-staining cells.
12Manuscript did not discriminate between GBM and grade III tumors or newly diagnosed and recurrent GBM.
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Most patients underwent cytoreductive surgery prior to DCV,
but patients who were biopsied only or had no surgery at all
underwent treatment as well. An association of survival and the
extent of resection, which by itself is predictive for better survival
(89), has also been reported for DCV (78), and a state of minimal
residual disease has been indicated to be beneficial for vaccination
therapy (44, 48, 65, 78). This may be due to a reduction of local
immunosuppression, which correlates with the tumor size (90, 91),
and the sheer number of fast growing tumor cells, which otherwise
wouldhave tobe eliminatedby theCTL.However, in another study,
the extent of resection was not associated with survival (76), so a
more detailed comparison of the absolute residual tumor volume
and, in particular, the composition of the tumor [e.g., the
contribution of an immunosuppressive tumor microenvironment
(TME)] is required.

Therapies concomitant to DCV included radio- and
chemotherapy, mainly with TMZ (4); but in several trials,
DCV has been used as the sole treatment. There may be
advantages but also disadvantages for vaccination in the
context of TMZ chemotherapy (see also the section Dendritic
Cell Dose, Vaccination Schedule, and Route of Application).

In the previous trials, mainly patients with newly diagnosed
or recurrent GBM have been treated with DCV, but in several
studies, grade III tumors were also included (Table 1). It is
unknown whether there is a difference in the responsiveness of
grade III and grade IV tumors to DCV; however, a trend for a
higher immunological response rate in newly diagnosed patients
has been reported (50), which may be due to the less heavy
pretreatment of those patients.

Overall, DCV was well tolerated (Table 1). Severe side effects
(≥grade 3) attributable to vaccination have not been observed
except for one patient with gross residual tumor post-surgery,
who suffered from peritumoral edema, which was controllable by
glucocorticoids (41, 48). Other severe side effects have been
consistent with either the respective concomitant therapies or
disease progression. Frequently observed mild and easily
controllable toxicities (≤grade 2), which may be attributable to
DCV, are injection site reactions with itching, pain, erythema,
induration, and lymph node swelling as well as flu-like
symptoms, fever, fatigue, myalgia, headache, edema, and
meningeal irritation, which, however, can also be observed in
the course of other concomitant therapies or be due to the
disease. Thus, overall toxicity of DCV therapy is limited.
However, it has to be noted that Mitchel et al., who vaccinated
a GBM patient with DC transfected with cytomegalovirus
(CMV) phosphoprotein 65 (pp65) mRNA and applied the
vaccines intradermally together with GM-CSF, reported
induction of a type I hypersensitivity-like reaction with IgE,
but also IgM and IgG antibodies against the GM-CSF (92), which
however resolved when vaccination was continued without GM-
CSF. On the one hand, these results document the potency of
DCV to induce immune responses. On the other hand, however,
they urge caution in using any type of protein supplement at
higher doses injected together with the DC.

Induction of antigenic target-directed immune responses
have been observed in the course of DCV (Table 1), with
Frontiers in Immunology | www.frontiersin.org 7
detection of IFNg responses being most informative (50, 71,
77, 82, 83, 85), but antitumoral cytotoxic responses (35, 42–44)
and an increase in tetramer positive cytotoxic T cells (43, 56, 61,
67, 72–74) have been reported as well.

Several studies identified immunological responders based on
antigenic-target directed delayed-type hypersensitivity (DTH)
reactions, IFNg responses, or cytotoxic responses, which
increased in the course of vaccination and reported longer
survival times for responders (44, 45, 50, 55, 66, 77, 81, 82).
Indeed, in the study byWheeler et al., immunological responders
(IFNg qPCR) had a significantly longer OS (599 vs. 401 days) and
time to progression (260 vs. 146 days), and the 2-year OS rates
compared favorably (56% vs. 8%) for the responders compared
with the non-responders (50). Moreover, long-term survivors
with durable IFNg responses have been identified (71). However,
although there are reports of an association of detectable
antitumoral immune responses and better clinical outcome,
this is not true for all studies (67, 75). Indeed, there appears to
be no strong correlation between detection of systemic
antitumoral immune responses and clinical outcome, which
may be due either to the parameters tested or to a failure of
the systemically detectable response in reaching the brain and
effectively killing the tumor cells.

Survival of vaccinated patients compared favorably with
matched or historic controls (35, 44, 45, 51, 54, 57, 68, 71, 85,
86). For newly diagnosed patients, mOS ranged from 15 to 41.4
months, and the progression-free survival (PFS) ranged from 6
to 25.3 months (Table 1).

Meanwhile, several controlled studies have been published,
six of them randomized (60, 62, 76, 79, 81, 83), whereas Batich
et al. summarized the data of three previous similar trials they
conducted (84) (for details, see Table 1).

For a phase III trial on 331 newly diagnosed GBM patients
(232 in the DCV group and 99 in the control group), Liau et al.
described long-term survivors and a mOS of all patients of 23.1
months. Unfortunately, however, they did not yet report
conclusive data on the outcome of the study.

In two randomized phase II trials with 34 (60) and 25 (62)
newly diagnosed GBM patients, mOS (31.9 and 17 months) of
the vaccination groups was significantly improved compared
with that of the respective control groups (15 and 10.5 months).

In another randomized phase II trial with 41 newly diagnosed
and recurrent GBM patients (81), Yao et al. reported that DCV
significantly prolonged mOS (13.7 vs. 10.7 months).

In two randomized phase II trials with 76 (76) and 124 newly
diagnosed GBM patients (83), no significant differences in mOS
(18.8 vs. 18.9 months and 17 vs. 15 months, respectively)
between patients in the DCV and control groups were
observed, although Wen et al. reported a significantly
improved PFS for the vaccinated patients (11.2 vs. 9 months).

Batich et al. (84) merged their data on DCV with CMVpp65
mRNA transfected DC of newly diagnosed GBM patients (71,
74), either admixed with GM-CSF (11 patients) or tetanus-
diphtheria toxoid (Td; six patients) conditioning of the
vaccination site. They reported a mOS of vaccinated patients of
41.1 (GM-CSF) and 41.4 months (Td) compared with 18.5
November 2021 | Volume 12 | Article 770390
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months for control patients receiving unpulsed DC (six patients).
Moreover, they describe long-term survival rates at 5 years of
36.4% and 33.3%.

Thus, even from these controlled trials, which revealed mixed
results, it is still difficult to draw a conclusion as to the efficacy of
DCV in GBM. Since markers of immunosuppression such as the
PD-1+:CD8+ ratio (78), the presence of regulatory T cells (Treg)
or CTLA-4 expression pre- and post-vaccination (67, 93), and an
immunocapability score (77) are associated with survival after
DCV, combining DCV with tools interfer ing with
immunosuppression seems to be called for to improve efficacy.
Moreover, to improve DCV efficacy may also require further
optimization of the DC vaccine in respect to target antigen
selection, preparation of the cells, the integration of DCV into
other treatment regimens, and dosing and scheduling of the
vaccination(s).
ANTIGENIC TARGET

Efficacy of DCV depends on the presence of TAA or so-called
neoantigens in the individual tumor, which allow specific
recognition and killing of the tumor cells. The overall
mutational load—the frequency of neoantigens—of this tumor
entity is low, and the majority of GBM (>85%) contain only up to
10 mutations/1.4 Mb, except for patients with recurrent tumor
after TMZ chemotherapy, which increases the mutational load
[(94); for review, see (95)]. Nevertheless, multiple TAA have
been identified for GBM (96–99).

