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Abstract
Synthetic lethality is a genetic interaction wherein two otherwise nonessential genes cause

cellular inviability when knocked out simultaneously. Drugs can mimic genetic knock-out

effects; therefore, our understanding of promiscuous drugs, polypharmacology-related

adverse drug reactions, and multi-drug therapies, especially cancer combination therapy,

may be informed by a deeper understanding of synthetic lethality. However, the colossal

experimental burden in humans necessitates in silicomethods to guide the identification of

synthetic lethal pairs. Here, we present SINaTRA (Species-INdependent TRAnslation), a

network-based methodology that discovers genome-wide synthetic lethality in translation

between species. SINaTRA uses connectivity homology, defined as biological connectivity

patterns that persist across species, to identify synthetic lethal pairs. Importantly, our

approach does not rely on genetic homology or structural and functional similarity, and it sig-

nificantly outperforms models utilizing these data. We validate SINaTRA by predicting syn-

thetic lethality in S. pombe using S. cerevisiae data, then identify over one million putative

human synthetic lethal pairs to guide experimental approaches. We highlight the transla-

tional applications of our algorithm for drug discovery by identifying clusters of genes signifi-

cantly enriched for single- and multi-drug cancer therapies.

Author Summary

Synthetic lethality is a genetic interaction that has promising implications for informing
novel cancer therapies. Over 200 million pairwise tests would be required to identify all
pairwise synthetic lethal interactions in humans–currently, an impossibly large experi-
mental burden. To simplify the process, we have developed a method to predict human
synthetic lethal pairs in translation from a well-studied species to one in which synthetic
lethality is understudied using both species’ protein-protein interaction networks. Here,
we explore the model’s success in translation from S. cerevisiae to S. pombe. We then pre-
dict human synthetic lethality and suggest novel areas of inquiry for cancer therapies.
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Introduction
Synthetic lethality (SL) occurs when two nonessential genes cause cellular inviability after
being knocked out simultaneously.[1] Although SL was originally studied and described in
yeast, it can be a powerful tool for studying drug action in humans; for example, SL may guide
the development of cancer combination therapy[2,3] and inform drug-drug interactions. SL
interactions may differ between cellular contexts;[4] a gene pair that is SL in one cell type may
not be SL in another. This can provide a tremendous therapeutic boon when two drugs target-
ing two gene products mimic an SL interaction in cancer cells and leave healthy cells unaf-
fected. However, drug-induced SL interactions may also cause adverse events via unexpected
cell death. Thus, mapping SL in humans is necessary to understanding mono- and polyphar-
macological effects.

Most gene pairs have not been interrogated for SL in humans, and several factors impede a
species-wide evaluation of SL. These include the ethical implications of studying SL directly,
the inability to discern state-specific SL interactions from global ones in experimental cell lines
(e.g. cancer[4,5]), and–most significantly–the heavy experimental burden. Over 200 million
assays would be required to determine the SL status of all human gene pairs in just a single cel-
lular context. In silicomethods are therefore necessary to guide the identification of SL in
humans.

Previous work on leveraging model organisms to predict human SL has focused in particu-
lar on genetic homology, under the hypothesis that SL status will be maintained between ortho-
logous gene pairs.[6] This approach has two major limitations. First, there are only ~2,000
genes that genetically homologous between S. cerevisiae and humans (NCBI Homologene[7]).
These homologues account for a mere 1% of all possible human pairs, leaving the majority
with no predictive data regarding SL status.

Second, genetic redundancies that developed independently in each species since deviation
from a common ancestor may affect synthetic lethal status. For example, 228 gene duplication
events have been suggested between S. cerevisiae and S. pombe[8]in the ~400 million years of
evolution between the two species;[9] this number is likely even higher between S. cerevisiae
and humans. Each of these events may introduce a functional redundancy that alters SL rela-
tionships in the organism by causing a gain or loss of SL. Focusing solely on genetic homology
does not account for these complexities.

In this work, we first evaluate the performance of genetic homology in predicting SL. We
also consider structural similarity using protein structure families, domain similarity using pro-
tein domains, and functional similarity with gene ontology annotations. We additionally con-
sider information centrality, a univariate network-based model. We show that homology,
structural similarity, and information centrality are limited in their ability to predict SL.

We then introduce the concept of connectivity homology, a measure of relatedness between
genes that is independent of structure, function, or genetic homology. Relationships between
genes and proteins, including redundancies, may be illustrated through the use of biological
networks, and we hypothesize that the network connectivity profiles between two genes will
better characterize their potential for an SL relationship. In order to compute these profiles, we
use well-known graph properties, such as degree centrality and shortest path.[6,10–12] We
next use machine learning and data from a well-studied organism, S. cerevisiae, to train a
model of synthetic lethality that can be applied to any species of interest. We show that our
algorithm, Species-INdependent TRAnslation (SINaTRA), significantly outperforms previ-
ously published models of predicting SL in translation. Importantly, we can predict synthetic
lethality in species without any known (i.e. experimentally validated) synthetic lethal pairs. The
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only necessary information is an experimentally derived protein-protein interaction (PPI) net-
work. We also show that the method is robust to network incompleteness.

We then use SINaTRA to predict SL in humans and assign each human gene pairs a score
between 0 and 1, indicating the likelihood that the two genes exhibit a synthetic lethal relation-
ship. As a post-processing step to enrich our predictions, we use databases of population
genetic variation in humans to filter out likely false positives. Finally, we evaluate of the bio-
medical implications of our human SL gene pairs by discovering “hot zones” of putative SL
pairs that suggest novel cancer combination therapies.

Results

Previous methods of modeling synthetic lethality: genetic homology,
structural similarity, and functional similarity
We began our study by considering two published methods of predicting SL, protein homology
[13] and bi-nodal information centrality,[8,14] and implemented the algorithms as described
by the authors. In addition, we hypothesized that structural homology, domain homology, and
functional homology may be able to predict SL and designed models based on these parameters
for comparative analysis.

In Wu et al.,[9,13] the authors constructed a model to predict SL in S. cerevisiae, then
hypothesized that human gene pairs homologous to SL pairs in S. cerevisiae would also be SL
in humans. We implemented the latter part of the approach and evaluated it by predicting SL
in S. pombe. By restricting our analysis to only genes that are homologous between S. cerevisiae
and S. pombe, we find a significant predictive effect (OR = 145, 95% CI: 93–219, p< 2.2e-16,
Fisher’s exact test), corresponding to an area under the receiver operating characteristic curve
(AUC) of 0.60. Model performance decreased to OR = 45.9 (p<2.2e-16) and an AUC = 0.52
when expanding the model to include all gene pairs (Materials and Methods).

We next hypothesized that structural, domain, and functional similarity may be predictors
of SL. We trained these models in S. cerevisiae and applied them to S. pombe. We used SCOP
protein classifications to describe the former, and assigned each gene pair a value between 0
(no similarity) and 4 (same class) based on their products’ structural similarity. The model was
trained and tested only on pairs with SCOP data associated with both genes. Only 399 SL pairs
and 109,357 NSL pairs had SCOP data for S. cerevisiae (16,765,399 pairs skipped) and 2 SL/298
NSL for S. pombe (1,840,021 pairs skipped). The SCOP-based model had an AUC of 0.62. We
additionally created a domain-based model from PFam[15] to predict SL. Domain data exists
for a larger number of proteins (9,424SL/10,280,492 NSL in S. cerevisiae; 514/1,431,764 for S.
pombe), allowing us to score more pairs than the SCOP-based model (Materials and Methods).
The AUC in the domain-based model was 0.56.We described functional homology using anno-
tations from Gene Ontology (GO) (Materials and Methods). Functional similarity attained an
AUC of 0.81.

Finally, we calculated the pairwise information centrality[14] in S. pombe and found no sig-
nificant predictive performance identifying SL pairs (AUC = 0.46, Logistic Regression). Bi-
nodal information centrality did not require interspecies translation.

We hypothesized that multivariate, network-based models of synthetic lethality would be
able to capture SL interactions both within and between species more successfully.

Defining connectivity homology
We define two proteins as being connectivity homologous if they share similar connectivity pro-
files in their respective networks. A connectivity homologous relationship may exist between
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two proteins in the same species, or between proteins of different species. This concept can be
generalized for pairs of proteins, or even groups of proteins (i.e. modules). For example, two
pairs of proteins may be connectivity homologous because both pairs are connected to each
other in a similar way.

We illustrate this concept in Fig 1A, where we present two networks of different sizes and
topologies. Two network parameters are used to describe the network: degree (deg.) and
betweenness centrality (bet. cent.). Each node contains its connectivity profile as a vector
depicting the degree and betweenness centrality as ‘low’ (blue), ‘medium’ (white), or ‘high’
(red). Although the values may not be immediately comparable between networks, it is obvious
that certain nodes share similar connectivity profiles, while some nodes do not have an inter-
species, connectivity homologous pair (high deg./medium bet.cent.).

Connectivity homology can be evaluated with network parameters
In this paper, we represent connectivity profiles using vectors of network parameters. Each
gene is represented by a vector of eight parameters (Tables 1 and S1). Each gene pair is repre-
sented by a vector of four node-pair parameters (Tables 1 and S1) as well as the individual pro-
files for each gene in the pair, leaving each pair with a connectivity profile defined by 20
network parameters. For the purposes of this investigation, we chose to use protein-protein
interaction (PPI) networks because of the wide availability of data across many species. PPI

Fig 1. A) An illustration of connectivity homology (CH). Each node is described by two parameters (degree [deg.] and betweenness centrality [bet.
cent.]) at three levels: low, medium, and high. Certain nodes have the same vectors (Node B/Node 2/Node 3); these nodes can be said to be connectivity
homologous (CH). Other nodes do not (Node A/Node 1); these are non-connectivity homologous (non-CH). B) Schematic of the SINaTRA algorithm. We
begin with the PPI networks of both our source and target species, calculate the network parameters (independently), and normalize the values of all
parameters. Next, we use machine learning methods on the normalized network parameters of our source species as well as experimentally derived labels of
synthetic lethality to construct a species-independent model of SL. Finally, we apply this model to the normalized network data of our target species in order
to attain SL predictions in our target.

doi:10.1371/journal.pcbi.1004506.g001
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data was downloaded from BioGRID[16] to construct graphs of one connected component
(Materials and Methods). We computed the connectivity profiles for 5,810 proteins in S. cerevi-
siae, 1,919 in S. pombe, 4,233 inM.musculus, and 14,820 proteins in humans as well as for 16.8
million, 1.8 million, 8.9 million, and 109.8 million pairs of proteins for S. cerevisiae, S. pombe,
M.musculus, and humans, respectively.

We found that the distributions and ranges of network parameter values differed signifi-
cantly between species (S1 Fig; S2 Table). To correct for these differences (S2 Fig), we evaluated
four normalization strategies (Table 2) and chose to use rank normalization to rescale the val-
ues of each parameter between 0 and 1. Rank normalization makes parameter values compara-
ble between species. We refer to normalized data as being “translated.”

Similarity between connectivity vectors is indicative of shared function
We found that proteins with similar connectivity profiles (i.e. those that are connectivity
homologous) were more likely to share functional annotations. We used the Euclidean distance

Table 1. Network parameters used in our model. A single-node network parameter provides two values to the feature vector per pair (8 single-node
parameters create 16 values per pair). Each node-pair parameter contributes one value describing that pair. Parameter importance is measured using Gini
importance[17,18] in the NetworkX Python package.[19]

Parameter Context Description Parameter
Importance

2nd degree shared
neighbors

Single
node

The sum of all nodes two edges away from the node of interest. 0.036, 0.030

Betweenness centrality Single
node

The sum of the fraction of shortest paths between two other nodes passing through the
node of interest.

