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Abstract 

Background:  One of the most prevalent complications of Partial Nephrectomy (PN) is Acute Kidney Injury (AKI), 
which could have a negative impact on subsequent renal function and occurs in up to 24.3% of patients undergoing 
PN. The aim of this study was to predict the occurrence of AKI following PN using preoperative parameters by apply‑
ing machine learning algorithms.

Methods:  We included all adult patients (n = 723) who underwent open PN in our department since 1995 and on 
whom we have data on the pre-operative renal function. We developed a random forest (RF) model with Boolean 
satisfaction-based pruned decision trees for binary classification (AKI or non-AKI). Hyper-parameter grid search was 
performed to optimize the model’s performance. Fivefold cross-validation was applied to evaluate the model. We 
implemented a RF model with greedy feature selection to binary classify AKI and non-AKI cases based on pre-opera‑
tive data.

Results:  The best model obtained a 0.69 precision and 0.69 recall in classifying the AKI and non-AKI groups on aver‑
age (k = 5). In addition, the model’s probability to correctly classify a new prediction is 0.75. The proposed model is 
available as an online calculator.

Conclusions:  Our model predicts the occurrence of AKI following open PN with (75%) accuracy. We plan to exter‑
nally validate this model and modify it to minimally-invasive PN.
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Background
Renal cell carcinoma (RCC) represents about 3% of all 
cancer-related cases in 2018, with the highest incidence 
occurring in Western countries [1]. During the last dec-
ades, stage migration towards localized disease has 

occurred [2]. Partial nephrectomy (PN) is the treatment 
of choice for localized cT1 renal masses [3]. The main 
advantage of PN is the preservation of renal function 
compared to radical nephrectomy [4]. One of the adverse 
effects of PN is post-operative acute kidney injury (AKI), 
which increases the risk of long-term chronic kidney dis-
ease (CKD) with its consequences, including decreased 
overall survival [5], although some studies questioned its 
impact on long-term renal function [6]. The prevalence 
of AKI following PN is reported to be up around 25% and 
is dependent on the surgical approach, patient baseline 
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characteristics, and the definition of AKI used in each 
study [7].

Machine learning (ML) based models which predict 
different clinical properties have been shown to be a use-
ful tool [8] and particularly in clinical practice [9]. ML 
models can be classified into three main subtypes: classi-
fication, search, and prediction. In this paper, we focus on 
the latter in order to predict AKI following PN.

Prediction ML models provided with retrospective data 
are able to find complex statistical connections between 
different parameters (this step is usually referred to as the 
learning process) [8]. As a result, upon providing a new 
set of parameters, these models are able to predict, with 
fair accuracy, the outcome one wishes to retrieve. Weng 
et al. [10] used four ML algorithms to predict cardiovas-
cular risk, showing improvement in all four compared to 
standard algorithms. A study by Wu et al. [11] developed 
an ML model to predict fatty liver disease. The authors 
used five different ML algorithms on the same data, 
where RF showed the best results. Several authors used 
different ML models to predict medical AKI in hospital-
ized patients [12, 13]. For instance, Kate el al. presented 
a framework in which AKI is continually predicted auto-
matically from EHR data over the entire hospital stay 
using [14]. In addition, Gameiro et al. reviewed multiple 
artificial intelligence based models for AKI risk predic-
tion [15]. The authors concluded that real-time imple-
mentation of ML-based AKI risk models is a promising 
approach as these do not require additional AKI bio-
marker testing.

Specifically, previous studies investigating the per-
formance of ML models in predicting AKI have yielded 
promising results [16, 17]. However, the accuracy of these 
models is not optimal, and we thought that by using an 
ML model, we can increase the accuracy of these models.

In this study, we aim to apply an explainable ML model 
to predict AKI in patients undergoing open PN. We 
hypothesized that ML models could identify and learn 
from pre-operative parameters and predict the AKI 

outcome. A self-explainable prediction system that is 
based on ML was then built and deployed online. A sche-
matic view of the workflow of the proposed framework is 
shown in Fig. 1.

Methods
Data acquisition
Since 1995, we have been continuously extending our 
open PN database to include surgical and oncological 
parameters. For this particular study, we included all 
adult (> 18  years) patients who underwent open PN for 
enhancing solid renal mass and then split the data into 
AKI and non-AKI. Patients with a solitary kidney or mul-
tiple tumors were excluded from this study. Therefore, 
the PN database includes 723 patients. Renal function 
was assessed the day before surgery, on the day of the 
surgery, and on a daily basis after the surgery until dis-
charge which more often than not was on post-operative 
day 3.