In previous DCV studies, tumor lysates, apoptotic bodies
of tumor cells, irradiated tumor cells, tumor mRNA, and fusions
of tumor cells and DC as well as peptides eluted from the surface of
tumor cells have been used as whole-tumor cell sources of TAA
(Table 1). They are produced from the patient’s own tumor
obtained from surgery and can also be derived from subsets such
as cancer stem cells (68, 81), which could provide a therapeutic
advantage (28, 29, 100). Whole-tumor cell sources of TAA most
likely will contain multiple TAA, which are present in the
individual tumor of a patient (including the various cellular
subsets within the tumor), i.e., the patient’s full antigenic
repertoire, ensuring antigenic diversity, thereby reducing the risk
of escape of TAA-loss variants (101). Since the respective proteins
are endogenously processed in the DC, in contrast to e.g., synthetic
HLA class I restricted peptides, presentation on HLA class I and II
molecules is possible and independent of the HLA type of the
patient, thereby allowing induction of CTL as well as TH responses
at the same time, which is a prerequisite for the development of an
efficient CTL response. At least for tumor lysates, presentation/
cross-presentation via HLA class I and II molecules of lysate-
derived peptides has been shown (102). The observation of CTL
responses after DCV is further evidence that the material taken up
by the DC is indeed cross-presented via HLA class I (Table 1).
Furthermore, whole-tumor cell sources of TAA, which have not
been processed or cultured extensively, may provide the so far
unknown necessary signals, allowing the DC to guide effector T
cells to the brain (103).
Frontiers in Immunology | www.frontiersin.org 8
TAA represent only a small fraction of proteins; therefore, a
low tumor content of the tumor sample used for preparation of
the TAA would even further reduce the TAA concentration.
While this may not pose a higher risk to the patients, it may
compromise efficacy of the vaccine. Therefore, a high tumor cell
content of the sample has to be ensured, a task that will benefit
from fluorescence-guided surgery, which allows intraoperative
identification of the “solid” part of the tumor (63). Nevertheless,
an estimate of the tumor cell content should always be obtained
and reported when publishing DCV data, to establish values
relevant for efficacy, which are currently unknown. When using
protein solutions, such as lysates, the protein concentration used
to load the DC should also be determined and reported. Despite
the abundant presence of normal self-antigens in whole-tumor
cell sources of TAA, induction of autoimmunity or other severe
side effects attributable to its use for vaccine production have not
been reported (Table 1). However, when using whole-tumor cell
sources of TAA, it has to be kept in mind that they may inhibit
vaccine production, i.e., DC differentiation and maturation, or
modify the function of the resulting DC, because of the presence
of immunosuppressive factors produced by the tumor cells (104).
Moreover, efficacy appears not to be based alone on the source of
TAA, but also on how it is processed. Gark et al. reported that
induction of immunogenic cell death prior to DC-loading
increases survival of animals substantially and shifts responses
in the brain towards TH1/CTL/TH17 (105).

As an alternative to whole-tumor cell sources of TAA,
molecularly defined TAA such as specific peptides, proteins,
and DC transfected with the respective target antigen mRNA
have been used for DCV of GBM (Table 1). Molecularly defined
TAA represent a more standardized, consistent, and
reproducible source of TAA and offer the advantage of higher
available target antigen concentrations and lower background,
and target-specific responses can be easily monitored. They can
even be produced personalized (86). Nevertheless, multiple
molecularly defined TAA should be used to reduce the risk of
TAA-loss variants escaping immune control (101).

It is currently unknown whether whole-tumor cell sources of
TAA or molecularly defined TAA (and which ones) are superior
in inducing antitumoral immune responses and more beneficial
clinically in GBM. Irrespective of the source of TAA, induction of
antitumoral T-cell responses by DCV has been reported in
previous studies (Table 1). The controlled studies, which
documented a clinical benefit, used tumor lysates, thus a
whole-tumor cell source of TAA (60, 62, 81), as well as
CMVpp65 transfected DC, thus a molecularly defined TAA
(84). Similarly, in the controlled studies that did not report a
clinical benefit, either tumor lysates (76) or a set of six defined
peptides (83) was used.

When peptide and tumor lysate-loaded DC were compared in
animal models, superior efficacy has been reported for lysate-
loaded DC (106). Moreover, Neller et al. concluded from the
analysis of 173 published immunotherapy trials on various
tumor entities, including melanoma, renal cell and
hepatocellular carcinomas, and lung, prostate, breast,
colorectal, cervical, pancreatic, and ovarian cancers a higher
November 2021 | Volume 12 | Article 770390
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objective response rate (8.1% vs. 3.6%) when whole-tumor cell
TAA were used compared with molecularly defined TAA (107).
Thus, there appears to be an advantage of whole-tumor cell
sources of TAA. However, particularly results from DCV against
CMVpp65, a target that may be present in the majority of GBM
patients and appears not to be expressed in normal brain cells
(108, 109), generated convincing results for the efficacy of a
molecularly defined TAA (71, 74, 84).
DENDRITIC CELL VACCINE

In 1994, Sallusto et al. reported the generationof immatureDCwith
high antigen uptake activity from blood monocytes using the
cytokines GM-CSF and IL-4, which then could be matured by an
additional culture period with TNFa, resulting in cells with potent
T-cell stimulatory activity (110). These so-calledmonocyte-derived
DC are potent stimulators of naïve CD4+ TH cells and can polarize
TH-cell responses towardsTH1, cross-present antigens, and activate
CD8+ CTL [for review, see (14)]. Yet their activity depends on the
maturation or activating stimulus.

Although there are now techniques to enrich the various rare
blood DC populations, which may also be promising candidates
for DCV (111), monocyte-derived DC have been used in all DCV
trials in GBM to date (Table 1). Monocytes were enriched from
either peripheral blood or leukapheresis products by adherence,
immunomagnetic selection of CD14+ cells, immunomagnetic
depletion of B-cells and T cells, or elutriation. Depending on
the enrichment procedure, monocyte purity varied, with CD14+

selection yielding the highest purity. Higher monocyte purity
may result in more stable culture conditions, reduces modulating
effects of contaminating cells, and yields higher-purity DC
preparations. Overall, production of the vaccine is more
reproducible and results in a more homogenous cell population.

Typically, monocytes were cultured with GM-CSF and IL-4 in
a first culture phase, generating immature DC within ~6 days.
The antigen-uptake activity of immature DC is well developed.
Therefore, they have been used for antigen loading, when tumor
lysates, apoptotic bodies of tumor cells, irradiated tumor cells,
fusions of tumor cells and DC, proteins, and mRNA transfection
were used as source of TAA, whereas peptide pulsing was
performed mainly with mature DC.

Immature DC are poor stimulators of T cells and can even
induce tolerance. Only when they are activated, e.g., by
proinflammatory signals, do they develop into mature DC (14,
111). Originally, TNFa has been used as maturation factor (110).
In 1997, Jonuleit et al. described a more potent maturation
stimulus, a cytokine cocktail containing IL-1b, IL-6, and TNFa
together with PGE2 (112). This cocktail and other combinations
of these factors with or without factors such as type I and II
interferons, lipopolysaccharide, and toll-like receptor ligands
[e.g., polyinosinic:polycytidylic acid (poly(IC))] have been used
in the clinical studies summarized here (for details, see Table 1).

The optimal maturation stimulus is still a matter of debate
and since immature DC sense, integrate, and translate
environmental changes into signals to the T cells, differences in
Frontiers in Immunology | www.frontiersin.org 9
medium, cell density, the frequency of dead cells in cultures, etc.,
may result in different outcomes in regard to target cell function.
Moreover, the same factors can have beneficial as well as adverse
effects. For example, the combination of lipopolysaccharide and
IFNg induces semi-mature DC, which produce IL-12 and induce
CTL responses (113), but it also appears to initiate an
immunosuppressive program with the induction of
indoleamine-2,3-dioxygenase [IDO; (114)]. Similarly, PGE2,
which is part of a potent cytokine cocktail inducing DC
maturation (112) and improves the migratory response of DC
(115), can also induce IDO (116). In addition, the effects of the
maturation factors can be further modulated by the source and
processing of the TAA (104, 105). Thus, outcome of DC
maturation is difficult to generalize. Therefore, the functional
properties of the cells have to be determined for the respective
conditions used in each manufacturing process.