0.056, 0.056

Closeness centrality Single
node

The inverse sum of all shortest paths that originate at the node of interest. 0.035, 0.032

Communicability Node pair The sum of all closed walks between a pair of nodes. 0.043

Current-flow betweenness
centrality

Single
node

Analogous to betweenness centrality, but with all paths instead of shortest paths. Also
known as random walk betweenness centrality.

0.057, 0.045

Degree centrality Single
node

The fraction of edges a node has of all possible edges. 0.074, 0.055

Eccentricity Sindle
node

The maximum distance from the node of interest to any other node in the network. 0.038, 0.035

Eigenvector centrality Single
node

The eigenvector for the largest eigenvalue of the matrix adjacency network. 0.042, 0.034

Inverse shortest path Node pair The inverse of the smallest number of edges connecting two nodes of interest. 0.048

PageRank Single
node

The rank of graph’s nodes based on the number of incoming links. 0.080, 0.072

Shared neighbors Node pair The intersection of two nodes’ sets of immediate neighbors. 0.067

Shared non-neighbors Node pair The number of nodes that are not immediate neighbors of both nodes of interest. 0.063

doi:10.1371/journal.pcbi.1004506.t001

Table 2. Methods of network parameter normalization.

Method Description

Normalization Each value is divided by the maximum occurring value of the parameter

Rank-normalization Each value is ranked from smallest to largest, with tie breaks at random in case of
equal values. These are then divided by the total number of values.

Tied-rank
normalization

Each value is ranked from smallest to largest; entries with the same value are given
the average of all their ranks. These are then divided by the total number of values.

Quantile
normalization

Parameter values are collected for two or more conditions. Values are ranked for
each condition. The values are then sorted, and each row is averaged. These
values are then sorted back into order according to rank.

doi:10.1371/journal.pcbi.1004506.t002
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between connectivity profiles as a measure of connectivity homology (Materials and Methods).
We compared this distance between genes that shared genetic homology (orthologs) and spe-
cific functional annotations (Gene Ontology [GO]) between S. cerevisiae and S. pombe (Sc/Sp)
(S3A Fig) and between S. cerevisiae and humans (Sc/H) (S3B Fig). We found that proteins
annotated with the same function had significantly had significantly lower distances (Sc/Sp
median = 1.04, Sc/H median = 0.92) than those annotated with different functions (Sc/Sp
median = 1.08, p<2.2e-16; Sc/H median = 1.04, p<2.2e-16).

This result holds even when orthologs are not considered. Non-orthologous genes anno-
tated with the same function had significantly lower distances than non-orthologous genes
annotated with different functions (S3 Fig, p<2.2e-16). We also found that orthologs had sig-
nificantly lower distances than non-orthologous pairs (S3 Fig, p<2.2e-16). These differences
were consistent across all levels of functional specificity (S4 Fig). These results suggest that net-
work substructure, and therefore network signals, are conserved between species based on both
homology and function.

Building connectivity-homology-based models of synthetic lethality
Networks successfully predict within-species synthetic lethality. We used machine

learning algorithms to build two models of synthetic lethality (SL) using the connectivity pro-
files we derived for pairs of proteins–one for S. cerevisiae and one for S. pombe. We trained
these models using experimentally established SL gene pairs from BioGRID (N = 13,196 for S.
cerevisiae and N = 628 for S. pombe) as our positive training examples. We randomly selected
pairs not described as SL in the database as non-synthetic lethal (NSL) pairs, and used these as
negative training examples. Our assumption that any pair without experimental evidence for
synthetic lethality is NSL will be incorrect for a small number of pairs that are SL but have not
yet been investigated; however, this will introduce negligible error due to the rarity of SL inter-
actions (estimated 0.1% in dipoid organisms[15,20]).

We evaluated these models using cross-validation and area under the receiver operating
characteristic curve (AUC). Random forest (RF) significantly outperformed logistic regression
(LR) for both S. cerevisiae (AUCRF = 0.92, AUCLR = 0.77; p<2.2e-16, De Long’s Test) and S.
pombe (AUCRF = 0.93, AUCLR = 0.86; p<2.2e-16, De Long’s Test) (Supplementary Materials,
S5A Fig). We found that within-species model performance is consistent regardless of transla-
tion method (Supplementary Materials, S5B and S5C Fig).

Translation of synthetic lethality between S. cerevisiae and S. pombe. In order to create
network models of synthetic lethality in translation, we developed the SINaTRA algorithm
(Species INdependent TRAnslation). The schematic is illustrated in Fig 1B.

To apply SINaTRA to S. cerevisiae and S. pombe, we created two translational, network-
based models that use data from a source species to infer the SL status of gene pairs in a target
species. The first was trained on S. cerevisiae to predict SL in S. pombe; the second was trained
on S. pombe to predict in S. cerevisiae. For each model, we randomly selected an equal number
of NSL pairs as SL pairs (13,196 for S. cerevisiae; 628 for S. pombe). We built random forest
models with 100 trees for each species. We evaluated these two models for their ability to pre-
dict SL gene pairs in the target species. Each model generates a SINaTRA score for each pair
between 0 (predicted NSL) and 1 (predicted SL).

Using S. cerevisiae as the source and S. pombe as the target, we found that untranslated
parameters resulted in poor inter-species SL prediction (AUC = 0.67). We tested all methods of
normalization in translation (S6A Fig) and found that the model significantly improves with
any translational method with rank normalization performing best (AUC = 0.86; p<2.2e-16,
De Long’s method) (Fig 2A). We also found that parameter normalization improved the
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precision from 50% to 98% at a recall rate of 30% (S6B Fig) in our testing data. The translated
model also significantly outperforms the untranslated one when using S. pombe as the source
species and S. cerevisiae as the target (AUCtranslated = 0.74, AUCraw = 0.67, p< 2.2.e-16,
DeLong’s method, S7 Fig).

SINaTRA outperforms translation-free and non-network methods. After evaluating
SINaTRA in S. pombe and S. cerevisiae, we compared its performance to those of models based
on genetic homology and functional similarity. We show ROC curves of each previously dis-
cussed methods and compared it to that of SINaTRA (Fig 2B) and use the AUC as a summary
performance statistic. We additionally compared the performance of SINaTRA to domain

Fig 2. A. Receiver operating characteristic (ROC) curves for classification of SL/non-SL gene in S. pombe using S. cerevisiae as source.
Comparison of untranslated (“raw”) parameters (gray, AUC = 0.67) and the translated parameters used in SINaTRA (red, AUC = 0.86). B. ROC curve of SL
predictions using SINaTRA (AUC = 0.86) compared functional homology of gene pair products (AUC = 0.81) and gene homology (AUC = 0.60). The model
based on gene homology was created using only gene pairs with homology data. C. Positive predictive value (PPV) of all (dark gray) and within-complex
(red) gene pairs. When accounting for the expected ratio of SL:NSL (1:1000), a SINaTRA score threshold of 0.95 yields a median PPV of 17% (a 170-fold
increase over what is expected by chance). At 0.85, the PPV drops to 7%. PPV increases in within-complex gene pairs, suggesting that this may be a good
initial filter for experimental validation. D. At each SINaTRA score cutoff, we plot the number of experimentally identified SL pairs in that bin (red), as well as
the number we expect to find at each level (gray). E. SINaTRA scores of all human predictions, as well as pairs predicted or found to be SL in two datasets:
DAISY and Syn-Lethality. F. We compare the predictive ability of SINaTRA score to identify genes belonging to DAISY (tested) and Syn-Lethality datasets
compared to functional similarity and homology.

doi:10.1371/journal.pcbi.1004506.g002
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similarity, structural similarity, and information centrality (S8 Fig). We found that SINaTRA
had significantly higher AUC than any other method we considered (p<2.2e-16, DeLong’s
test, all comparisons).

We then estimated the PPV for all gene pairs at 20 SINaTRA score thresholds (Fig 2C); the
ratio of SL:NSL pairs was held at the expected ratio (1:1000[20]). We found a significant
improvement over chance (Odds ratio = 121.1, p = 2.72e-32, Fisher exact test). For example, at
a SINaTRA score of 0.85, the PPV is approximately 7%—70 times higher than expected by
chance (0.1%). It increases to 17% at a cutoff of 0.95, corresponding to a 170-fold increase. In
comparison, the untranslated method of SL prediction rises to a PPV of 17% at a cutoff of 0.65
and dips sharply at 0.70. No gene pairs receive a score higher than 0.70 in the untranslated
model.

We also found that no model out of genetic homology, functional similarity, structural simi-
larity, or pairwise information centrality had a gene pair score higher than 0.05; therefore, we
first identified which cutoff would provide the highest PPV, and plotted each value as dotted
lines in Fig 2C. We also provide a direct comparison between true and false positives and nega-
tives for SINaTRA compared to homology in S9 Fig. We found that, for all homologous pairs,
the model achieves an OR of 144.9 (p<2.2e-16, Fisher’s exact test), corresponding to an AUC
of 0.60. In contrast, SINaTRA achieves an OR of 929.6 (p<2.2e-16, Fisher’s exact test; S9 Fig)
and a corresponding of AUC = 0.91 (S8 Fig) when using a SINaTRA cutoff of 0.85 on this
same subset of pairs (any pair where at least one gene is not in the network is given a SINaTRA
score of 0).

When we expand our data to the ‘whole genome,’ comprising all possible pairs from the set
of Homologene and network genes (Materials and Methods), the homology-based method
attains a lower, but significant, OR (OR = 60.1, p<2.2e-16) and an AUC of 0.52. A similar
expansion in SINaTRA yields an OR of 304.2 (p<2.2e-16) when considering gene pairs with
SINaTRA scores� 0.85 as SL (S9 Fig).

We used Analysis of Variance (ANOVA) to evaluate the independent contributions of the
methods when combined with SINaTRA. We found that genetic homology, protein similarity,
and univariate connectivity contributed no significant improvement in performance over the
SINaTRA-only model. This result held for genetic homology even when considering only the
subset of ~2 million gene pairs that are homologous between S. cerevisiae and S. pombe (Χ2 =
407.66, p = 0.64). Functional similarity (GO) significantly improved the SINaTRA model (Χ2 =
445.09, p<2.2e-16, ANOVA) (S3 Table).

SINaTRA identifies missing SL in S. pombe. We estimated the number of previously
unidentified synthetic lethal pairs at 20 SINaTRA thresholds (Fig 2D). For example, at a
SINaTRA� 0.85, we expect to find 177 SL pairs but only 65 have previously been experimen-
tally identified. 1,759 gene pairs have a score of 0.85 or greater in S. pombe, corresponding to
an expected hit rate of 1 in 15.

Synthetic lethality is enriched in protein complexes. We identified all within-complex
gene pairs in S. pombe (N = 5,806, Materials and Methods) and found 46 experimentally identi-
fied SL pairs. We found that the positive predictive value (PPV) is consistently higher in
within-complex pairs, reaching 0.27 at a cutoff of 0.95 (Odds ratio = 148.4, p = 1.33e-37, Fisher
exact test).