Operative technique
An extraperitoneal, extrapleural supra-11th rib incision 
was done on the operated side. IV Mannitol was given 
before clamping the renal artery. In situ renal hypother-
mia was done by cooling the surface of the kidney with 
ice slush for 10–15 min immediately after clamping the 
renal artery. The tumor was enucleated with a minimal 
rim of normal parenchyma. Renorrhaphy was done using 
either 2/0 VICRYL interrupted sutures or tissue adhesive 
BioGlue (CryoLife, Atlanta, GA). A more detailed surgi-
cal technique has been previously published by our group 
[18].

Renal function assessment
Baseline serum Creatinine (sCr) was measured the day 
before surgery. We used both the RIFLE (risk, injury, 
failure, loss of kidney function, and end-stage renal 
failure) [19] and AKIN (Acute Kidney Injury Network) 
[20] criteria to define AKI, comparing each of the 

Fig. 1  A workflow of the proposed framework
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post-operative renal function assessments to the base-
line level. AKI was defined as the occurrence of one of 
the following conditions: (1) an increase in serum Cre-
atinine of ≥ 0.5 times above baseline in the first week 
following surgery, (2) an increase in sCr by ≥ 0.3  mg/
dl(≥ 26.5  mmol/l) above baseline in the 48  h window 
post-operatively, or (3) reduction of more than 25 per-
cent of the estimated Glomerular Filtration Rate in the 
7 days period after surgery. In total, 231 patients devel-
oped AKI based on the aforementioned criteria and 
constituted the AKI group, and 492 did not develop 
AKI and therefore were classified as non-AKI. 723 
patients is considered a large enough set to use for the 
methods shown in the following sections [21].

Data split
In order to develop ML algorithm, the study population 
was compiled into a data set, split into a training cohort 
from which the proposed algorithm was derived and a 
validation cohort on which the model was applied and 
tested. The training cohort was derived from a random 
sampling of 80% of the data set, and the validation cohort 
comprised the remaining 20%. The division process was 
repeated 1000 times looking for the optimal split that 
ensures no statistically significant differences between 
the two cohorts in demographics or AKI outcome. The 
split was carried on such that the divisions are minimiz-
ing the differences of the age, gender, smoking years, 
and AKI parameters in both the training and validation 
cohorts. The distribution of the parameters age, smock-
ing, gender, and AKI in both these cohorts are shown in 
Eq. (1).

Algorithm
We used the random forest (RF) ML algorithm [22]. We 
selected the RF algorithm because it can provide a simple 
explanation of the model’s prediction to healthcare pro-
fessionals while obtaining a good accuracy on a relatively 
small data set [23]. We applied the proposed binary AKI 
prediction decision tree (DT) algorithm on the training 
cohort and then validated it on the validation cohort that 
was completed using the sklearn library with Python 3.5. 
The model’s hyper parameters were determined using the 
grid search method [24] (see Sect. 2.9) and fivefold cross-
validation on the training cohort to determine the values 
which led to the best performance.

(1)











Parameter Training Cohort Validation Cohort
Age 61.23± 12.05 60.92± 13.14
Smoking 17.61%± 38.15% 18.34%± 38.74%
Gender Male : 37.98%, Female : 62.02% 35.45%, Female : 64.55%
AKI 46.84%withAKI 38.54%withAKI











Feature selection
We performed a feature selection in the following 
order: first, we manually filtered the features available 
before the surgery (marked as F  ). Afterward, we evalu-
ated the model’s accuracy, picking one feature from F  . 
The feature that resulted in the model’s highest accu-
racy was chosen F1 . Then, an additional feature from 
the remaining feature set ( F\F1 ) was added to the cho-
sen feature set from the previous step such that the 
model’s accuracy was the highest between all combi-
nations. The process was repeated until the gain in the 
model’s accuracy upon adding a new feature became 
less than 1%.