Mature DC can be distinguished from immature DC by their
expression of the surface molecules CD83 (117) and CD25 (118),
whereas other markers such as CD40, CD80, CD86, and HLA-
DR may differ only in expression density (118). Indeed, high-
density expression of CD80 appears to be of utmost importance
because it interacts in-cis with PD-L1, thereby blocking PD-L1
binding to PD-1 on T cells and inhibition of T-cell activation
(119). However, identification of “mature”DCmay be even more
complex. Previously, a population of mregDC (mature DC
enriched in immunoregulatory molecules) has been identified,
which co-expresses maturation markers including CD83, CD40,
CD80, CD86, and RelB together with immunoregulatory genes
such as PD-L1, Pdcd1lg2, CD200, Fas, Socs1, Socs2, and
Aldh1a2 (120).

Overall, mature DC for immunotherapy should 1) have
potent TH-cell and CTL stimulatory activity; 2) polarize
responses towards TH1, which is required for efficient
induction of effector CTL (121, 122); 3) have to imprint
effector T cells for brain tumor homing, which may require
induction of VLA-4 (a4/b1 integrin), which appears to be the
main integrin for lymphocyte trafficking to the brain (123); 4)
express CCR7, which is required for lymph node homing (124,
125); 5) be phenotypically stable upon withdrawal of cytokines
(126) to prevent re-differentiation towards immature (and
possibly tolerogenic) DC after administration; 6) be resistant to
immunosuppressive cytokines like TGF-b (127); and 7) not
induce tolerance. Particularly, the induction of target antigen-
specific tolerance, which has been reported for immature and
semi-mature DC, but not fully mature DC would be detrimental
to the intended induction of antitumoral immune responses
(128). Indeed, de Vries and colleagues showed that TAA-loaded
mature DC, but not immature DC, induce immunological
responses in melanoma patients (129), and even more
important, Dhodapkar et al. documented a decline of the
influenza matrix peptide-specific T-cell response in healthy
individuals after vaccination with matrix peptide-loaded
immature DC (130).

In GBM, several clinical trials used immature DC as vaccines
(Table 1). Somewhat unexpectedly, immunological responses as
well as beneficial effects on survival have been reported, although
November 2021 | Volume 12 | Article 770390
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Yamanaka et al., who used mature as well as immature DC in
their study, reported a trend towards a better outcome in GBM
patients vaccinated with the mature DC (45). Two of four
controlled trials reporting a clinical benefit used immature DC
(60, 81), whereas in the remaining two trials, DC were matured
with TNFa, IL-1b, and PGE2 (62) or TNFa, IL-1b, IL-6, and
PGE2 (84). Interestingly, both controlled trials that did not
document clinical efficacy (76, 83) used lipopolysaccharide +
IFNg for maturation, thus a factor combination that also results
in the induction of IDO (114). In conclusion, currently, the most
potent vaccine for DCV of GBM has not been identified, and
even the use of immature DC cannot be excluded, although there
are strong arguments for the use of mature DC.
DENDRITIC CELL DOSE,
VACCINATION SCHEDULE,
AND ROUTE OF APPLICATION

The minimum DC dose reported to elicit T-cell responses in
healthy individuals is 2 × 106 DC/vaccine (16). A wide range of
DC doses have been used in GBM-DCV trials (0.25–100 × 106

DC/individual vaccine, Table 1). In four controlled studies,
which reported a significant survival benefit for vaccinated
patients, doses of 2–4 × 106 (81), 6 × 106 (62), 20 × 106 (84),
and 20–50 × 106 (60) DC/vaccine were used, while doses of 1–5 ×
106 (76) and 11 × 106 DC/vaccine (83), i.e., in a comparable
range, resulted in no clinical benefit in two other controlled trials.
In several studies, immunological responders were identified
based on an increase in IFNg (qPCR, ELISPOT) after DCV,
and immunological responsiveness was positively associated
with survival. DC doses ranged from 1 to 50 × 106 DC (50, 71,
77, 85). No correlation with DC dose has been described for
either clinical outcome or immunological responsiveness, and a
dose–response relationship with an optimal dose cannot yet be
defined. Because dose-limiting toxicity has not been reached in
previous studies, doses tend to be maximized based on the
number of cells available from the production process and the
vaccination scheme. In a dose-escalating study by Prins et al.
using 1, 5, and 10 × 106 DC/vaccine, no association was found
between increasing DC dose and toxicity or immunologic
response, but longer survival (though not statistically
significant) was observed in those patients receiving the lowest
DC dose (57). Although only a fraction of the injected DC
reaches the lymph nodes (131, 132), this may still be far more
than, e.g., in the case of infections and could actually be too
much. However, Mitchel et al., who used fairly high DC doses/
vaccine (20 × 106), reported an improved survival of patients,
when the efficiency of migration of DC to the lymph nodes was
enhanced (71). Moreover, intranodal application, which may
allow to directly deliver even higher DC numbers to the lymph
nodes, resulted in increased IFNg responses after vaccination (55,
56, 77), although Buchroithner et al. could not document a
survival benefit in a controlled trial using this approach (76).
However, it has to be kept in mind that DC vaccines are likely to
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differ in potency, e.g., immature as well as mature DC have been
used, and the vaccination schedule and route of application, as
well as many other parameters, also influence efficacy, so an
optimal DC dose is difficult to define and may need to be
determined on a case-by-case basis for each vaccination
strategy, yet it has the potential to improve efficacy.

Multiple vaccinations were given per patient, mainly 3–10, but
also up to 23 (Table 1). Thus, many studies used a prime and
boost vaccination approach. Currently, it is not clear whether
multiple vaccinations improve the outcome. Jouanneau et al.
showed in a GL26 orthotopic tumor model that multiple
injections of TAA-loaded DC did not further improve the
outcome, whereas a lysate boost resulted in a significantly
prolonged survival and was associated with an increased CTL
response and antibody formation, contributing to the therapeutic
effect (133). Indeed, de Vleeschouwer et al. described a trend of
prolonged PFS with a DCV strategy with lysate boosting, although
the contribution of the lysate boosts remains unknown (48). In
contrast, Okada et al. reported that DC boost vaccination further
enhanced IFNg responses (56) and Buchroithner et al. described a
trend towards better survival in patients receiving more vaccines
(76). Thus, the number of vaccinations and the use of DC vaccines
or lysates (or any other target antigen such as e.g., peptides) for
boost vaccination are parameters that influence efficacy and
remain to be optimized.

Vaccines have been administered weekly, biweekly, or
monthly, or in combinations thereof, frequently integrated into
established treatment regimens of radiotherapy and
chemotherapy. The standard of care for newly diagnosed GBM
consisting of resection, and radiotherapy with concomitant and
subsequent adjuvant TMZ chemotherapy (4) appears to offer
several windows of opportunity for vaccination, allowing to
retain the standard of care with proven efficacy while
integrating DCV and potentially exploiting synergies between
the two therapeutic approaches.

Immunosuppression, which is prominent in GBM (see
below), correlates with tumor size, and surgical cytoreduction
can at least partially restore immunological responsiveness (90,
91). Fluorescence-guided surgery (FGS) allows to increase the
extent of resection safely, and radiologically complete resections
could be performed in 65% of patients compared with 35% in a
control group undergoing standard surgery (89) that was
associated with improved survival. Thus, integrating FGS into
a DCV approach (63, 75) may not only minimize residual tumor
mass and thereby also immunosuppression, both of which are
beneficial for immunotherapy (44, 48), but because of the
extended PFS, it may also prolong the time period available for
T-cell responses to clear residual tumor cells before the tumor
mass becomes too large again. Moreover, FGS ensures high
tumor cell frequency in the tumor samples, because the vital
“solid” part of the tumor can be identified intraoperatively (63),
an advantage when whole tumor cell sources of TAA such as
tumor lysates are used. The substantial increase in the extent of
resection by FGS may also improve safety of DCV, because in a
patient with gross residual tumor after standard surgery, a grade
4 peritumoral edema has been reported, which was considered to
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be associated with DCV (41, 48). In addition, a maximal
resection generally allows to wean glucocorticoids faster, which
are perioperatively applied in GBM patients to reduce swelling in
the brain—a possible advantage for DCV due to the
immunosuppressive activities of the steroids. However,
although glucocorticoids are potent inhibitors of T-cell
immunity (134) and Keskin et al. reported induction of
polyfunctional T cells after peptide vaccination only in those
GBM patients that did not receive dexamethasone (135), its role
during DCV is not entirely clear. Therefore, it should be used
judiciously or excluded, until more data on dosing and timing of
glucocorticoid use during DCV of GBM patients become
available (136). Indeed, in four of the controlled trials (79, 81,
83, 84), the use of glucocorticoids was either excluded entirely or
only minimal doses of 2–4 mg/day of dexamethasone
were allowed.