Translated models are robust to network completeness. Species-specific PPI networks
vary in their completeness. We can approximate completeness by using network density: the
fraction of edges that exist in the network compared to the total possible number of edges.[21]
S. cerevisiae has one of the most complete PPI networks (density = 0.04), while those of S.
pombe,M.musculus, andH. sapiens are less complete, with densities of approximately 0.02,
0.01, and 0.01, respectively. We tested the extent to which SINaTRA was sensitive to these
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differences by ablating the target network (S. pombe) to densities between 90% and 50% of the
original network (Materials and Methods). The lowest density approximates that of the human
and mouse PPI networks. Untranslated parameters achieve AUCs between 0.43 and 0.60 for all
ablated graphs. We found that ablation by 10% decreased rank-normalized AUC from 0.86 to
0.83, and ablation by 50% dropped the AUC to 0.79. (S10 Fig).

Prediction of synthetic lethality is not driven by node popularity. Higher degree nodes
are more likely to be studied, and more popularly studied genes may be more likely to be syn-
thetic lethal. As a measure of this potential bias, we defined a normalized popularity measure
(degree/popularity), where popularity is the number of times a particular gene appears in the
BioGrid database. As expected, SINaTRA score is correlated with degree and, thus, popularity.
However, SINaTRA score is not correlated with normalized popularity in any of the three spe-
cies (S11 Fig). Further, we found that the predictive performance of SINaTRA is independent
of each of the three measures (degree, popularity, and node popularity) according to ANOVA
(p< 0.0001 for all three comparisons).

Prediction of synthetic lethality in mice. We used the model trained on S. cerevisiae as
the source species andM.musculus as the target. There is no comprehensive database of SL in
mouse, and only nine mouse SL pairs are recorded in BioGrid. Of these, eight were predicted to
be SL with a score�0.5; five had scores�0.70. SL prediction achieved an AUC of 0.937, signifi-
cantly outperforming GO similarity (AUC = 0.687; p = 1.556e-11, DeLong’s method). Gene
pairs with SINaTRA scores�0.8 are included in S4 Table.

Human synthetic lethality
Prediction of synthetic lethality in humans. We applied the SL model trained on S. cere-

visiae to human network parameters and generated a SINaTRA score between 0 and 1 for all
human gene pairs; a higher score indicates greater evidence of SL according to the model. We
next compiled a database of severe, tolerated, homozygous, deleterious co-mutations. These
occur when at least one patient is homozygous for a deleterious mutation in both genes of a
given pair in either of two datasets (1000 Genomes,[22] and Sweden-Schizophrenia Popula-
tion-Based Case-Control Exome Sequencing (dbGaP accession: phs000473.v1.p1) [16,23–25]).
We evaluated all gene pairs and found 450,010 pairs that match these criteria (0.4% of all possi-
ble pairs). We found that, on average, these gene pairs had significantly lower SINaTRA scores
(median score = 0.116) versus all gene pair scores (median = 0.122; Mann Whitney
U = 98,055,441,225.5, p� 2.2e10-16). We then filtered these pairs from our predictions as false
positives. Using a SINaTRA cutoff�0.85, we find the false discovery rate (FDR) from this fil-
tering is 0.36% (61 false positives to 16,886 true positives).

We provide a filtered list of 1,309 predicted human SL pairs with SINaTRA scores>0.95 in
S5 Table and provide the complete list of 109,358,780 gene pairs and SINaTRA scores as a
database download.

Putative synthetic lethal pairs are more likely to be in the same pathway. Previous work
has shown that SL pairs tend to be part of the same pathway.[1,19,26,27] We validated this in
our predicted human SL pairs using KEGG annotations.[28] We found that gene pairs with
SINaTRA scores�0.95, 0.90, and 0.80 were all significantly enriched for intra-pathway interac-
tions compared to pairs selected at random (p<2.2e-16, Fisher’s exact test, all cutoffs). The ten
highest-scoring gene pairs with the same pathway annotation are shown in Table 3.

Protein complexes are significantly enriched for putative synthetic lethal pairs. A
protein complex may be functional with one deleteriously mutated component, but present a
lethal phenotype with two such mutations.[26] Our results corroborate this pattern. We ran-
domly selected 20 sets of mutually exclusive protein complexes with five subunits from the
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Comprehensive Resources of Mammalian Protein Complexes (CORUM) [29] and plotted the
SINaTRA scores of all the associated genes as a heat map (Fig 3A). We observed that genes
with their products in the same protein complex had significantly higher SINaTRA scores
(U = 3,425.5, p<2.2e-16; Fig 3B). Additionally, within-complex pairs were significantly
enriched for higher SINaTRA scores for complexes of size�10 proteins (U = 3,114,511.5,
p<0.0001), and complexes of all sizes (U = 295,820,010, p<0.0001). Finally, as the size of the
complexes increases, the distributions of within-complex gene pair SINaTRA scores shifts to a
left skew, echoing the distribution of gene pairs not in complexes. The proportion of gene pairs
that have products in the same complex is significantly higher than expected by chance
(p<0.0001, Fisher’s exact test, all SINaTRA score cutoffs) (Fig 3C).

Context-specific synthetic lethality. Synthetic lethality can change between contexts;[4] a
gene pair that is SL in a cancer cell may not have the same property in healthy tissue. This may
occur due to changes in protein expression, as well as activation or inactivation of protein
pathways.

S. cerevisiae and S. pombe are unicellular organisms; therefore, models based on these spe-
cies will necessarily focus on high-level, context-free synthetic lethal predictions. As such, the
initial predictions from SINaTRA present all pairs that have synthetic lethal potential in their
global connectivity patterns.

In order to explore context-specific SL pairs, we identified all human gene pairs with SINa-
TRA score�0.85. We next created tissue- and cell-line-specific lists of SL pairs by removing a
gene pair if that tissue is not known to express both gene products according to the Human
Protein Atlas.[21,30] The proportion of SL pairs retained after filtering is illustrated in S12A
(tissue) and S12B Fig (cell); bars are color-coded by biological system. Although the number of
proteins removed from the network is correlated with the number of SL pairs filtered from
each given tissue or cell line (S12C and S12D Fig), we find that the number of filtered SL pairs
is, at times, lower or higher than expected by chance (S6 Table) (Materials and Methods). For
example, rectal tissue has approximately half as many SL pairs filtered out (70) as expected
(146; OR = 0.477,p = 1.6e-5, Fisher’s exact test). In contrast, tissue of the small intestine has
over twice as many SL pairs filtered (1653) than expected (826; OR = 2.11, p<2.2e-16, Fisher’s
exact test). Respiratory epithelial cells also have a high number of filtered SL pairs (O: 550, E:
280; OR = 2.00,p<2.2e-16).

Comparisons with previously-published methods. Recent work on human SL includes
the Syn-Lethality database,[31] which compiles experimentally identified human SL pairs, and
the DAISY method,[5] a computational method of identifying SL pairs. We found that the

Table 3. The top ten highest scoring within-pathway, putative SL gene pairs.

Gene 1 Gene 2 SINaTRA Score Pathway Name

KYNU SMS 0.990 Tryptophan metabolism

KYNU GSR 0.987 Tryptophan metabolism

SOS1 BCR 0.986 MAPK signaling pathway

MSH3 PMS2 0.986 Mismatch repair

RCOR1 REST 0.985 Huntington’s disease

BIRC5 CASP9 0.985 Pathways in cancer

KYNU NAGK 0.984 Tryptophan metabolism

POLR1B POLR1A 0.980 Purine metabolism

RIPK1 RIPK3 0.980 Apoptosis

MAPK9 MAP2K7 0.980 MAPK signaling pathway

doi:10.1371/journal.pcbi.1004506.t003
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gene pairs from both datasets had significantly higher SINaTRA scores (Syn-Lethality:
U = 12,265, p<2.2e-16; DAISY (VHL): U = 299, p = 5.86e-6; DAISY (cancer): U = 1992856,
p<2.2e-16; Fig 2E). Compared to the median of untested pairs (0.122; 99% CI: [0.122,0.122]),
DAISY’s cancer predictions had a median score of 0.233 (99% CI: [0.225,0.243]); its VHL pre-
ditions had a median score of 0.255 (99% CI:[0.195,0.368]) and the Syn-Lethality dataset had a
median score of 0.459 (99% CI: [0.397,0.514]).

Fig 3. A. We randomly selected 20mutually exclusive groups of protein complexes that contained exactly five subunits; wemapped the
corresponding gene pairs to SINaTRA scores, and plotted a heat map of the results.Data are not clustered and only one randomly sampling was
performed. We observed that within-complex gene pairs have significantly higher SINaTRA scores (p<0.0001, Fisher’s exact test). B. We compared the
SINaTRA scores of gene pairs with products in the same vs. different complexes for complexes with of 5 protein subunits (top),�10 proteins (middle), and
any number (bottom). Although proteins in the same complex are always enriched for higher SINaTRA score, as complex size increases, complex
membership becomes less indicative of two genes being SL. C. We compared the fraction of gene pairs with products in the same vs. different complexes for
three SINaTRA cutoffs (0.95, 0.80, 0.50) as well as for all gene pairs. A SINaTRA cutoff of 0.95 has approximately half of its pairs associated with the same
complex; however, a decrease in the cutoff shifts this balance. This may indicate an increase in different mechanisms of SL in pairs with lower scores. “All
Pairs” shows the expected proportion of in-complex pairs in our data.

doi:10.1371/journal.pcbi.1004506.g003
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From the Syn-Lethality database, we selected only SL gene pairs involving genetic defi-
ciency, inactivation, or mutation. Of the 88 pairs matching these criteria, all were in our net-
work, and we found 34 of these to have SINaTRA�0.5 (p = 4.8e-11, Fisher’s exact test), and 11
with SINaTRA�0.75 (p = 0.0070, Fisher’s exact test). 2,816 gene pairs were predicted to be SL
specifically in cancer using DAISY, 2,576 were in our network; we found that 151 had
SINaTRA�0.5 (p = 7.5e-24, Fisher’s exact test), and 14 had SINaTRA�0.75 (p = 0.00096, Fish-
er’s exact test).

We observed that SINaTRA score was able to predict genes present in both the DAISY and
Syn-Lethality datasets with AUCs of 0.73 and 0.93, respectively. (Fig 2F). In turn, homology
was not at all predictive in either dataset (AUC = 0.50 for both; no homology data present for
the pairs), unlike functional annotations (AUC = 0.786, DAISY; AUC = 0.904, Syn-Lethality).
We then considered the precision-recall curves of these data and found that SINaTRA in both
datasets outperformed function in DAISY, while function in Syn-Lethality had similar perfor-
mance to that of SINaTRA (S13 Fig).

The landscape of human synthetic lethality. We categorized 458 predicted SL genes pairs
using biological pathway data from Reactome[32] and present them as a network diagram (Fig
4), where hexagonal nodes represent pathways, and edges connect pathways when SL pairs are
predicted between-pathway (i.e. with one member in each). We found that 334 (73%) of these
interactions are within-pathway and 124 (27%) are between-pathway (OR = 3.69, p<0.0001,
Fisher Exact Test).

Among the within-pathway SL pairs, we found that apoptosis, the immune system, and
gene expression have highly interconnected SL networks, indicated by low closeness centrality.
The immune system has the highest number of associated SL gene pairs (101); the most central
of these is RIPK1, with 15 connections. Several functions have no associated SL pairs, including
extracellular matrix organization, metabolism of proteins, and reproduction. These functions
may have little functional redundancy that allows for SL to occur. Of the between-pathway SL
pairs, we found that each pair of pathways share an average of 2.8 SL pairs. The immune sys-
tem/signal transduction between-pathway pairs are the most numerous (11 pairs).

