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ABSTRACT Prebiotics confer benefits to human health, often by promoting the
growth of gut bacteria that produce metabolites valuable to the human body,
such as short-chain fatty acids (SCFAs). While prebiotic selection has strongly fo-
cused on maximizing the production of SCFAs, less attention has been paid to
gases, a by-product of SCFA production that also has physiological effects on the
human body. Here, we investigate how the content and volume of gas produc-
tion by human gut microbiota are affected by the chemical composition of the
prebiotic and the community composition of the microbiota. We first constructed a lin-
ear system model based on mass and electron balance and compared the theo-
retical product ranges of two prebiotics, inulin and pectin. Modeling shows that
pectin is more restricted in product space, with less potential for H, but more
potential for CO, production. An ex vivo experimental system showed pectin
degradation produced significantly less H, than inulin, but CO, production fell
outside the theoretical product range, suggesting fermentation of fecal debris.
Microbial community composition also impacted results: methane production
was dependent on the presence of Methanobacteria, while interindividual differ-
ences in H, production during inulin degradation were driven by a Lachno-
spiraceae taxon. Overall, these results suggest that both the chemistry of the
prebiotic and the composition of the microbiota are relevant to gas production.
Metabolic processes that are relatively prevalent in the microbiome, such as H,
production, will depend more on substrate, while rare metabolisms such as
methanogenesis depend more strongly on microbiome composition.

IMPORTANCE Prebiotic fermentation in the gut often leads to the coproduction of
short-chain fatty acids (SCFAs) and gases. While excess gas production can be a po-
tential problem for those with functional gut disorders, gas production is rarely con-
sidered during prebiotic design. In this study, we combined the use of theoretical
models and an ex vivo experimental platform to illustrate that both the chemical
composition of the prebiotic and the community composition of the human gut mi-
crobiota can affect the volume and content of gas production during prebiotic fer-
mentation. Specifically, more prevalent metabolic processes such as hydrogen pro-
duction were strongly affected by the oxidation state of the probiotic, while rare
metabolisms such as methane production were less affected by the chemical nature
of the substrate and entirely dependent on the presence of Methanobacteria in the
microbiota.

KEYWORDS functional heterogeneity, gut microbiome, intestinal gas, prebiotics

September/October 2020 Volume 11 Issue 5 €00217-20

Citation Yu X, Gurry T, Nguyen LTT, Richardson
HS, Alm EJ. 2020. Prebiotics and community
composition influence gas production of the
human gut microbiota. mBio 11:200217-20.
https://doi.org/10.1128/mBio.00217-20.
Editor Kimberly A. Kline, Nanyang
Technological University

Copyright © 2020 Yu et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to Eric J. Alm,
ejalm@mit.edu.

* Present address: Xiaogian Yu, Centre for
Microbiology and Environmental Systems
Science, Department of Microbiology and
Ecosystem Science, Division of Microbial
Ecology, University of Vienna, Vienna, Austria.
Received 29 January 2020

Accepted 31 July 2020

Published 8 September 2020

mBio"  mbio.asm.org


https://orcid.org/0000-0001-8294-9364
https://doi.org/10.1128/mBio.00217-20
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:ejalm@mit.edu
https://crossmark.crossref.org/dialog/?doi=10.1128/mBio.00217-20&domain=pdf&date_stamp=2020-9-8
https://mbio.asm.org

Yu et al.

he gut microbiota plays an important role in human nutrition and health, leading

to increasing interest in modulation of the gut microbiome via dietary interventions
for improving human health (1-3). Compounds that can be selectively metabolized by
microbes in the gut resulting in beneficial effects on the host are defined as prebiotics
(4). While some phenolic compounds and fatty acids are suspected to have prebiotic
activities, most known prebiotics are dietary carbohydrates that are neither digested
nor absorbed in the human small intestine and are thus capable of reaching the colon
and promoting the growth of selective beneficial bacteria (4, 5). These bacteria, in turn,
can prevent the colonization of pathogens or produce metabolites that are beneficial
for the human body, most notably short-chain fatty acids (SCFAs) such as acetate,
propionate, and butyrate. These SCFAs not only contribute directly to host energy
metabolism but have a number of positive effects on host physiology. Butyrate is the
major energy source for colonocytes and enterocytes (6) and can also activate gluco-
neogenesis and modulate inflammatory responses and cytokine levels via G protein-
coupled receptors or histone deacetylases (7). Similarly, acetate and propionate are
involved in the regulation of host immune or metabolic systems (7, 8). Thus, selection
for prebiotics has largely focused on those that allow the proliferation of bacteria that
maximize production of SCFAs (5, 9, 10).