Model pruning
After training the model, we transformed each DT in 
the RF into a respective Boolean satisfaction prob-
lem (SAT). Each branch was converted into a Boolean 
conditionr : x1 ∧ x2∧···∧xn where {xi}ni=1 are the condi-
tions in each node in the branch and r was the result 
label node. Branches with the same result label r were 
stitched together using the’or’ logical operator (∨). 
Afterward, each Boolean condition was reduced to 
the minimal Boolean condition that satisfied the same 
inputs. The result of Boolean condition was converted 
back into a DT.

Statistical analysis
We performed a fivefold cross-validation to evaluate 
the model’s accuracy. The data was divided into five 
cohorts where four cohorts were used for the train-
ing cohort and one for the testing cohort. The pro-

cess was repeated five times, allowing each patient to 
be included in both the training and test cohorts. The 
receiver operating characteristic (ROC) curve was used 
to measure the model’s classification ability. At each 
point, the recall and precision were presented in corre-
spondence with a specific decision threshold. The area 
under the ROC curve (AUC) was used to quantify the 
model’s classification ability. Finally, the importance 
of each feature depended on the reduction of classifi-
cation accuracy caused by removing the feature (e.g., 
information gain) [25].
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Hyper‑parameter fine‑tuning
We performed hyper-parameter fine-tuning using the 
grid search method, based on the model’s accuracy 
[24]. The grid search was performed on

where depth is an individual DT tree depth; MSPL is 
the minimal number of samples for a leaf; LC is the leaf 
count; and n is the number of trees in the RF model.

Results
Decision features
Implementation of the method described in Sect. 2.6 on 
31 features (see Additional file 1: Appendix) resulted in a 
set of eight features

where size is the size of the tumor in centimeters; renal is 
the RENAL score; age is the patient’s age in years at the 
time of the surgery; baseHB is the baseline hemoglobin 
in g/dL; IT is the ischemia time in minutes; weight is the 
patient’s weight in kilograms at the time of the surgery; 
height is the patient’s height in centimeters at the time of 
the surgery; and creatinine is the baseline pre-operative 
Creatinine in mg/dL. The model found that IT contrib-
uted significantly to the accuracy of the model. However, 
IT  is surgical parameter, and is not available beforehand. 
In order to overcome this, we defined a feature called IT ∗ 
which is an estimate of the real IT. The IT ∗ is obtained 
using the k-nearest neighbors (KNN) algorithm (where 
k = 5 and the distance metric is weighted by distance and 
the average is obtained using the grid search method) 
on the other seven features which are available before 
the surgery. To evaluate the quality of the IT ∗ feature 

H := [depth, MSPL, LC , n],

(2)F := [size, renal, age, baseHB, IT , weight, height, creatinine],

compared to the original IT  feature, we performed a 
fivefold test on the IT  feature with the KNN algorithm. 
A linear regression on the values ( IT  , IT ∗ ) was obtained, 
resulting in a coefficient of determination ( R2 ) of 0.879. 
Namely, the IT ∗ feature well estimate the IT  feature and 
therefore, we wereable to replace the feature space to:

A Pearson correlation coefficient between all pairs of F 
was then obtained, showing a 0.57 correlation between 
the renal and size features and 0.45 correlation between 
patient height and weight. The first correlation is trivial 
as the renal score includes the size. In addition, the sec-
ond correlation is already reported in other studies [26]. 
All other combinations of features from F have absolute 
correlation below 0.3, supporting the fact that the fea-
ture-space is mostly linearly independent.

AKI classification model
We trained the RF model (see Sect.  2.5) on the clinical 
data set as described in Sect.  2.4 on the feature set F. 
Afterward, we performed hyper-parameter fine-tuning as 
described in Sect.  2.9. Then, we carried out pruning on 
the best model (see Sect. 2.7). As a result, we obtained a 
model with 107 DTs; each one of these DTs had up to five 
levels of depth. The number of leaves is different for each 
tree in the RF due to the pruning process. The model 
was validated on the validation set using fivefold cross-
validation analysis. The precision obtained 0.69 ± 0.085. 
Similarly, the recall obtained 0.69 ± 0.062. The features’ 
importance is presented in Table 1.

Furthermore, we derived the ROC curve of the model, 
as shown in Fig.  2. The AUC was found to be 0.75. In 
addition, the average confusion matrix was:

(3)F∗ := [size, renal, age, baseHB, IT∗, weight, height, creatinine].