Function-specific mechanisms of synthetic lethality. We grouped gene pairs into 17
high-level Reactome functional categories and clustered them by their parameter values (Mate-
rials and Methods). We found pathway-specific parameter enrichment exists in node-pair
parameters (inverse shortest path, communicability, shared neighbors, and shared non-neigh-
bors), but not in single-node parameters, as evidenced by the increase in variance of paired
parameters versus single-node parameters (Fig 5). For example, the signal transduction path-
way has higher values for node-pair parameters than other functions and all SL pairs. In con-
trast, apoptosis, DNA repair, and DNA replication have node-pair signals that are closer to the
mean of all of its within-function pairs than other functions.

We then annotated each putative SL gene pair from these 17 functional categories for three
possible mechanisms: (1) complex, where the proteins products of the pair are known to form
a complex, (2) parallel, where the proteins function in the same pathway with no known direct
or indirect interaction, and (3) other, for gene pairs that do not fit in (1) or (2). In total there
were 5,249 putative SL gene pairs for the 17 categories. Most of these pairs were in the same
complex (56.2%, N = 2,950), followed by parallel (24.0%, N = 1,260) and other (19.8%,
N = 1,039). We tested each function category for enrichments for particular mechanisms of SL.
We found that each function has different proportions of putative mechanistic annotations
(S14 Fig)

We found that immune system (OR = 1.48, p = 0.000001) and signal transduction
(OR = 1.42, p = 0.000894) were significantly enriched for SL genes that function in parallel,
after multiple hypothesis correction (Table 4). We found four categories were enriched for SL
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genes that were components in complexes: gene expression (OR = 1.38, p = 0.000298), meiosis
(OR = 4.31, p = 0.046), chromatin organization (OR = 2.10, p = 0.008499), and DNA repair
(OR = 4.76, p< 2.2e-16) (Table 4). Finally, we found that Cluster 1 (Fig 5), which includes
transmembrane transport, metabolism, hemostasis, developmental biology, cell-cell communi-
cation, muscle contraction, and the immune system, is significantly enriched for SL genes that
function in parallel (OR = 1.36, p = 0.00008).

Putative synthetic lethal pairs suggest novel cancer therapies. We identified 58 unique
genes from high-scoring gene pairs (SINaTRA�0.85) where both members were targets of can-
cer therapies (68 unique drugs). These genes were clustered by SINaTRA score (Fig 6A) using

Fig 4. The landscape of human synthetic lethality. This network depicts all gene pairs with SINaTRA score�0.95 (1,229 SL pairs) that map to Reactome
pathways (458 pairs). Here, each hexagon represents one high-level pathway designation in Reactome. Larger nodes indicate more SL pairs with that
designation. Within the hexagonal nodes, we show the networks of synthetic lethality where both members have the same function in Reactome. Each node
is a gene and an edge represents a predicted SL interaction. Gene nodes are weighted by degree and colored by closeness centrality. In turn, weighted
edges join hexagonal nodes if pathway-divergent pairs exist; that is, one member of the pair is of one pathway while the second member is of the other.
Edges are weighted by the number of pathway-divergent gene pairs associated with both pathways.

doi:10.1371/journal.pcbi.1004506.g004
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hierarchical clustering; areas of high (red) and low (blue) SINaTRA scores are easily be
observed. We found that gene pairs that are targeted by drugs have significantly higher SINa-
TRA scores than those that are not; median SINaTRA score increases significantly from pairs
that are targeted by only one drug (median score = 0.156), to those targeted by two drugs
(median score = 0.166), to those targeted by only one cancer drug (median score = 0.211), to
those targeted by two cancer drugs (median score = 0.283) (S15 Fig).

Fig 5. Function-specific patterns of synthetic lethality. The heatmap represents the ratio of median parameters for the SL pairs of a given function versus
all pairs of a given function. For example, the SL pairs of Signal Transduction have two-times greater values for inverse shortest path than for the non-SL
pairs of Signal Transduction. Rows are clustered by node-pair parameter values (see Table 1). Parameter variance is plotted above the heat map. Single-
node parameters (see Table 1) are consistently altered in SL regardless of function. However, node-pair parameters differ between functions. This distinction
suggests that network substructure may dictate SL mechanisms associated with a specific function.

doi:10.1371/journal.pcbi.1004506.g005
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Next, we identified which of these gene pairs were filtered out through our co-mutation
analysis (gray), as well as those linked to single-drug therapies (red), drug combination thera-
pies in the clinical pipeline (blue: preclinical; green: in clinical trials). These data were overlaid
on the heat map (Fig 6B). We found that gene pairs targeted by cancer drugs have significantly
higher SINaTRA scores than filtered pairs and pairs not under investigation (Fig 6D;
U = 44,964, p< 0.0001, Mann-Whitney U test).

We also visually identified “hotspots” of drug combinations (black boxes, Fig 6A and 6B)
that correspond to gene pairs with high SINaTRA scores (Fig 6C). We found that Area 1 alone
contains genes related to gene expression (p = 0.040), transcription initiation from RNA poly-
merase II promoter (p = 0.025), and steroid hormone receptor activity (p = 0.025; Fisher’s
exact test with multiple hypothesis testing). In addition, Area 2 is associated with protein
autophosphorylation (OR = 39.1, p = 0.000613; Fisher’s exact test). Areas 3 and 4 are not sig-
nificantly associated with any GO terms.

Discussion
In this paper, we present a computational method, Species INdependent TRAnslation (SINa-
TRA), for predicting synthetic lethal (SL) relationships in any species with an available pro-
tein-protein interaction (PPI) network. Our approach uses SL data from S. cerevisiae–the most
well-characterized organism for this interaction–to train a statistical model that identifies net-
work connectivity profiles indicative of synthetic lethality. Once trained, the model can be
applied to any other species for which PPI data exist. The model takes the PPI network data as
its input, and returns a probabilistic score between 0 and 1 for every pair that we deem the
SINaTRA score. These scores represent the likelihood of an SL relationship between those two
genes.

Table 4. Within-function enrichment of putative SL pairs based on gene product interactions. Complex describes all gene pairs that are within the
same pathway.Other represents all pairs that have another described PPI. Parallel refers to all pairs with no known PPI between them. Interactions are deter-
mined using Reactome data.

Function Complex (Count/OR) Other (Count/OR) Parallel (Count/OR) Cluster

Transmembrane transport of small molecules 52/2.04† 8/0.5 12/0.63

Metabolism 330/1.04 86/0.68† 162/1.27†

Hemostasis 86/0.75 44/1.39 44/1.07

Developmental biology 191/1.13 70/1.13 62/0.74† Cluster 1

Cell-cell communication 20/1.2 8/1.3 5/0.56

Muscle contraction 2/0.22† 5/5.08† 2/0.9

Immune system 606/0.64* 286/1.25† 377/1.48*

Signal transduction 352/0.55* 213/1.58* 239/1.42* Cluster 2

Membrane trafficking 711.51† 18/0.81 19/0.67

Gene expression 572/1.37* 143/0.71† 199/0.86

Meiosis 22/4.31† 3/0.53 1/0.13† Cluster 3

Chromatin organization 77/2.1† 9/0.37† 20/0.73

Cell cycle 124/1.48† 46/1.31 20/0.36*

DNA replication 96/1.54† 6/0.17* 43/1.35 Cluster 4

Apoptosis 124/1.48† 46/1.31 20/0.36*

DNA repair 124/4.76* 15/0.46 6/0.13*

Cellular responses to stress 101/1.27 33/1.03 29/0.68

*p<0.05, without multiplicity correction

†: p<0.001, with multiplicity correction

doi:10.1371/journal.pcbi.1004506.t004
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We validated our method by predicting which pairs are likely to be SL in S. pombe, another
species for which a large number of SL pairs are known. Our approach significantly ourper-
forms others we tested. Most notably, our method does not rely on any knowledge of gene
structure, sequence, or function; instead, it uses only the connectivity patterns exhibited by

Fig 6. A. Druggable gene pairs clustered by SINaTRA score. Sixty-two unique genes that participated in predicted SL interactions with SINaTRA scores
>0.85, where both genes mapped to drugs in DCDB, were identified. All pairwise SINaTRA scores were computed and clustered by score. Areas of high- and
low SINaTRA scores are clearly visible. B. All possible gene pairs identified in Part A were mapped to DCDB, and gene pairs whose products are targeted by
single drugs and combination therapies in the clinical pipeline were highlighted (pre-clinical, blue; clinical trials, green; single drug, red; gene pairs filtered out
by genetic analysis, gray; filtered gene pairs associated with drugs, black [n = 0]). Areas enriched for drug combinations were highlighted in both parts A and
B. C. Enrichment of tested compounds in the four areas of interest were calculated using the Fisher Exact Test, and p-values were calculated. Areas 1, 2 and
4 were significantly enriched. D. Distributions of SINaTRA score by drug type.

doi:10.1371/journal.pcbi.1004506.g006
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synthetic lethal pairs of genes as they appear in a protein-protein interaction network. Future
work will focus on the integration of other sources of knowledge with the goal of improving
predictive performance and understanding the role of connectivity under different functional
conditions.

Previous interspecies methods of predicting synthetic lethality
Previous work on interspecies SL prediction has focused on the use of genetic homology.[33]
We found that the method has fairly high predictive power between S. cerevisiae and S. pombe
when considering only gene pairs with known homology (Fig 2B). Unfortunately, many genes
have no known homology information and, because of this, the model performance suffers
when considering all interspecies gene pairs. An additional complication stems from genes
with multiple homologues, resulting in ambiguous predictions. In an effort to address some of
these challenges with using established orthologs, we also implemented two additional meth-
ods: one using shared structural domains, and one derived from structural families. Neither
method outperformed SINaTRA. The most successful comparison method was the number of
shared functional annotations in the Gene Ontology (AUC = 0.81), which performed almost as
well as SINaTRA (AUC = 0.86). We additionally found that the information contained in the
functional annotations and SINaTRA was not redundant, suggesting that a model that com-
bines connectivity profiles with functional annotations may yield better performance.

Connectivity homology as a novel method for predicting synthetic
lethality
In this paper, we introduce the idea of connectivity homology, which exists when two genes
share a similarity connectivity patterns quantified by network and graph theoretic parameters.
We performed a small exploration of connectivity homology and its relation to genetic homol-
ogy and function, and found that homologous genes and genes that share function exhibit
higher connectivity homology (S3 Fig).

We hypothesized that there are connectivity patterns between pairs of genes that are indica-
tive of a synthetic lethal relationship. These patterns are discovered using supervised machine
learning in a source species–one where synthetic lethality has been well-characterized–and
then identify these patterns in a target species to predict synthetic lethal pairs of genes. We per-
formed a small exploration of connectivity homology and its relation to genetic homology and
function, and found that homologous genes exhibit higher connectivity homology; in turn,
interspecies gene pairs that share the same specific function have higher connectivity homology
than interspecies gene pairs of different functions (S3 Fig).

We validated our approach in two species where SL has been experimentally explored (S.
cerevisiae and S. pombe). We found that our approach, called SINaTRA, significantly outper-
formed published methods at predicting SL genes in the target species and we achieve precision
up to 150 times higher than expected by chance. This precision increased to over 250 times
higher than chance when using additional biological priors.

Possible mechanisms of synthetic lethality
Several mechanisms of synthetic lethality have previously been proposed;[34] these include
within complex, parallel pathways, and essential linear pathways. Hints regarding the mecha-
nism driving a given gene pair may be provided by our connectivity parameters. Our data sug-
gest that function-specific network substructures are different, and may be related to trends of
SL mechanism within a function. For example, metabolism has a much higher proportion of
‘unknown’ pathway annotations than does apoptosis (S13 Fig). This suggests that putative
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metabolic SL pairs act through parallel pathways, while apoptotic pairs may act through
within-complex mechanisms. Further, gene pairs in apoptotic pathways are farther apart and
have lower communicability than gene pairs in metabolic pathways, which may also change
how many SL pairs are likely to exist with that function.