Vaccination is either performed in the time period between
radiochemotherapy and adjuvant TMZ or in the course of the
adjuvant TMZ cycles around day 21 (137), because there appears
to be a rationale to combine DCV with TMZ chemotherapy: 1)
TMZ can improve immunological responsiveness (138–140),
probably by reducing Treg (see below) (139, 141) and
interfering with their recruitment to the tumor (142). 2)
Although it frequently causes lymphopenia, the recovering
lymphocyte compartment after chemotherapy has been shown
to allow for efficient induction of antitumoral responses (143–
145). 3) Dying tumor cells after radiochemotherapy or
chemotherapy lead to a release of tumor antigens, which could
enhance homing of tumor-specific effector CTL to the brain
tumor after luminal presentation of the target peptides on HLA
class I molecules on the cerebral endothelium (146). However,
effects appear to depend on TMZ dose; e.g., lower but not higher
TMZ doses were shown to deplete Treg (141), whereas
myeloablative but not non-myeloablative doses enhanced
responses to a peptide vaccine (147). In addition, results from
Pellegatta et al. indicate that adjuvant TMZ may deplete CD8+ T
cells previously expanded by DCV, because in contrast to NK
cells, they fail to express the multidrug resistance transporter
protein ABCC3 (80). A decline in responding cells after
adjuvant TMZ has also been described by Batich et al. (84).
Moreover, is has been shown that DCV only in the absence
of TMZ, although with additional conditioning of the injection
site with tetanus toxoid, results in the generation of T
effector memory cells producing IFNg, which is positively
associated with survival (82). These results would argue
against combining DCV and TMZ chemotherapy. Because all
controlled DCV trials in GBM used TMZ in both arms,
currently, it cannot be determined whether or not it affects
efficacy (60, 62, 76, 81, 83, 84).

Effective induction of antitumoral T-cell immunity requires
the DC to reach the T-cell areas of lymph nodes. Although the
cervical nodes (148–151) or the nasopharynx-associated
lymphoid tissue (152) serve as lymph node stations of brain
immune responses, imprinting the brain homing phenotype of
effector T cells is a function of the DC rather than that of a
distinct lymph node. Therefore, effective responses targeting
Frontiers in Immunology | www.frontiersin.org 11
antigens in the brain can also be initiated in other lymph
nodes besides the cervical nodes or the nasopharynx-associated
lymphoid tissue (103).

Depending on the route of application, DC can be detected in
different organs. Intravenous application results in a rapid
enrichment in the liver, lungs, and kidneys but is the highest
in the spleen, whereas after subcutaneous application, there is a
marked accumulation of DC in the draining lymph nodes, with a
preferential paracortical localization in the T-cell areas (153).
When intradermal application is used instead, even more DC
reach the T-cell areas of the lymph nodes in mice (154) as well as
in humans (155), with only mature but not immature DC
efficiently migrating to the lymph nodes (156). This is probably
due to the expression of the CCR7 chemokine receptor on the
mature DC (118, 124, 125) and the responsiveness of the cells to
the chemokines CCL19 and CCL21, which are expressed
constitutively by peripheral lymphatic endothelial cells and
lymph node stromal cells (157).

DC can already be detected in the lymph nodes 30 min after
injection, there is a maximum after 48 h, and they appear to persist
for up to 14 days (158–160). Only ~5% of injected DC may reach
the lymph nodes, which appears to be sufficient for effective
induction of antitumoral immune responses (131, 132),
although substantially higher values have been reported as well
(160). A large fraction of DC remains at the injection site, rapidly
becomes apoptotic, and is cleared by CD163+ macrophages (131).
However, it is possible to augment DC migration to the lymph
nodes by preconditioning the application site with a potent recall
antigen such as tetanus/diphtheria toxoid, associated with
improved survival of patients (71).

The life span of DC in the lymph nodes is limited to a few
days (161, 162), and they may be removed by apoptosis (163,
164) and phagocytic clearance by macrophages (165). However,
endogenous DC in skin and lymph nodes may prolong antigen
presentation beyond the life span of the injected DC (166).

Overall, there appears to be an advantage of intradermal
application of vaccines, and indeed, most studies have used it
(Table 1). Whether the higher DC numbers delivered directly to
the lymph nodes by intranodal application (55, 56, 76) are even
more effective remains to be determined.

There is also the possibility of intratumoral application of DC.
Pellegatta et al. have documented in an orthotopic GL261 glioma
model that the efficacy of intratumoral application of GL261
lysate-loaded DC is lower than that of subcutaneous application,
but that the combination of both procedures significantly
improves survival (167). Since intratumorally administered DC
remain in the brain parenchyma and were not detected in the
cervical lymph nodes, a different mechanism than for the
subcutaneously administered DC appears to be responsible for
improved survival. Whether they contribute to the final
maturation and shaping of the effector T-cell response (168) by
acting as tissue inflammatory DC or reduce tumor cell growth in
this model because of their production of TNFa (167) remains to
be determined. Intratumoral application has not yet been studied
in clinical trials in GBM.
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IMMUNOSUPPRESSION AND IMMUNE
CHECKPOINT REGULATION

Amajor obstacle to the therapeutic vaccination of GBMwith DC is
that the antitumoral immune response must be elicited in the
context of immunosuppression. Humoral and cell contact-
dependent mechanisms originating not only from the tumor cells
themselves (including intrinsic mechanisms of immune evasion)
(169) but also from the cells of the TME, such as Treg, tumor-
associated macrophages (TAM), and myeloid-derived suppressor
cells (MDSC), can inhibit antitumor immunity (Figure 1).
Moreover, immune checkpoints—control mechanisms that limit
and thereby prevent excessive immune responses—may be
activated in the TME, also resulting in inefficient responses and
T-cell dysfunction. Whether DCV by itself can tip the balance
towards immunity is unclear, but efficacy may require the
combination with additional therapeutic strategies (Figure 2) to
overcome the adverse effects of immunosuppression and immune
checkpoint regulation.
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Regulatory T Cells
Treg are a distinct immunosuppressive T-cell subpopulation,
which contribute to maintaining immunological tolerance,
limiting excessive immune responses, and promoting
homeostasis and tissue regeneration. They either develop in
the thymus (thymic (t)Treg) as a distinct T-cell lineage or
differentiate in the periphery (peripheral (p)Treg) from naïve T
cells [reviewed in (170, 171)]. Naïve/resting Treg reside mainly in
the blood and secondary lymphoid organs. They can be
identified as CD3+/CD4+/CD25low/CD127−/low T cells, which
express the transcription factor FoxP3 (172–176), although
FoxP3 may also be transiently expressed at low levels in the
course of activation of human conventional CD4+ and CD8+ T
cells (177). They further express CD45RA, CD62L, and CCR7
(CD197), whereas expression of CTLA-4 (CD152) and CD45R0
is absent on the naïve/resting Treg. Upon T-cell receptor
stimulation, they differentiate into highly proliferative and
suppressive effector Treg, which are characterized by a CD3+/
CD4+/CD25high/CD127−/low/FoxP3high/CD45RA−/CD45R0+/
FIGURE 1 | Mechanisms of immunosuppression in glioblastoma (GBM). In GBM, tumor-associated macrophages (TAM), myeloid-derived suppressor cells (MDSC),
and regulatory T cells (Treg) form a potent immunosuppressive tumor microenvironment (TME), which inhibits antitumor immunity and thereby interferes with dendritic
cell vaccination (DCV). Besides the intrinsic immune escape mechanisms of the tumor cells, immune checkpoint molecules, like PD-L1, PD-L2, Tim-3, Lag-3, CD155,
and galectin-9 that normally control the extent of immune responses, are expressed on the immunosuppressive cells of the TME, contributing to T-cell dysfunction
and subsequently inefficient antitumoral immune responses. Cells of the TME secrete cytokines such as TGF-b, IL-10, and IL-35 and the chemokines CCL20,
CCL22, and CXCL12, which inhibit T-cell proliferation and function and contribute to a crosstalk between the different TME cell types, thereby further enhancing
immunosuppression. Additional mechanisms include the activity of indoleamine-2,3-dioxigenase (IDO) and arginase-1 as well as production of reactive oxygen
species (ROS) and nitric oxide (NO), all interfering with a proper differentiation, expansion, and function of effector T cells.
November 2021 | Volume 12 | Article 770390