Table 1  Model’s features importance

The original importance is the one obtained by a model that uses IT  . The estimated importance is the one obtained by estimating IT  (e.g., IT ∗ using the other seven 
features). The core importance is the importance of the seven features as the weighted average in contribution to the final prediction of IT ∗

Feature Size Renal Age BaseHB Weight Height Creatinine IT IT*

Original importance 0.13 0.11 0.17 0.05 0.15 0.05 0.21 0.13 0

Estimated importance 0.14 0.11 0.19 0.06 0.12 0.03 0.23 0 0.12

Core importance 0.17 0.11 0.2 0.06 0.16 0.06 0.24 0 0
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Interface
The model has been deployed as a web service.1 Figure 3 
shows the model’s interface as a web service.

(4)





True False
Positive 0.34 0.41
Negative 0.07 0.18





Discussion
AKI following PN is a unique entity, which significantly 
differs from medical and post-surgical AKI; in addition 
to the common risk factors for medical AKI, patients 
undergoing PN have increased risk for AKI due to the 
associated blood loss and relative hypovolemia and, 
more importantly, the clamping of the renal artery and 
the loss of functional tissue. Several studies reported an 
increased risk of chronic kidney disease (and mortality) 
in patients who develop AKI [5, 27–29]. The incidence 
of AKI following PN varies depending on several param-
eters, including surgical approach, the definition used for 
AKI, and the cohort reported in each study. In a recent 
study by Tachibana et al., the authors reported less than 
11% AKI following robotic PN and almost 50%incidence 
following open PN [30]. Our results demonstrate that the 

development of AKI following PN can be accurately pre-
dicted based only on clinical information routinely col-
lected before surgery. The proposed models performed 
well according to all evaluation criteria and achieved a 
higher AUC and accuracy score compared to the classical 
scoring methods. The proposed model has similar scores 
to the modern ML-based models [16, 32] and AUC in 
accordance with previous large studies on general inten-
sive-care unit patients developing medical AKI [31].

Our results agree with a wide range of ML-based AKI 
risk prediction models from recent years [12, 13]. In 

Fig. 2  The ROC curve of the model’s prediction on the binary AKI 
classification, with AUC of 0.75

Fig. 3  The model’s interface and prediction as a web service. The user inserts a patient’s data into the form and by clicking on the predict button 
obtains the AKI binary prediction with the model’s confidence. In addition, an explanation of the model’s prediction is provided below

1  https://​teddy​4445.​github.​io/​cancer-​AKI-​predi​ctor-​gui/​predi​ctor.​html.

https://teddy4445.github.io/cancer-AKI-predictor-gui/predictor.html
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particular, our model can be used at any point before 
the surgery. As such, it is agnostic in time, similar to the 
approach of several AKI prediction tools [15].

We used a RF model (as an ensemble of DT models) as the 
ML algorithm for our model in order to take advantage of 
the explainable property of this model. In addition, by using 
the SAT pruning algorithm, we were able to obtain the short-
est, and therefore, easiest to understand explanation for each 
prediction. This explanation provides the treating Urologist 
with the ability to agree or disagree with the model on unique 
cases and has a second validation process on the model’s pre-
diction based on the personnel’s wider understanding of the 
patient’s condition (i.e., man-in-the-loop) [33].

The proposed AKI prediction model could be publicly 
available as an online prognostic calculator, providing a 
platform for future AKI-prediction studies, and comple-
menting existing risk assessment scores [34]. One could 
argue that a better endpoint would be the risk of CKD fol-
lowing PN, which is the most important endpoint. In this 
study, we aimed to predict AKI as it was demonstrated to 
increase the risk for CKD. A model that predicts CKD is 
harder to build, and this is one of our future projects.

The main limitation of our study is being an open PN 
cohort, and it is yet to be determined if it will apply to 
patients who undergo minimally invasive surgery. The sec-
ond limitation is the relatively small cohort for this model, 
although others used smaller cohorts and reported good 
results [21]. Another limitation is the lack of external valida-
tion. Moreover, we used an estimated parameter, ischemia 
time, to predict the AKI based on pre-operative parameters. 
However, despite these limitations, our model can predict 
AKI with relatively high accuracy (75%). In conclusion, 
our ML model can reliably predict AKI following open PN. 
Future possible research is to extend the size of the data-
base and perform stability analysis for controversial cases in 
order to improve the robustness of the proposed model.

Conclusion
Machine learning algorithms can predict the risk of AKI 
following open PN.
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