We also observe that a fraction of the predicted SL pairs had between-pathway interactions,
where members of an SL pair do not share any single function (Fig 4). The respective gene
products may act at an interface between two related functions; the putative SL pair may be a
false positive; or–most interestingly–one (or both) genes have previously unidentified functions
that cause their SL behavior. One such example is the putative SL pair, BAIAP2 (insulin recep-
tor signaling; UniProt DB) and ALDH7A1 (protection from oxidative stress; UniProt DB)
(SINaTRA score: 0.957). Oxidative stress is associated with insulin resistance,[35] and knock-
ing out both of these genes may mimic or exacerbate insulin resistance, leading to complica-
tions and adverse events.

False positive rate in predictions of synthetic lethality
For very rare biological phenomena, it is essential to consider the false positive rate of any
experimental or computational approach. An unbiased random selection of gene pairs would
yield approximately 1 synthetic lethal pair for every 1,000 tested. If biased by biological priors,
such as limiting the analysis to pairs of genes whose products are partners in protein com-
plexes, this yield may increase 8-fold, to 1 out of every 125 pairs tested.

The SINaTRA score we present can also be used as a biological prior. In this case, it is the
connectivity pattern of the pair of proteins that makes them more likely to participate in a syn-
thetic lethal interaction. For example, a score of 0.85 or greater would yield approximately 1 SL
for every 10 pairs tested. If this is coupled with protein complex prior, this could improve to 1
out of every 3 or 4 pairs tested. Combined with other biological priors, the SINaTRA score can
be a powerful tool for directing experimental exploration of synthetic lethality. Fig 2D illus-
trates this expected hit rate versus the number of experiments that would be necessary. These
scores can be used to guide experimental exploration depending on the throughput and cost of
the experimental approach.

Context-specific synthetic lethality
Biological contexts, such as tissue type and disease state, can influence synthetic lethal interac-
tions.[4] At this time, cellular and tissue specificity are not captured by the SINaTRA model.
However, we can customize our predictions for a given cell or tissue by pruning away any pre-
dicted genes that are known not to be expressed in the given context. We used the Protein
Atlas[36] to perform this customization and found that certain tissues and cell types had signif-
icantly more or fewer SL pairs filtered. These deviations may suggest tissue or cell types that
are particularly robust, or susceptible, to SL interactions. For example, respiratory epithelial
cells and endothelial cells have many more SL pairs filtered out than expected by chance; this
suggests that the tissues are not as susceptible to SL reactions–a hypothesis that requires further
investigation.

Predicted synthetic lethal pairs in humans inform cancer
polypharmacology
For nearly a decade, leveraging synthetic lethal relationships specific to cancer cells has been a
strategy in drug discovery. Therefore, we applied our predictions of synthetic lethality to the
study of pharmacology. We found that many cancer combination therapies currently in the
clinical pipeline target genes with high SINaTRA scores, suggesting that they use mechanisms
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of synthetic lethality as their modes of action. Clustering reveals hotspots of high SINaTRA
scores that are significantly enriched for combination therapies under investigation. Impor-
tantly, our algorithm was able to identify these without any a priori knowledge of the drug
combination. Gene pairs found in these hotspots that have not been previously investigated
may be promising leads for novel polyphamacological treatments.

Limitations
Our method for predicting SL relies on the availability of protein-protein interaction data. Due
to the high-throughput experimental techniques, such as tandem affinity purification and yeast
two-hybrid, these are some of the most widely available–omic data. However, comprehensive
networks are only available for a handful of species. Future expansions of the approach will
focus on integrating other available data, such as genetic sequence or gene expression. These
other data sources may help address the issue of context-specificity in our predictions.

In this study, we used 12 distinct graph theoretic parameters to describe each gene pair. The
choice of these parameters was based on what was available and has been used in prior work,
and is not an exhaustive list. Other methods for computing connectivity may be incorporated
in future versions of the algorithm, such as spectral methods.

Conclusion
In summary, the methodology presented in this paper can help to inform a wide variety of
studies in human health by fully utilizing information gathered in model species. In particular,
the differential mechanistic analysis that highlights how biological functions may be targeted
using synthetic lethality and the “hot spots” of drug synergy highlighted by our cancer therapy
analysis indicate promising areas for novel therapeutics. We provide the SINaTRA scores for
almost 110 million human gene pairs as a freely available resource for basic and translational
science.

Materials and Methods

Previous methods of modeling synthetic lethality: genetic homology,
structural similarity, and functional similarity
We downloaded protein homology data from Homologene,[37] protein structure data from
SCOP, [29,38,39] and GO data from Entrez.[4,40,41] We used PFam[15,42] data for protein
domain similarity; IDs were mapped to Entrez gene IDs for S. cerevisiae and S. pombe using
DAVID.[32,33,43,44] We calculated binodal information centrality for each gene pair based
on Kranthi et al.[14]

In order to create the homology-based model, we replicated a previous paper[45] that
defined a gene pair as SL if its homologous pair in another species is SL. Gene pairs were
defined as SL if the homologous pair in the source species was SL. In the case of multiple
homologous pairs in the source species, gene pairs described by the fraction of homologous
pairs defined as SL. A pair score>0 resulted in a classification of SL. Homology-based models
use only genes with known homologs between the two species of interest. Whole-genome,
homology-based models are the union of all genes in the homologous dataset with all genes
that appear in our protein-protein interaction network. Genes with no known homologs are
given a feature value of 0.

Protein similarity was defined using values between 0 (no match) and 4 (same class) accord-
ing to SCOP annotations. Functional similarity was defined using GO process and function
terms, excluding “molecular_function” and “biological_process.” Gene pairs were assigned a
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value based on the number of overlapping GO terms assigned to each gene. Using PFam
domain data, we used the size of PFam ID overlap (range: [0,8)) for within-species gene pairs.
For SCOP-, GO-, and PFam-based models, we trained the logistic regression model on S. cere-
visiae and applied it to S. pombe. The homology-based model was already “translated,” and the
model was trained and tested in S. pombe alone using logistic regression and five-fold cross-val-
idation. Information centrality does not require translation and was calculated in S. pombe
alone; the model was constructed using logistic regression and tested with five-fold cross-
validation.

Defining connectivity homology
Fig 1A was drawn with, and network parameters of each network were calculated using Cytos-
cape.[46]

Calculation of translated network parameters
Regular normalization of a parameter returns each value divided by the maximum value of
that parameter, such that each value is between 0 and 1. To rank-normalize data for a given
species, we calculated all individual single- and two-node parameters. Then, for each parame-
ter, we ranked all calculated values from smallest to largest, resolving ties at random. We then
divided all values by the total number of genes in the network (for single-node parameters) or
the total number of gene pairs (for node-pair parameters). This resulted in all genes or gene
pairs having all parameter values be a value between 0 and 1. Tied-rank normalization assigns
the median rank to all equal values, then normalizes single-node parameters by the number of
genes in the network, and node-pair parameters by the total number of pairs. Quantile normal-
ization is described in previous work,[47] where networks with fewer nodes/edges are up-sam-
pled. Rank-normalized translation and construction of models is illustrated in S16 Fig.

Similarity between connectivity vectors is indicative of shared function
We defined a vector of single-node network parameters (see Table 1) for each gene in the S. cer-
evisiae, S. pombe, and human networks. We calculated the connectivity homology of each
interspecies node pair using Euclidean distance. A lower distance implies greater connectivity
homology (similarity).

We first divided all gene pairs into same specific function or different specific function. We
then further divided these groups into homologous/non-homologous. Specific functions were
defined as all GO terms related to process or function (excluding molecular_function or biolo-
gical_process) where the number of genes annotated with that GO in each species was less than
or equal to a given cutoff. This cutoff was set to 100 at first, then expanded to cutoffs of 10, 15,
20, 25, 50, 75, 100, 150, 200, 250, 500, and 750.

Building connectivity homology methods of synthetic lethality
We generated PPI networks using data gathered from BioGrid;[16,36] each node represents a
gene, while edges represent a physical interaction between gene protein products. We pruned
all networks to contain one connected component.

BioGrid additionally provided SL data used in this investigation. Saccharomyces cerevisiae
had over 14,000 unique SL pairs and Schizosaccharomyces pombe have over 700, whileMus
musculus and Homo sapiens have 14 and 1 pairs, respectively. Gene pairs may have one of two
classes: SL or non-SL. Because of the scarcity of SL pairs, pairs not explicitly labeled as SL are
considered non-SL.

Translational Network Models Identify Synthetic Lethality
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We used the NetworkX (version 1.8.1) package for Python[19,37] to calculate all network
parameters except shared neighbors, shared non-neighbors, and shared 2nd-degree neighbors,
which were elucidated from adjacency matrices for each network. All single-parameter classifi-
ers employ logistic regression due to its high interpretability and simple nature. We imple-
mented multi-parameter classifiers using random forests,[17] which are accurate and efficient
on large datasets, as well as resistant to over-fitting data. We used five-fold cross-validation in
classifier construction, where training occurs with 80% of the data, and classifier evaluation
uses the remaining 20%. Finally, to avoid positional bias in case of a single node having excep-
tionally high values, we shuffled the order in which each single-node parameter appears. We
calculated parameter importance using the built-in function from Python’s sklearn package.

Networks successfully predict within-species synthetic lethality
We predicted SL within a species using the network parameters defined in Table 1 without any
normalization (raw) as the features of the classifier, and experimental data from BioGrid[16] as
the known classes. From these, we performed five-fold cross-validation by randomly selecting
1/5 of the data on which to train our classifier, and testing it on the remaining 4/5. We trained
models using logistic regression or random forest.

Translation of synthetic lethality between S. cerevisiae and S. pombe
To predict synthetic lethality, we trained classifiers on raw and translated parameters of our
source species, using SL status downloaded from BioGrid as labels. We then applied the classi-
fier to data from our target species. Here, S. cerevisiae is the source species, and we used its net-
work parameters to train classifiers. S. pombe is the target species. Classifier inputs were vectors
of network parameters.

SINaTRA outperforms translation-free and non-network methods
Synthetic lethality is expected to occur in 1/1000 gene pairs in diploid organisms; therefore, the
PPV expected by chance is 0.001. We calculated positive predictive value (PPV), the fraction of
true positives out of all called positives, on all S. pombe gene pairs, and on all gene pairs in the
same complex. We selected 1000X the number of NSL pairs as SL pairs and bootstrapped the
99% CI of the PPV for both untranslated and SINaTRA-based predictions. To calculate PPV at
each cutoff C, gene pairs with SINaTRA� C were considered to be SL, while pairs with
SINaTRA< C were considered NSL.

Complex membership was identified by using the Entrez GO database, and filtering all GO
terms that contained the word “complex” and were in the “component” category. This
amounted to 8,365 pairs, of which 5,806 appeared in our network. 46 of these were experimen-
tally known SL pairs, leaving a ration of approximately 3:400 SL:NSL. We estimated that,
because many SL pairs are unknown in S. pombe, the ratio of SL:NSL in within-complex pairs
will be approximately 1:50, and selected SL:NSL pairs in a ratio of 1:50 in order to estimate
within-complex PPV. This simulation was performed 1,000 times to identify the 99th percentile
CI.