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Datsi and Sorg Immunotherapy of Glioblastoma
CCR7−/CD62L−/CTLA-4+ immunophenotype [reviewed in
(170, 178)], with delineation of cells further improved by the
presence of CD15s on effector Treg, but not conventional effector
T cells (179). Depending on the stimulatory context and the
affinity of T-cell receptor recognition, there is induction of
chemokine receptors (e.g., CCR2, CCR4, and CXCR3) and
adhesion molecules (e.g., lymphocyte function-associated
antigen-1 (LFA-1), integrin-a4, and integrin-b1), which guide
them to their target sites, as well as of effector molecules, which
mediate selective mechanisms of immunosuppression. Indeed,
effector Treg can upregulate transcription factors associated with
distinct TH-effector phenotypes, allowing suppression to be
tailored to the respective polarized responses, and it may be
further modulated by the local microenvironment at the target
site (170, 178, 180–182).

Multiple mechanisms contribute to effector Treg function:

1. They secrete the immunosuppressive cytokines IL-10, TGF-
b, and IL-35, which inhibit T-cell activation and proliferation
either directly or by suppressing the stimulatory activity of
DC, and contribute to the formation of tolerogenic DC and
the generation of additional Treg (183–186). These effects are
further enhanced by cytokine-mediated crosstalk between the
immunosuppressive cells of the TME, e.g., TGF-b stimulates
MDSC proliferation and suppressive activity (187).
Moreover, TGF-b downregulates intercellular adhesion
molecule 1 (ICAM-1) and vascular cell adhesion molecule
1 (VCAM-1) on blood vessels and thus inhibits conventional
T-cell infiltration into the TME (188).

2. Treg release granzyme and perforin, which induce apoptosis
of effector T cells (189, 190). Moreover, CD4+ TH-effector
Frontiers in Immunology | www.frontiersin.org 13
cells expressing death receptor 5 (DR5) can also be killed by
Treg expressing the corresponding ligand TNF-related
apoptosis-inducing ligand (TRAIL) (191).

3. Due to the high-density expression of high-affinity IL-2
receptors (CD25/CD122/CD132) on Treg, they act as an IL-2
sink and deprive conventional T cells of IL-2, which suppresses
their expansion and differentiation to effector cells and may
cause effector T cells to become anergic or apoptotic (192).

4. Treg can release adenosine nucleosides. They express CD39
(ectonucleoside triphosphate diphosphohydrolase-1) and
CD73 (ecto-5′-nucleotidase), which together convert
adenosine triphosphate to adenosine, with extracellular
adenosine inhibiting DC antigen presentation as well as
proliferation and cytokine secretion of activated T cells
through the A2A receptor (193–195). It further promotes
differentiation and proliferation of Treg, expansion of MDSC,
and polarization of M2 macrophages [reviewed in (196)].
Treg also contain high levels of cyclic adenosine
monophosphate, which they can transfer into conventional
T cells via gap junctions, thereby inhibiting their proliferation
and IL-2 production upon activation (197).

5. Effector Treg express several surface molecules, which interfere
with the activation, proliferation, differentiation, and effector
function of conventional T cells. CTLA-4 is an immune
checkpoint regulator. It binds to CD80/CD86 on DC with
higher affinity than CD28 on conventional T cells, leading to
anergy, apoptosis, or even the conversion of the activated
conventional T cells into Treg, due to the absence of the co-
stimulatory signal. However, CTLA-4 not only competes with
CD28 for CD80/CD86 binding but also depletes them from the
surface of DC by transendocytosis, thereby further preventing
FIGURE 2 | Dendritic cell vaccination (DCV) and targeting the immunosuppression in the tumor microenvironment (TME). Combining DCV with therapies targeting
the three immunosuppressive cell populations of the TME—regulatory T cells (Treg), tumor-associated macrophages (TAM), or myeloid-derived suppressor cells
(MDSC)—might improve efficacy. Potential target strategies include restoring the responsiveness of the dysfunctional T cells (pink), applying effector T cells by
adoptive transfer (purple), depleting immunosuppressive cells, and modulating the inflammatory conditions in the TME (green) and blocking the mechanisms of
immunosuppression (red).
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co-stimulation (198, 199). Moreover, it induces IDO in DC and
causes their conversion to tolerogenic DC. IDO is an enzyme
that degrades the essential amino acid tryptophan to
kynurenine. The resulting local tryptophan depletion as well
as the interaction of kynurenine with the aryl hydrocarbon
receptor prevents T-cell proliferation and can induce
differentiation of CD4+ T cells into Treg (200–202). Other
immune checkpoint regulators including PD-1 and its ligand
PD-L1, lymphocyte-activation gene 3 (Lag-3), T-cell
immunog lobu l in muc in-3 (T im-3) , and T-ce l l
immunoreceptor with Ig and ITIM domains (TIGIT) can also
be expressed on Treg and contribute to immunosuppression
(203–208) [reviewed in (209, 210)].

In various solid tumors, there is a high frequency of tumor-
infiltrating effector Treg and particularly a high Treg : CD8+ T-
cell ratio, which negatively correlate with prognosis (211),
indicating that there is a naturally occurring antitumoral
immune response. Treg cannot be detected in normal brain,
and they are rare in low-grade brain tumors, yet despite
lymphopenia, Treg frequencies are increased in the TME as
well as in the blood of GBM patients (212–215). Frequencies may
vary by GBM subtype, with the IDHwildtype (Iso-citrate
dehydrogenase) and mesenchymal subtypes having higher Treg
frequencies than IDHmutated (216) and proneural and classical
GBM subtypes, respectively (217). It has been reported that there
is an age-dependent increase in the Treg : CD8+ ratio, with a
maximal increase in the 60–69 years age group, which coincides
with the median age (64 years) of GBM patients at diagnosis
(218). Nevertheless, the association of Treg frequency with
prognosis is moderate at the most (188, 214, 215, 219), in
contrast to CD4+ and CD8+ effector T-cell infiltrates, which
are positively associated with survival (188). However,
association appears to require the concomitant presence of a
low immunosuppressive signature (220). Indeed, a negative
association of the Treg : CD8+ T cell ratio with survival has
been reported (221), which could indicate that there are patients
with natural antitumoral immunity and that only in these
patients are Treg associated with poor prognosis.