We additionally plotted the PPV of SL prediction using genetic homology, structural simi-
larity, functional similarity, and information centrality. The expected PPV of all of these were
calculated using SL:NSL gene pairs in ratios of 1:1000; because the cutoffs occurred in a range
significantly smaller than [0,1], we selected the cutoff that would provide the optimal PPV
for the given model (all pairs), then calculated the PPV when adjusting for SL:NSL ratio.
The PPV of genetic homology was calculated using only S. pombe pairs that have homologs in
S. cerevisiae.
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We identified the true and false positives and negatives for homology and whole-genome
homology as follows: if the input score was>0 and the target species pair was SL, it was a true
positive; else it was a false positive. If the input score was 0 and the target species was NSL, it
was a true negative; else, it was a false negative. In whole-genome models, all node pairs with
no homology information for at least one node were given a score of 0. Odds ratios were calcu-
lated using confusion matrices of form [[TP,FP],[FN,TN]] and Fisher’s exact test.

For whole-genome SINaTRA methods, if the gene pair SINaTRA score� given cutoff and
the target species pair was SL, it was a true positive; else, it was a false positive. If the gene pair
SINaTRA score< given cutoff and the target species pair was NSL, it was a true negative; else,
it was a true positive. In a whole-genome SINaTRA model, nodes that appeared in the Homo-
logene database but not in the network were assigned SINaTRA scores of 0.

We identified the expected number of unidentified SL pairs in S. pombe by taking the PPV
at each SINaTRA cutoff and multiplying it by the number of putative hits at that cutoff. We
then transformed this cumulative plot into bins, such that for cutoff C, the number in that bin
represents all expected pairs with C� SINaTRA< C+0.05.

Translated models are robust to network completeness
We ablated the S. pombe network to 90, 80, 70, 60, and 50% of its original side by removing
(100-N)% edges at random. We trained a random forest classifier on the complete S. cerevisiae
network and tested it on the ablated S. pombe networks and measured classifier success again
using AUROC.

Prediction of synthetic lethality is not driven by node popularity
We plotted the median SINaTRA score of genes in S. cerevisiae, S. pombe, and humans by the
node’s degree, popularity (the number of times it appeared in the BioGRID database), and nor-
malized popularity (degree/popularity). We calculated the Spearman correlation coefficient for
all plots, for all species.

Prediction of synthetic lethality in mice
We predicted SL pairs in mice as we did with S. pombe, using S. cerevisiae as the source species.

Human synthetic lethality
Predictions of synthetic lethality in humans. After establishing the success of parameter

translation, we applied the rank-normalized inter-species classifier to human and mouse gene
pairs.

In order to filter human predictions for false positives, we annotated the VCF files from two
studies for patients homozygous for significantly deleterious mutations (high impact, resulting
in nonsense mutation, early stop, or loss of start). We then identified gene pairs where both
genes were simultaneously significantly deleteriously mutated in at least 1 patient but no more
than 5% of patients in one study, and filtered these out as confirmed NSL pairs (N = 405,010).

We compared the SINaTRA scores of the ‘confirmed NSL’ pairs to all SINaTRA scores by
randomly selecting an equal number of the remaining pairs and applying the Mann-Whitney
U test.

We chose high-confidence SL predictions to be those which our classifier assigned SL-scores
of>0.95 that were not filtered out by our genetic screen.

Putative synthetic lethal pairs are more likely to be in the same pathway. We identified
all putative SL pairs with SINaTRA scores>0.95, 0.90, and 0.80; these groups consisted of
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1,224, 6,366, and 32,290 gene pairs, respectively. For all cutoffs, we mapped the genes to their
respective pathways using the KEGG database. We compared the number of putative SL gene
pairs with the same pathway to the number expected in a group of that size at random. Signifi-
cance was assessed using the Fisher exact test.

Protein complexes are significantly enriched for putative synthetic lethal pairs. We
identified all complexes from the CORUMmammalian protein complex database where all
members of the complex mapped unambiguously to one Entrez gene ID. We then randomly
selected 20 mutually exclusive complexes composed of five proteins each, and identified the
SINaTRA scores for all pairwise combinations of the genes associated with these products. We
plotted the SINaTRA scores as a heatmap. To test significance, we randomly selected the same
number of inter-complex gene pairs as there were intra-complex gene pairs, and applied the
Mann-Whitney U test.

We additionally investigated whether this trend of significance would hold for all protein
complexes that were composed of�10 proteins from our filtered list, and for all protein com-
plexes in our filtered list. Significance was tested using the same methodology and the Mann-
Whitney U test.

Context-specific synthetic lethality. Protein expression data in tissues was downloaded
from the Protein Atlas. ENS identification codes were mapped to Entrez gene IDs, and putative
SL pairs at each SINaTRA cutoff were determined to be NSL in context if both proteins were
not detected in the tissue of choice. We identified all gene pairs with SINaTRA�0.85. For each
tissue and cell line, we removed a gene pair from the context-specific SL pair list if both genes’
products were found not to be expressed in the given context. The SL pairs that were not fil-
tered out by this method were considered the retained SL pairs. We calculated the number of
expected retained gene pairs as follows:

1� removed pairs
total human pairs

� �
� N

where N is the total, unfiltered number of gene pairs that are SL at the chosen cutoff.
Comparison to previously published methods. SL predictions from the Syn-Lethality

and DAISY papers were mapped to their Entrez gene terms, and we found the SINaTRA score
of each pair. Significance compared to random SINaTRA pairs was evaluated using the Mann-
Whitney U test. We constructed classifiers for DAISY and Syn-Lethality using SINaTRA scores
as the features and status in the given dataset as the class. We compared this with homology
and functional similarity (GO).

We next tested the ability of three methods (SINaTRA, functional similarity, homology) to
predict membership in the DAISY and Syn-Lethality datasets. Only pairs from the tested VHL
predictions were used form DAISY. We selected an equal number of gene pairs belonging in
the dataset (positive examples) and not in the dataset (negative examples), and identified the
SINaTRA scores, homology-based SL status from S. cerevisiae, and within-species functional
similarity (discrete) score for each. These scores were used in calculation of the ROC curve and
precision-recall curves.

The landscape of human synthetic lethality. In order to graphically explore the landscape
of human synthetic lethality, we identified all gene pairs with SINaTRA scores�0.95. These
were mapped to the Reactome database, using the highest terms in the hierarchy: apoptosis;
binding and uptake of ligands by scavenger receptors; cell cycle; cell-cell communication; cellu-
lar response to stress; chromatin organization; circadian clock; developmental biology; disease;
DNA repair; DNA replication; extracellular matrix organization; gene expression; hemostasis;
membrane trafficking; metabolism; metabolism of proteins; muscle contraction; neuronal
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system; organelle biogenesis and maintenance; reproduction; signal transduction; and trans-
membrane transport of small molecules. Of the 1,229 gene pairs with SINaTRA scores�0.95,
458 existed where both members mapped to a Reactome label.

SL pairs were represented in pathway-specific networks visualized in Cytoscape, [46] where
both genes were part of the same pathway. Genes are nodes, and two nodes were connected if
their SINaTRA score is�0.95. Nodes are colored by closeness centrality, and their size depends
on node degree. Pathway-specific networks are designated by hexagons, which are joined to
each other with edges weighted by the number of inter-pathway SL pairs that exist; that is, gene
pairs with mutually exclusive pathway designations.

Function-specific mechanisms of synthetic lethality. We identified all gene pairs of the
functions from the previous section, as well as an SL subset (SINaTRA score�0.85). We then
calculated the median value of all node-pair and single-node parameters and plotted a heat
map of the ratio of SL to all gene parameters. Because of the low variance between single-node
parameters, we clustered each function by the node-pair parameters.

We next annotated all SL pairs with Reactome pathways into three groups: complex, paral-
lel, and other. Two genes were annotated with “complex” if their protein products were known
to participate in a protein complex together. Two genes were annotated with “parallel” if they
had the same functional annotation but no direct interaction according to Reactome. Finally,
two genes were annotated as other if they did not fit these either the “complex” or “parallel”
definitions. For each functional category we tested if the gene pairs were enriched for parallel
or complex annotations using a Fisher’s exact test.

Putative synthetic lethal pairs suggest novel cancer therapies
Mapping drugs to gene product targets. We first mapped all gene pairs with SL

score> 0.85 to drugs in the Drug Combination Database (DCDB),[48] such that both genes in
a pair mapped to a cancer drug that targeted their products. Cancer drugs were identified from
DCDB as those with indications containing the terms cancer, leukemia, carcinoma,myeloma,
tumor, sarcoma, lymphoma, or neoplasm. From these gene pairs, we identified all unique genes
among the pairs. We found a list of 62 unique genes from a list of 381 pairs.

Putative human synthetic lethal pairs are predictive of investigative cancer therapy.
Using the aforementioned list of genes, we identified the SINaTRA score for all pairwise com-
binations of genes. We plotted these as a heat map, clustering the rows and columns by SINa-
TRA score. We then identified all known single-drug and cancer combination therapies in
experimental and clinical pipelines using DCDB, and overlaid these data on the clustered heat
map to visually identify clusters of therapies and their correspondence to SINaTRA score. We
additionally identified which pairs of genes were filtered out using our co-mutation analysis,
and confirmed that no gene pairs that were filtered out were also targets of cancer drugs. We
performed a Mann-Whitney U test on distributions of SINaTRA scores for non-tested and fil-
tered gene pairs vs. gene pairs associated with drugs, vs. single-drug gene pairs, vs. drug combi-
nations in preclinical testing, and vs. drug combinations in clinical testing.

In order to identify GO enrichment, we tested the GO terms of within-box genes compared
to all remaining genes from the Fig 6. Statistical testing was performed using Fisher’s exact test.

Statistical analyses and software
We calculated network parameters using the NetworkX version 1.8.1. We performed statistical
analysis in R version 3.0.2. De Long’s test for comparing ROC curves was implemented using
the pROC library.[49] Scripts use Python version 2.7.5. Graphics were generated using
Python’s Matplotlib.[50] BioGrid release 3.2.104 was used in all analyses.
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Supporting Information
S1 Fig. Distribution of network parameters for the S. cerevisiae (red) and S. pombe (blue)
networks.Mann-Whitney U test indicates that the parameters are significantly differently dis-
tributed between species.
(TIF)

S2 Fig. Use of SINaTRA makes network parameters that are not comparable before transla-
tion (red) easily compared after translation (gray).
(TIF)

S3 Fig. Interspecies gene-pair connectivity homology is measured using the Euclidean dis-
tance between vectors of single-node parameters for both genes (lower distance implies
higher similarity).We find that gene pairs with the same specific function (�100 genes anno-
tated with that GO term) are significantly more similar to each other than gene pairs with dif-
ferent functions; this effect is consistent even when accounting for homology (�: p<0.05; ���:
p<2.2e-16; Mann-Whitney U test).
(TIF)

S4 Fig. Interspecies gene-pair connectivity homology is measured using the Euclidean dis-
tance between vectors of single-node parameters for both genes (lower distance implies
higher similarity). The maximum number of genes annotated by each GO term was changed
to determine how specific each function is (x-axis). For each cutoff, the median distance
between non-homologous gene pairs with different functions is higher than for all homologous
gene pairs, and for non-homologous gene pairs with the same function.
(TIF)

S5 Fig. A. We performed classification of SL within two species: S. cerevisiae and S. pombe.
We considered logistic regression (LogReg) vs. random forest (RanFor) to pick the more robust
method. We found that random forest significantly outperformed logistic regression in both
species (p<0.0001, De Long’s Method). B.Receiver operating characteristic for within-species
classification of SL in S. cerevisiae using raw (red) and rank-normalized (yellow) data; both
achieved an AUC of 0.91. In addition, SL labels were permuted (blue), achieving an AUC no
better than chance. C. Correlation between 5,000 gene pairs’ SINaTRA scores using raw and
rank-normalized data. Pearson R correlation is 0.97 (p<0.0001). D. SINaTRA score cutoff vs.
positive predictive value. We computed PPV at each SINaTRA score cutoff (all gene pairs with
SINaTRA score greater than the cutoff were considered to be SL), and found that it increased
to approximately 0.1 at a SINaTRA score cutoff of 0.95.
(TIF)

S6 Fig. A. Normalization method performance in SL prediction from S. cerevisiae to S.
pombe.Normalization methods are described in Table 2 in the main text. B. Precision-recall
curves for SINaTRA (red) and untranslated (blue).
(TIF)

S7 Fig. Prediction of SL from S. pombe to S. cerevisiae using untranslated (blue) and trans-
lated (red) parameters. The black dotted line represents expected ROC by chance. Raw and
SINaTRA ROC curves were significantly different (DeLong’s test).
(TIF)

S8 Fig. We create classifiers based on genetic homology (AUC = 0.60), genetic homology
extrapolated to the whole genome (WG Homology; AUC = 0.52), protein domain (PFam;
AUC = 0.56), protein structure (SCOP; AUC = 0.62), bi-nodal information centrality
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(AUC = 0.46), and function (GO; AUC = 0.81), and compare these performances to SINa-
TRA (AUC = 0.86) and SINaTRA restricted to only pairs existing in the homology database
(SINaTRA (Hom.); AUC = 0.91) when predicting SL in S. pombe.
(TIF)

S9 Fig. For each table, the upper left corner is true positives (TP); upper right is false posi-
tives (FP); bottom left is false negatives (FN); and bottom right is true negatives (TN).We
found that the number of true positives, as well as the PPV, is significantly higher in SINaTRA-
based methods than homology-based ones. See Materials and Methods for details.
(TIF)

S10 Fig. Network ablation. A. SL prediction from full S. cerevisiae to ablated S. pombe net-
works using untranslated parameters. Black line represents AUC, while colored lines represent
ROC; red is highest ablation (50%), while violet is lowest (10%). B. SL prediction from full S.
cerevisiae to ablated S. pombe networks using SINaTRA. Black line represents AUC, while col-
ored lines represent ROC; red is highest ablation (50%), while violet is lowest (10%). C. Preci-
sion-recall curves of SL prediction from full S. cerevisiae to ablated S. pombe networks using
untranslated parameters. D. Precision-recall curves of SL prediction from full S. cerevisiae to
ablated S. pombe networks using SINaTRA.
(TIF)

S11 Fig. We plotted the median SINaTRA score of all genes for S. cerevisiae, S. pombe, and
humans vs. node degree, node popularity (the number of times it appears in the BioGrid
database), and normalized popularity (popularity/degree).We found that, while SINaTRA
score is correlated with the former two measures, it is not correlated with the latter, which
gives a better approximation of research bias.
(TIF)

S12 Fig. We identified all human gene pairs with SINaTRA�0.85 and all tissue- and cell-
line-specific SL pairs by filtering out all gene pairs where neither gene product is expressed
in the tissue/cell-line. A) The proportion of retained SL pairs by tissue. Tissues are color-
coded by the system to which they belong (legend: far left). B) The proportion of retained SL
pairs by cell type. Cells were associated with tissue and mapped to system. Cells occurring in
multiple tissues from different systems are coded as “other.” C) The observed number of
retained tissue-specific SL pairs (blue) versus the expected number (red; model described in
Materials and Methods). D) The observed (blue) vs. expected (red) number of retained cell-
specific SL pairs. The presence of higher- or lower-than-expected numbers of retained SL pairs
may indicate context-specific resistance or susceptibility to SL interactions.
(TIF)

S13 Fig. Precision-recall curves for SINaTRA and functional homology’s abilities to predict
members of the DAISY and Syn-Lethality studies.
(TIF)

S14 Fig. Putative functional SL pairs were annotated using Reactome pathways and
grouped into three sets: within-complex interaction, other interaction, and unknown. The
fraction of SL pairs in each group is illustrated here by function.
(TIF)

S15 Fig. We observed that gene pairs targeted by drugs are significantly enriched in SINa-
TRA score, and the median scores increase from genes that contain only one non-cancer
drug target, to those that are affected by two non-cancer drug targets, to those that contain
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one cancer drug target, to those that contain two. The differences are significant for all com-
parisons.
(TIF)

S16 Fig. Creating network-based classifiers using untranslated data (top) and rank-normal-
ized (translated) data (bottom).
(TIF)

S1 Table. A description of SINaTRA parameters, including equations where applicable.
(PNG)

S2 Table. The comparison of distributions of all network parameters between species,
described using the Mann-Whitney U test (“MWU”) and associated p-values.
(PDF)

S3 Table. Columns 2–3 represent AUCs of models based on non-translational or non-net-
work methods of predicting SL, and those methods plus SINaTRA. Columns 4–5 describe
results of ANOVAs of nested general linear models of SINaTRA, then SINaTRA plus each of
the methods. Only functional similarity provides an improved model when combined with
SINaTRA.
(XLSX)

S4 Table. SINaTRA predictions of mouse SL pairs.
(PDF)

S5 Table. SINaTRA predictions of human SL pairs.
(PDF)

S6 Table. The number of edges removed in each tissue- and cell-specific context compared
to the expected number removed.OR and p-values are calculated using Fisher’s exact test.
(XLSX)

Acknowledgments
The authors thank Brent R. Stockwell, Hossein Khiabanian, and Cameron Palmer for their
valuable input and editorial suggestions.

Author Contributions
Conceived and designed the experiments: AJ SJD NPT. Performed the experiments: AJ. Ana-
lyzed the data: AJ SJD NPT. Contributed reagents/materials/analysis tools: AJ SJD NPT. Wrote
the paper: AJ SJD NPT.

References
1. Nijman SMB (2011) Synthetic lethality: General principles, utility and detection using genetic screens in

human cells. FEBS Letters 585: 1–6. doi: 10.1016/j.febslet.2010.11.024 PMID: 21094158

2. Whitehurst AW, Bodemann BO, Cardenas J, Ferguson D, Girard L, et al. (2007) Synthetic lethal screen
identification of chemosensitizer loci in cancer cells. Nature 446: 815–819. doi: 10.1038/nature05697
PMID: 17429401

3. Conde-Pueyo N, Munteanu A, Solé RV, Rodríguez-Caso C (2009) Human synthetic lethal inference as
potential anti-cancer target gene detection. BMC Systems Biology 3: 116. doi: 10.1186/1752-0509-3-
116 PMID: 20015360

4. Chan N, Pires IM, Bencokova Z, Coackley C, Luoto KR, et al. (2010) Contextual Synthetic Lethality of
Cancer Cell Kill Based on the Tumor Microenvironment. Cancer Research 70: 8045–8054. doi: 10.
1158/0008-5472.CAN-10-2352 PMID: 20924112

Translational Network Models Identify Synthetic Lethality

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004506 October 9, 2015 27 / 29

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004506.s016
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004506.s017
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004506.s018
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004506.s019
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004506.s020
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004506.s021
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004506.s022
http://dx.doi.org/10.1016/j.febslet.2010.11.024
http://www.ncbi.nlm.nih.gov/pubmed/21094158
http://dx.doi.org/10.1038/nature05697
http://www.ncbi.nlm.nih.gov/pubmed/17429401
http://dx.doi.org/10.1186/1752-0509-3-116
http://dx.doi.org/10.1186/1752-0509-3-116
http://www.ncbi.nlm.nih.gov/pubmed/20015360
http://dx.doi.org/10.1158/0008-5472.CAN-10-2352
http://dx.doi.org/10.1158/0008-5472.CAN-10-2352
http://www.ncbi.nlm.nih.gov/pubmed/20924112


5. Jerby-Arnon L, Pfetzer N, Waldman YY, McGarry L, James D, et al. (2014) Predicting cancer-specific
vulnerability via data-driven detection of synthetic lethality. Cell 158: 1199–1209. doi: 10.1016/j.cell.
2014.07.027 PMID: 25171417

6. Deshpande R, Asiedu M, Klebig M, Sutor S, Kuzmin E, et al. (2013) A comparative genomic approach
for identifying synthetic lethal interactions in human cancer. Cancer Research. doi: 10.1158/0008-
5472.CAN-12-3956

7. NCBI Resource Coordinators (2012) Database resources of the National Center for Biotechnology
Information. Nucleic Acids Research 41: D8–D20. doi: 10.1093/nar/gks1189 PMID: 23193264

8. Hughes AL, Friedman R (2003) Parallel evolution by gene duplication in the genomes of two unicellular
fungi. Genome Research 13: 794–799. doi: 10.1101/gr.714603 PMID: 12727899

9. Sipiczki M (2000) Where does fission yeast sit on the tree of life? Genome Biology 1: reviews1011.1.

10. Jacunski A, Tatonetti NP (2013) Connecting the dots: applications of network medicine in pharmacol-
ogy and disease. Clin Pharmacol Ther 94: 659–669. doi: 10.1038/clpt.2013.168 PMID: 23995266

11. Barabási A-L, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human
disease. Nature Reviews Genetics 12: 56–68. doi: 10.1038/nrg2918 PMID: 21164525

12. Goh KI, Choi IG (2012) Exploring the human diseasome: the human disease network. Briefings in
Functional Genomics 11: 533–542. doi: 10.1093/bfgp/els032 PMID: 23063808

13. WuM, Li X, Zhang F, Li X, Kwoh C-K, et al. (2013) Meta-analysis of Genomic and Proteomic Features
to Predict Synthetic Lethality of Yeast and Human Cancer New York, New York, USA: ACM Press. pp.
384–391. doi: 10.1145/2506583.2506653

14. Kranthi T, Rao SB, Manimaran P (2013) Identification of synthetic lethal pairs in biological systems
through network information centrality. Mol BioSyst 9: 2163. doi: 10.1039/c3mb25589a PMID:
23728082

15. Finn RD, Bateman A, Clements J, Coggill P (2013) Pfam: the protein families database. Nucleic acids
. . ..

16. Stark C, Breitkreutz B-J, Reguly T, Boucher L, Breitkreutz A, et al. (2006) BioGRID: a general repository
for interaction datasets. Nucleic Acids Research 34: D535–D539. doi: 10.1093/nar/gkj109 PMID:
16381927

17. Breiman L (2001) Random forests. Machine learning 45: 5–32.

18. Menze BH, Kelm BM, Masuch R, Himmelreich U, Bachert P, et al. (2009) A comparison of random for-
est and its Gini importance with standard chemometric methods for the feature selection and classifica-
tion of spectral data. BMC Bioinformatics 10: 213. doi: 10.1186/1471-2105-10-213 PMID: 19591666

19. Hagberg A, Schult D, Swart P (2008) Exploring Network Structure, Dynamics, and Function using Net-
workX. Proceedings of the Python in Science Conference (SciPy): 11–16. Available: http://conference.
scipy.org/proceedings/SciPy2008/paper_2/. Accessed 11 November 2013.