In mouse models of GBM, a time-dependent accumulation of
Treg after implantation of tumor cells has been described (222–
224). Interestingly, Treg numbers increased first in blood and
later, but still in the asymptomatic phase, in the tumor tissue
(223, 224). Thus, Treg appear to be recruited to the tumor
already in an early phase, when tumor cell numbers are still
low and are not a consequence of the immune system simply
being overwhelmed by the tumor mass at a later phase of tumor
development. The chemokines CCL2 and CCL22, which are
produced by brain cells as well as GBM cells and cells of the
TME, appear to be responsible for the recruitment of the CCR4+

Treg to the TME of GBM (142, 215, 225).
Treg-mediated immunosuppression has been targeted to

enhance the efficacy of natural or induced antitumoral immunity
mainly in preclinical models of GBM. This includes depletion of
Treg by anti-CD25 antibodies (145, 222, 226, 227), interference
with their immunosuppressive activity, e.g., by blocking surface
Frontiers in Immunology | www.frontiersin.org 14
molecules such as CTLA-4 (222, 228, 229), TIGIT (230), Tim-3
(231), and PD-1 (229, 230, 232) or enzymes like ecto-5′-
nucleotidase (CD73) (233) and IDO (229), or by preventing the
accumulation of Treg in the TME by blocking CCR4-mediated
migration (225). Irrespective of the approach, these studies could
document a beneficial effect, with increased survival and reduction
of tumor burden associated with restoration of antitumoral
immunity, particularly when different strategies were combined.

However, specific inhibition of Treg or of their functional
activity may not be required. Higher doses of non-fractionated
radiotherapy (234) and chemotherapy with low-dose TMZ (141)
or cyclophosphamide (235) have also been reported to reduce
Treg, although it is unclear whether the long-lasting lymphopenia
induced by the standard concomitant radiochemotherapy of GBM
patients is beneficial for antitumoral immunity (144, 145, 236).
Moreover, immunogenic stimuli such as CPG oligonucleotides
(237, 238), virotherapy (239, 240), or the use of agonistic
antibodies specific for co-stimulatory receptors such as CD40
(241) and OX40 [CD134; (242)] may be sufficient to tip the
balance towards antitumoral immunity, associated with a
reduction in Treg. Another promising approach is to modulate
the metabolism of Treg, which appears to be tightly linked to their
survival and function in the TME [reviewed in (243)]. Whether
combinations with therapeutic approaches targeting Treg or their
function result in increased efficacy has not extensively been
studied and requires further investigation. Curtin and colleagues
reported that anti-CD25 depletion of Treg in combination with
intratumoral delivery of an adenoviral vector expressing Fms-like
tyrosine kinase 3 ligand and herpes simplex type 1-thymidine
kinase inhibited clonal expansion of tumor antigen-specific T cells,
T-cell dependent tumor regression, and long-term survival of
animals (239), whereas a trend towards improved survival has
been reported for the combination of radiotherapy and anti-IDO
(244). Particularly, the timing of Treg depletion appears to be of
utmost importance. Several of the target molecules (e.g., CD25 and
CTLA-4) are not specific to Treg but are upregulated in the course
of activation on conventional T cells as well. Similarly, although
anti-PD1 treatment may enhance antitumoral immunity, at the
same time, it may increase the suppressive activity of Treg (245).
Thus, depletion has to be performed prior to the promotion of
antitumoral immunity or other treatments, to avoid suppression
of the antitumoral effector response (145, 239, 246). Moreover,
long-term survival of glioma-bearing mice was only observed
when the animals were treated by a combination of systemic
and intracranial, but not by systemic anti-CD25 antibody
treatment alone (247). Thus, depleting/blocking agents have
either to be administered directly to the tumor in the brain or to
be able to pass the blood–brain barrier efficiently. Local
administration may also prevent uncontrolled inflammation and
autoimmune phenomena due to the systemic elimination of Treg
and thereby of an important control mechanism of immunity
and tolerance.

Evidence for a prominent role of Treg for the efficacy of DCV
comes from several studies: Driessen et al. identified a lower Treg
frequency in cured rats compared with non-cured rats after DCV
in a 9L gliosarcoma model (248). Fong et al. and Prins et al.
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observed a prolonged survival in patients whose Treg decreased
after vaccination with peptide-pulsed DC (67, 93), with higher
Treg values before vaccination having been shown by Erhart
et al. to be negatively associated with survival after vaccination
with lysate-loaded DC (77). Although Batich et al. described
long-term survivors after anti-CMVpp6 DCV, they observed
increases in Treg that were, however, paralleled by an increase of
the CD8+:Treg ratio (74). Thus, the absolute numbers or
frequencies of Treg by themselves may not be informative
enough. Moreover, several studies reported a beneficial effect
on survival when DCV was combined with anti-CD25 treatment,
particularly when depletion was performed prior to vaccination
(106, 227, 249). Thus, depletion of Treg or interference with their
activity has the potential to improve the outcome of DCV.

Myeloid-Derived Suppressor Cells
MDSC are a heterogeneous population of immature myeloid
cells with potent immunosuppressive activity. In the TME, they
constantly interact with the infiltrating T cells, particularly CTL,
and suppress their function (250, 251), thereby supporting tumor
growth and progression (252). MDSC are divided into two
general subsets: polymorphonuclear (PMN)-MDSC (CD11b
+/CD14−/CD15+ or CD11b+/CD14−/CD66b+), similar to
neutrophils, and monocytic MDSC (CD11b+/CD14+/HLA-
DR−/lo//CD15−), similar to monocytes (250). However, while
they are phenotypically similar to neutrophils and monocytes,
they are functionally distinct (253, 254).

MDSC can be detected in cancer patients or during chronic
inflammation (250, 251, 255), when persistent low-level
stimulation of myelopoiesis results in the development of the
immunosuppressive myeloid cells (256). They develop in the
bone marrow and traffic into solid tumors, where they
accumulate mediated by factors such as GM-CSF, M-CSF, G-
CSF, VEGF, IFNg, IL-6, and IL-4, which are secreted by the
tumor cells themselves or other cells of the TME (257, 258).

MDSC, similar to Treg and in part overlapping (see above), use
multiple mechanisms of immunosuppression [for review, see
(259)], in particular including reactive oxygen species (ROS) and
nitric oxide (NO)-dependent pathways. ROS and NO cause
apoptosis of immune cells (260) and block entry of CTL into the
tumor and responsiveness of T cells to HLA stimulation through the
nitration of chemokines and T-cell receptors, respectively (261,
262). MDSC also inhibit extravasation of T cells by downregulating
CD44 and CD164 (259) and lymph node re-circling through
downregulation of CD62L on naïve T cells via expression of
ADAM17 (263). Arginase 1 catabolizes the non-essential amino
acid arginine and depletes it from the microenvironment. Similarly,
there is a depletion of cysteine by consumption and sequestration
and of tryptophan due to IDO activity. This lack of amino acids in
the TME inhibits proliferation of activated T cells. Like Treg, MDSC
can produce immunosuppressive cytokines such as IL-10 and TGF-
b and extracellular adenosine through the enzymatic activity of
CD39 and CD73. Moreover, they express ligands of immune
checkpoint regulatory pathways such as PD-L1, PD-L2, CD155,
and galectin-9, which dampen and suppress T-cell responses and
may even cause T-cell apoptosis upon interaction with their
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receptors on T cells (259, 264). Moreover, there is extensive
crosstalk between MDSC and Treg, further enhancing
immunosuppression (265, 266).

In GBM, MDSC are a major immunosuppressive component
of the TME (267). They are also significantly increased in the
blood of patients, associated with a higher concentration of
the MDSC-specific protein S100A8/9 and arginase activity in
the serum (268). More recently, Alban et al. confirmed the
presence of MDSC in the blood of GBM patients, while this
cell population was completely absent in low-grade glioma
patients and healthy individuals (269). In the tumor, MDSC
can be found in close proximity to cancer stem cells, and their
presence correlates negatively with OS (270). Analogous to Treg,
MDSC appear to be recruited to the brain tumor in an early
phase and have already been detected in premalignant lesions in
a mouse model (271).