20. Phillips PC, Johnson NA (1998) The Population Genetics of Synthetic Lethals. Genetics Society of
America: 449–458.

21. Hart GT, Ramani AK, Marcotte EM (2006) How complete are current yeast and human protein-interac-
tion networks? Genome Biology 7: 120. doi: 10.1186/gb-2006-7-11-120 PMID: 17147767

22. 1000 Genomes Project Consortium, Abecasis GR, Auton A, Brooks LD, DePristo MA, et al. (2012) An
integrated map of genetic variation from 1,092 human genomes. Nature 491: 56–65. doi: 10.1038/
nature11632 PMID: 23128226

23. Fromer M, Moran JL, Chambert K, Banks E, Bergen SE, et al. (2012) Discovery and statistical genotyp-
ing of copy-number variation from whole-exome sequencing depth. Am J HumGenet 91: 597–607.
doi: 10.1016/j.ajhg.2012.08.005 PMID: 23040492

24. Kiezun A, Garimella K, Do R, Stitziel NO, Neale BM, et al. (2012) Exome sequencing and the genetic
basis of complex traits. Nat Genet 44: 623–630. doi: 10.1038/ng.2303 PMID: 22641211

25. Pasaniuc B, Rohland N, McLaren PJ, Garimella K, Zaitlen N, et al. (2012) Extremely low-coverage
sequencing and imputation increases power for genome-wide association studies. Nat Genet 44: 631–
635. doi: 10.1038/ng.2283 PMID: 22610117

26. Le Meur N, Gentleman R (2008) Modeling synthetic lethality. Genome Biology 9: R135. doi: 10.1186/
gb-2008-9-9-r135 PMID: 18789146

27. Tong AHY, Lesage G, Bader GD, Ding H, Xu H, et al. (2004) Global Mapping of the Yeast Genetic Inter-
action Network. Science 303: 808–813. doi: 10.1126/science.1091317 PMID: 14764870

28. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the
genome. Nucleic Acids Research 32: D277–D280. doi: 10.1093/nar/gkh063 PMID: 14681412

Translational Network Models Identify Synthetic Lethality

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004506 October 9, 2015 28 / 29

http://dx.doi.org/10.1016/j.cell.2014.07.027
http://dx.doi.org/10.1016/j.cell.2014.07.027
http://www.ncbi.nlm.nih.gov/pubmed/25171417
http://dx.doi.org/10.1158/0008-5472.CAN-12-3956
http://dx.doi.org/10.1158/0008-5472.CAN-12-3956
http://dx.doi.org/10.1093/nar/gks1189
http://www.ncbi.nlm.nih.gov/pubmed/23193264
http://dx.doi.org/10.1101/gr.714603
http://www.ncbi.nlm.nih.gov/pubmed/12727899
http://dx.doi.org/10.1038/clpt.2013.168
http://www.ncbi.nlm.nih.gov/pubmed/23995266
http://dx.doi.org/10.1038/nrg2918
http://www.ncbi.nlm.nih.gov/pubmed/21164525
http://dx.doi.org/10.1093/bfgp/els032
http://www.ncbi.nlm.nih.gov/pubmed/23063808
http://dx.doi.org/10.1145/2506583.2506653
http://dx.doi.org/10.1039/c3mb25589a
http://www.ncbi.nlm.nih.gov/pubmed/23728082
http://dx.doi.org/10.1093/nar/gkj109
http://www.ncbi.nlm.nih.gov/pubmed/16381927
http://dx.doi.org/10.1186/1471-2105-10-213
http://www.ncbi.nlm.nih.gov/pubmed/19591666
http://conference.scipy.org/proceedings/SciPy2008/paper_2/
http://conference.scipy.org/proceedings/SciPy2008/paper_2/
http://dx.doi.org/10.1186/gb-2006-7-11-120
http://www.ncbi.nlm.nih.gov/pubmed/17147767
http://dx.doi.org/10.1038/nature11632
http://dx.doi.org/10.1038/nature11632
http://www.ncbi.nlm.nih.gov/pubmed/23128226
http://dx.doi.org/10.1016/j.ajhg.2012.08.005
http://www.ncbi.nlm.nih.gov/pubmed/23040492
http://dx.doi.org/10.1038/ng.2303
http://www.ncbi.nlm.nih.gov/pubmed/22641211
http://dx.doi.org/10.1038/ng.2283
http://www.ncbi.nlm.nih.gov/pubmed/22610117
http://dx.doi.org/10.1186/gb-2008-9-9-r135
http://dx.doi.org/10.1186/gb-2008-9-9-r135
http://www.ncbi.nlm.nih.gov/pubmed/18789146
http://dx.doi.org/10.1126/science.1091317
http://www.ncbi.nlm.nih.gov/pubmed/14764870
http://dx.doi.org/10.1093/nar/gkh063
http://www.ncbi.nlm.nih.gov/pubmed/14681412


29. Ruepp A, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C, et al. (2007) CORUM: the com-
prehensive resource of mammalian protein complexes. Nucleic Acids Research 36: D646–D650. doi:
10.1093/nar/gkm936 PMID: 17965090

30. Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, et al. (2010) Towards a knowledge-based
Human Protein Atlas. Nat Biotechnol 28: 1248–1250. doi: 10.1038/nbt1210-1248 PMID: 21139605

31. Li X-J, Mishra SK, WuM, Zhang F, Zheng J (2014) Syn-lethality: an integrative knowledge base of syn-
thetic lethality towards discovery of selective anticancer therapies. Biomed Res Int 2014: 196034. doi:
10.1155/2014/196034 PMID: 24864230

32. Croft D, Mundo AF, Haw R, Milacic M, Weiser J, et al. (2014) The Reactome pathway knowledgebase.
Nucleic Acids Research 42: D472–D477. doi: 10.1093/nar/gkt1102 PMID: 24243840

33. WuM, Li X, Zhang F, Li X, Kwoh C-K, et al. (2014) In Silico Prediction of Synthetic Lethality by Meta-
Analysis of Genetic Interactions, Functions, and Pathways in Yeast and Human Cancer. CIN: 71. doi:
10.4137/CIN.S14026

34. Kaelin WG (2005) The Concept of Synthetic Lethality in the Context of Anticancer Therapy. Nat Rev
Cancer 5: 689–698. doi: 10.1038/nrc1691 PMID: 16110319

35. Rains JL, Jain SK (2011) Oxidative stress, insulin signaling, and diabetes. Free Radical Biology and
Medicine 50: 567–575. doi: 10.1016/j.freeradbiomed.2010.12.006 PMID: 21163346

36. Pontén F, Jirström K, Uhlen M (2008) The Human Protein Atlas—a tool for pathology. J Pathol 216:
387–393. doi: 10.1002/path.2440 PMID: 18853439

37. Geer LY, Marchler-Bauer A, Geer RC, Han L, He J, et al. (2009) The NCBI BioSystems database.
Nucleic Acids Research 38: D492–D496. doi: 10.1093/nar/gkp858 PMID: 19854944

38. Conte LL, Ailey B, Hubbard TJP, Brenner SE, Murzin AG, et al. (2000) SCOP: a Structural Classifica-
tion of Proteins database. Nucleic Acids Research 28: 257–259. doi: 10.1093/nar/28.1.257 PMID:
10592240

39. Fox NK, Brenner SE, Chandonia JM (2013) SCOPe: Structural Classification of Proteins—extended,
integrating SCOP and ASTRAL data and classification of new structures. Nucleic Acids Research 42:
D304–D309. doi: 10.1093/nar/gkt1240 PMID: 24304899

40. Gene Ontology Consortium (2010) The Gene Ontology in 2010: extensions and refinements. Nucleic
Acids Research 38: D331–D335. doi: 10.1093/nar/gkp1018 PMID: 19920128

41. Maglott D (2004) Entrez Gene: gene-centered information at NCBI. Nucleic Acids Research 33: D54–
D58. doi: 10.1093/nar/gki031

42. Sonnhammer EL, Eddy SR, Durbin R, Pfam: a comprehensive database of protein domain families
based on seed alignments. Proteins. 1997 Jul; 28(3):405–20.

43. Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the com-
prehensive functional analysis of large gene lists. Nucleic Acids Research 37: 1–13. doi: 10.1093/nar/
gkn923 PMID: 19033363

44. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists
using DAVID bioinformatics resources. Nat Protoc 4: 44–57. doi: 10.1038/nprot.2008.211 PMID:
19131956

45. Wu X, Jiang R, Zhang MQ, Li S (2008) Network-based global inference of human disease genes. Mol
Syst Biol 4. doi: 10.1038/msb.2008.27

46. Shannon P (2003) Cytoscape: A Software Environment for Integrated Models of Biomolecular Interac-
tion Networks. Genome Research 13: 2498–2504. doi: 10.1101/gr.1239303 PMID: 14597658

47. Amaratunga D, Cabrera J (2001) Analysis of Data From Viral DNAMicrochips. Journal of the American
Statistical Association 96: 1161–1170. doi: 10.1198/016214501753381814

48. Liu Y, Hu B, Fu C, Chen X (2010) DCDB: Drug combination database. Bioinformatics 26: 587–588.
doi: 10.1093/bioinformatics/btp697 PMID: 20031966

49. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, et al. (2011) pROC: an open-source package for R
and S+ to analyze and compare ROC curves. BMC Bioinformatics 12: 77. doi: 10.1186/1471-2105-12-
77 PMID: 21414208

50. Hunter JD (2007) Matplotlib: A 2D Graphics Environment. Comput Sci Eng 9: 90–95. doi: 10.1109/
MCSE.2007.55

Translational Network Models Identify Synthetic Lethality

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004506 October 9, 2015 29 / 29

http://dx.doi.org/10.1093/nar/gkm936
http://www.ncbi.nlm.nih.gov/pubmed/17965090
http://dx.doi.org/10.1038/nbt1210-1248
http://www.ncbi.nlm.nih.gov/pubmed/21139605
http://dx.doi.org/10.1155/2014/196034
http://www.ncbi.nlm.nih.gov/pubmed/24864230
http://dx.doi.org/10.1093/nar/gkt1102
http://www.ncbi.nlm.nih.gov/pubmed/24243840
http://dx.doi.org/10.4137/CIN.S14026
http://dx.doi.org/10.1038/nrc1691
http://www.ncbi.nlm.nih.gov/pubmed/16110319
http://dx.doi.org/10.1016/j.freeradbiomed.2010.12.006
http://www.ncbi.nlm.nih.gov/pubmed/21163346
http://dx.doi.org/10.1002/path.2440
http://www.ncbi.nlm.nih.gov/pubmed/18853439
http://dx.doi.org/10.1093/nar/gkp858
http://www.ncbi.nlm.nih.gov/pubmed/19854944
http://dx.doi.org/10.1093/nar/28.1.257
http://www.ncbi.nlm.nih.gov/pubmed/10592240
http://dx.doi.org/10.1093/nar/gkt1240
http://www.ncbi.nlm.nih.gov/pubmed/24304899
http://dx.doi.org/10.1093/nar/gkp1018
http://www.ncbi.nlm.nih.gov/pubmed/19920128
http://dx.doi.org/10.1093/nar/gki031
http://dx.doi.org/10.1093/nar/gkn923
http://dx.doi.org/10.1093/nar/gkn923
http://www.ncbi.nlm.nih.gov/pubmed/19033363
http://dx.doi.org/10.1038/nprot.2008.211
http://www.ncbi.nlm.nih.gov/pubmed/19131956
http://dx.doi.org/10.1038/msb.2008.27
http://dx.doi.org/10.1101/gr.1239303
http://www.ncbi.nlm.nih.gov/pubmed/14597658
http://dx.doi.org/10.1198/016214501753381814
http://dx.doi.org/10.1093/bioinformatics/btp697
http://www.ncbi.nlm.nih.gov/pubmed/20031966
http://dx.doi.org/10.1186/1471-2105-12-77
http://dx.doi.org/10.1186/1471-2105-12-77
http://www.ncbi.nlm.nih.gov/pubmed/21414208
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1109/MCSE.2007.55