Early studies have confirmed the immunosuppressive activity
of MDSC in glioma patients and shown that their depletion can
restore the disturbed T-cell function (272). Depletion of MDSC
with low-dose 5-fluorouracil (5-FU) resulted in prolonged
survival in a glioma mouse model (270), and in a clinical
study, it has been documented that metronomic capecitabine
reduces MDSC, associated with an increase in T-cell infiltrates in
the tumors (273). Moreover, their frequency correlates negatively
with the response to immunotherapy as reviewed by Stewart and
Smyth (274).

Thus, there is evidence for a prominent role of MDSC-
mediated immunosuppression in GBM. It has been proposed
that targeting MDSC might improve the response to other
therapeutic approaches, particularly immunotherapy. The
following main targeting strategies are considered: 1) depletion
of MDSC, 2) blockage of their migration towards the tumor site,
3) abrogation of their immunosuppressive activity, and 4)
pushing them into differentiation towards mature myeloid cells
(258). Gao et al. have recently summarized all studies and agents
targeting MDSC (275). Therefore, in the following section, only a
few examples of the intervention with the immunosuppressive
mechanisms of MDSC are presented.

The depletion of MDSC can either be achieved directly by
low-dose chemotherapy with, e.g., 5-FU (270), capecitabine
(273), or ibudilast (269), or indirectly by promoting their
differentiation to either M1 macrophages by docetaxel (276) or
towards DC with paclitaxel (277). Full maturation of MDSC can
be induced by all-trans retinoic acid [ATRA; (278)]. Blocking of
the CSF-1 receptor (CSF-1R) signaling via pexidartinib reduced
MDSC as well as M2 macrophages (279), and STAT3 inhibitors
can reduce the number of MDSC and interfere with their
functional activity (271). Furthermore, because MDSC share
several mechanisms of immunosuppression with Treg such as
the utilization of checkpoint regulatory pathways, the same
inhibiting strategies can be used (see Regulatory T Cells section).

Evidence for a role of MDSC for efficacy of DCV comes from
a study on small cell lung cancer patients, who were vaccinated
with p53-loaded DC together with ATRA treatment. DCV alone
did not change the frequency of MDSC, which however was
reduced twofold by ATRA. Moreover, the combination therapy
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resulted in a significant increase of specific immune responses
(280). In GBM, standard radiochemotherapy has been reported
to reduce MDSC in a mouse model (281), but effects have not yet
been assessed in humans in detail. Nevertheless, there may be a
rationale for depletion of MDSC or interference with their
activity together with DCV.

Tumor-Associated Macrophages
Macrophages display a high plasticity in response to
microenvironmental cues, allowing them to acquire distinct
phenotypes and perform diverse functions. In general,
macrophages are divided into classically activated M1
macrophages and alternatively activated M2 macrophages (282,
283). Differentiation of monocytes to M1 macrophages is induced
by GM-CSF and proinflammatory cytokines like IFNg and TNFa,
whereas M2 macrophages differentiate in the presence of M-CSF
and anti-inflammatory stimuli (284–288). M2 macrophages can
be further subdivided intoM2a, M2b, andM2cmacrophages (289,
290), with IL-4 and IL-13, immune complexes and TLR agonists,
and IL-10, TGF-b, and glucocorticoids representing the major
polarizing factors, respectively. Functionally, M1 macrophages are
proinflammatory, promoting immunity, wound healing, and
tissue regeneration (291, 292). In contrast, M2 macrophages are
rather anti-inflammatory; and involvement in wound healing,
tissue repair and TH2 polarization (293–295), phagocytic and
immunomodulatory activity (293, 296–299), and involvement in
immunosuppression and angiogenesis (289, 300, 301) have been
reported for the M2a, M2b, and M2c subtypes, respectively.

TAM are components of the TME. They frequently exhibit an
M2-like phenotype and generally act pro-tumorally, and their
presence is associated with poor prognosis. They originate from
bone marrow-derived circulating monocytes and accumulate in
the tumor due to the presence of M-CSF, GM-CSF, and CCL2 as
well as other factors (302, 303). In the tumor, they differentiate
into anti-inflammatory M2-like TAM by tumor and TME-
derived factors like M-CSF, IL-4, IL-10, and TGF-b.
Depending on the local conditions, they polarize towards the
M2a, M2b, or M2c subtypes (296, 302, 304–306).

Besides other tumor promoting activities, the anti-
inflammatory M2-like TAM promote immunosuppression.
They express immunosuppressive cytokines such as TGF-b
and IL-10, which not only inhibit T-cell proliferation and
function but also contribute together with chemokines, such as
CCL20, CCL22, and CXCL12, to an extensive crosstalk with Treg
and MDSC, further enhancing immunosuppression (307–314).
Moreover, similar to Treg and MDSC, depletion of amino acids
(tryptophan and arginine) and expression of ligands of immune
checkpoint regulatory pathways contr ibute to the
immunosuppressive activity of TAM (201, 312, 315–320).

In GBM, TAM make up approximately 30%–50% of all cells
in the TME (321–323). They are associated with poor prognosis
and tumor progression (324–327). Besides infiltrating TAM, in
GBM, there is a secondary population of brain-resident
monocytic cells, the microglia, which may also be modulated
in its activity by the tumor and other cells of the TME (328–331).
Bone marrow-derived monocytes are recruited to the brain by
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cytokines and chemokines such as IL-1b and CCL2 (313, 332),
where they mainly differentiate towards anti-inflammatory M2-
like macrophages, particularly towards M2c (330, 333).
Moreover, the polarization towards M2-like macrophages is an
evolving process, which is highly dependent on a hypoxic TME.
With increasing hypoxia, the cells polarize more and more
towards the M2 subtype (334–336). In line with this
observation, there appears to be an increase in M2-like
macrophages in recurrent compared with primary tumors,
especially in the mesenchymal subtype due to NF-1 deficiency
(296, 337).

Due to their importance in promoting tumor progression and
immunosuppression, therapeutic targeting of TAM and their
function is being attempted. Choi et al. have summarized
different molecular targets in preclinical and clinical
investigations (338). These include blocking recruitment of
TAM into the tumor by targeting chemokines such as CCL2
and CXCL12, which resulted in a reduction in tumor size.
Further approaches target the functional characteristics of
macrophages, by utilizing small-molecule inhibitors for PI3K,
Ras/MAPK signaling, or the IDO pathway, leading, e.g., to
reduced IL-10 secretion from M2 macrophages.

A different approach is the reversion of the M2 phenotype to
the proinflammatory M1 phenotype by using, e.g., oncolytic
virotherapy. Van den Bossche et al. cultured human M2
macrophages with cancer stem cells infected with Delta24-
RGD virus and observed a transition towards the M1
phenotype of the cells. Patients treated with this viral particles
showed an increase in M1 macrophages in their tumor tissue
compared with untreated controls (339). Saha et al.
demonstrated that the application of an oncolytic herpes
simplex virus (oHSV) expressing IL-12 in combination with
antibodies against CTLA-4 and PD-L1 shows a regression of
almost all tumors in two GBM mouse models by inducing an
effector T-cell influx and an increase in the M1 phenotype of
macrophages (340). Thus, local immunostimulatory conditions
in the tumor may alter the immunosuppressiveness of the TME.
Indeed, DCV in a mouse model revealed a reduction of TAM and
MDSC after treatment (341). Moreover, Dammeijer et al.
reported that the kinase inhibitor PLX3397 (pexidartinib),
targeting CSF-1R signaling, results in a reduction of TAM in a
mouse model for malignant mesothelioma but did not influence
survival. However, when combined with DCV, survival was
increased, which was associated with a reduction of TAM and
an increase in effector T-cell infiltration (342). These results
suggest that combining DCV with depletion, blocking, or re-
polarization of TAM may improve efficacy of the treatment
of GBM.

Immune Checkpoint Regulation
T-cell activation by DC for antitumoral immunity requires the
differentiation and expansion of antigen-experienced effector
memory T cells (343), with interferon-g (IFNg)-producing
THelper1 (TH1) cells being required for efficient induction of
antitumoral effector cytotoxic T cells (121). Antigen-experienced
effector memory T cells are characterized by the expression of the
November 2021 | Volume 12 | Article 770390
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surface markers CD45RO and CD69 (and CD103 on tissue
resident cells) in the absence of CCR7 (C-C chemokine
receptor type 7) and CD62L (343–345). Effector function of
these TH1 and Tc1 cells is defined by the expression of the
transcription factors (TF) T-bet and Eomes, and the effector
potency depends on a delicate balance of these two TFs (346).
Highly potent effector T cells present with a T-bethigh/Eomeslow

profile. They produce high levels of IFNg, perforin, and
granzyme B (347).

The activity of these effector T cells needs to be tightly
regulated in order to prevent excessive immune reactions and
uncontrolled inflammation, which may cause destruction of
healthy tissue. Therefore, in the course of activation, T cells
upregulate immune checkpoint receptors on their surface,
including PD-1, CTLA-4, Lag-3, and Tim-3 that upon
interaction with their ligands provide a negative feedback to
attenuate proliferation and function of the activated T cells,
thereby preventing overreactions (348, 349).

In various cancers, including GBM, these immune checkpoint
mechanisms, which normally promote self-tolerance and protect
against autoimmunity, contribute to tumor immune escape
(348–350). Tumor cells or components of the TME such as
TAM, Treg, and MDSC express ligands of immune checkpoint
receptors, which upon interaction with their receptors on tumor
infiltrating T cells cause partial dysfunction of the T cells, a
process also referred to as “T-cell exhaustion,” because similarly
dysfunctional T cells can be found in chronic infections and after
repetitive T-cell stimulation (348, 349, 351). Compared with
CD8+ T cells generated in response to acute infections, such as an
acute CMV infection, exhausted antigen-specific CD8+ T cells
generated in response to chronic infections or cancer are
characterized by reduced proliferation rates, diminished
cytotoxicity, and lower cytokine production. Additionally, they
express non-transiently checkpoint receptors. T-cell dysfunction
has been observed in an early stage of cancer, and it becomes
more severe upon tumor progression (352, 353), protecting the
tumor cells from the effector mechanisms of the T cells.

In GBM, PD-1/PD-L1 is the best characterized immune
checkpoint mechanism. In the majority of tumors, cells of the
TME (354) as well as tumor cells express PD-L1 (355), although
expression may be restricted to a minor subpopulation of tumor
cells only [0%–87%; median 2.8%; (356)]. The respective
receptor, PD-1, is expressed on tumor-infiltrating CD4+ and
CD8+ T cells (355). Expression on the tumor-infiltrating T cells is
higher than on their counterparts in blood (346, 357), and they
are functionally impaired (346, 358). Besides PD-1, expression of
Tim-3, Lag-3, and CTLA-4 has also been observed on infiltrating
T cells in GBM (359).

The dysfunctional state of the T cells may not be permanent
but appears to have to be maintained by receptor–ligand
interactions, in contrast to T-cell senescence, which is not
reversible (353, 360). When the respective immune checkpoint
receptors are blocked, e.g., by receptor or ligand-specific
monoclonal antibodies, T cells can be reinvigorated: their
function and proliferation are restored (359, 361). Indeed, in
many tumor entities, application of monoclonal antibodies
Frontiers in Immunology | www.frontiersin.org 17
blocking immune checkpoint receptors or their ligands has
resulted in a survival benefit for the patients (361).

In mouse models of GBM, blocking of CTLA-4, PD-1/PD-L1,
and TIGIT has been shown to result in increased survival,
frequently associated with depletion of immunosuppressive
cells and an influx of effector T cells into the tumor (222, 228–
231). Thus, there appears to be an intrinsic antitumoral immune
response in cancer patients, which can be enhanced by
interference with the immune checkpoint pathways. Although
this type of immunotherapy results in durable responses in many
tumors, this is only true for a fraction of patients (20%–50%,
depending on the cancer type), and therapy is associated with
severe immune-related adverse events (362). In contrast to many
other tumors, however, in GBM, interference with immune
checkpoint pathways has not been successful. No survival
benefit has been reported so far in several clinical trials (363–
367), except for one of three trials applying an anti-PD-1
monoclonal antibody in a neoadjuvant setting (368–370). The
reason for the therapeutic failure of immune checkpoint
interference in GBM is currently unknown. Whether other
checkpoint regulators or possibly other immune escape
mechanisms play a more prominent role in GBM than in other
tumors and therefore the loss of PD-1 signaling due to blocking
is irrelevant remains to be determined. However, reinvigoration
of exhausted T cells may also have limitations in GBM. It
depends on how terminally differentiated/exhausted T cells are.
The function of exhausted T cells showing a T-betlow/Eomeshigh

TF expression and a concomitant expression of multiple immune
checkpoint receptors cannot be restored (346). It is further
essential to distinguish between progenitor exhausted T cells,
which express the TF TCF1 and the TCF1−/Tim-3+ terminally
exhausted T cells, which co-express the TF TOX, vital for their
persistence in the tumor environment with chronic antigen
stimulation, with the later population not being re-invigoratable,
thus not responding to checkpoint blockade (352, 353, 371). It has
been suggested that immune checkpoint inhibition improves OS
by overcoming the exhaustion state of tumor-infiltrating T cells
resulting in an increased effector response, but functional proof
about that is still missing up to date. Although several studies have
described an increase in TCF1+ tumor-infiltrating T cells, it is
unclear whether they are re-invigorated from the exhausted cells,
represent new “non-exhausted” or “non-terminally differentiated”
clonotypes, or are recruited from the periphery following immune
checkpoint inhibition.

Furthermore, immune checkpoint interference can only
enhance but not induce antitumoral responses. The low
mutational load [(94); for review, see (95)] and the low
frequency [20%–30% (50, 83)] of preexisting antitumoral T-cell
responses in GBM patients may therefore limit efficacy of immune
checkpoint interference as well. In agreement with this, PD-1 or
PD-L1 blockage combined with DCV in mouse models resulted in
CD8+ T cell-dependent long-term survival, which was not
observed with the respective monotherapies (372, 373). Similar
results have been obtained by Wang et al., who vaccinated GBM
patients with personalized TAA-pulsed DC combined with low-
dose cyclophosphamide, poly(IC), imiquimod, and anti-PD-1
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antibody, which induced antigen-specific CD4+ and CD8+ T-cell
responses, which were associated with a favorable outcome when
compared with the respective monotherapies (86). Moreover, Jan
et al. and Yao et al. reported for DCV that a lower PD-1+:CD8+

ratio in TIL as well as in blood lymphocytes is associated with
longer survival (78, 81), and Fong et al. described an association of
decreased CTLA-4 expression with survival after DCV (93). Thus,
there appears to be a rationale for combining DCV and blocking of
immune checkpoint regulatory pathways to increase efficacy.
DCV itself might be able to trigger the expansion of the above-
described TCF1+/TOX− neoantigen-specific T cells from the
periphery or even the tumor site and hence enhance tumor
killing and survival.

Overall, targeting any one of the three immunosuppressive
cell populations in the TME of GBM as well as the immune
checkpoint regulatory pathways (Figure 2) appears to represent
a promising approach by itself, but in particular in combination
with DCV.
CONCLUSION

Even after more than 10 years of DCV in GBM and after more
than 1,000 patients having been vaccinated, it is still difficult to
draw conclusions as to the efficacy of DCV. However, there are
promising results urging to further develop it as a therapeutic
Frontiers in Immunology | www.frontiersin.org 18
tool, which will require not only optimizing the DC vaccines in
respect to target antigen selection, preparation of the cells, and
integration of DCV into other treatment regimens but also
dosing and scheduling of the vaccination(s). Future vaccination
strategies will have also to take into account immunosuppression
in GBM and the means to overcome it, which are now becoming
increasingly available, to improve efficacy in GBM patients.
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