SCFA fermentation from carbohydrates by the gut microbiota is often coupled with
the production of gases. Production of H, is often necessary for the cycling of
NAD*/NADH during fermentation, and CO, is released whenever decarboxylation
occurs (11). H, can be further utilized by methanogens and sulfate reducers for the
production of CH, and H,S (12). Most intestinal gas is absorbed into the bloodstream
and removed via the lungs (13), but it can still have physiological effects on the human
body. The volume of gas production can affect the distension of the colonic wall and
in turn affect the speed of material transition through the colon (14). Methane pro-
duction can result in slowed intestinal transit and reduced serotonin levels in the
gastrointestinal tract, potentially impacting constipation-predominant irritable bowel
syndrome (IBS-C) and chronic constipation (15). Therefore, gas production may be an
important factor to consider in the selection of prebiotics, especially since bloating is
a major symptom for many functional gut disorders such as IBS (16).

Many prebiotics are already known to impact fermentation products. For example,
short-chain fructooligosaccharides (FOS) and inulin are some of the most extensively
documented prebiotics, because they promote the growth of bifidobacteria and in-
crease SCFA production (4, 5). However, the low-FODMAP (fermentable oligosaccha-
ride, disaccharide, monosaccharide, and polyol) diet has been shown to improve IBS
symptoms in some patients, because foods containing FOS and inulin can increase
luminal distension and gas production (17, 18). Thus, it may be valuable to identify
prebiotics that maximize SCFA and minimize gas production or minimize the produc-
tion of specific gases. However, few studies that consider the efficacy of prebiotics
simultaneously take gas and SCFA production into account, and systematic investiga-
tions on factors that affect gas production in prebiotic fermentation are lacking.

In this study, we investigated whether the chemical composition of the prebiotic
and heterogeneity in the compositions of gut microbiota can affect the content and
volume of gas production during prebiotic fermentation. We compared the fermenta-
tion products of two common prebiotics, inulin and pectin, both theoretically via linear
system modeling and experimentally via an ex vivo framework that measures gas and
SCFA production of stool microbiota responding to fiber addition (19). We find that
inulin, a more reduced carbohydrate, produces more H, than pectin, but the amount
of H, production is strongly associated with a Lachnospiraceae amplicon sequencing
variant (ASV). Inulin also yielded greater amounts of the more reduced SCFA butyrate
and less acetate. Methane production is, however, less affected by the chemical nature
of the substrate, being entirely dependent on the level of Methanobacteria in the
microbiota. Overall, these results suggest that the production of different gases upon
prebiotic fermentation by gut microbiota are differentially affected by the chemical
nature of the prebiotic and microbiome compositions.
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RESULTS

Modeling community production with mass and electron balance. To explore
the general effect of prebiotic chemical composition on fermentation product forma-
tion, we established a linear system model that allowed us to determine the theoretical
range of product output considering mass and electron balance. Considering a system
of n chemicals as possible inputs and outputs, made up of a total of m chemical
elements, we defined a matrix M in which the rows represent different elements and
columns represent different chemicals; the elemental composition of a chemical is thus
a column in M. The total number of valence electrons in the chemical is also counted
as an “element” and consists of a separate row in M. Thus, any reaction that satisfies
both mass and electron balance is an n-dimensional vector s, whose elements are the
stoichiometric coefficients of the chemicals in M and satisfy Ms = 0 (Fig. 1a). By
definition, s must be within the null space of M. The feasible product space of the
biological system, represented by the elements in s that are coefficients of the possible
products, is thus a convex cone defined by the linear combinations of the basis vector
of null(M). Since our model did not account for the thermodynamic constraints on the
metabolic fluxes within the system, it represented an upper limit of the feasible product
space.

Feasible product space of pectin fermentation is more limited than that of
inulin. We applied our model to compare the feasible product space for the fermen-
tation of 1 mol of inulin (Cg,\H;0,,-205n4+1) to that of 1 mol of pectin (CqHgn45060+1)
in a closed system. Since we were modeling product output from carbohydrate input,
we only included C, H, O, and valence electrons as rows in our matrix M. For products
(columns) in M, we included the three most abundant SCFAs in the gut (acetate,
propionate, and butyrate) and the three major components of intestinal gas (H,, CH,,
and CO,) as well as water and biomass (represented by CH, 3O,sNy, the mean
chemical formula for microbial biomass [20]) (Fig. 1). All product concentrations were
restricted to be nonnegative to simulate a closed system (i.e., product formation is
solely from fiber input). Our model showed that in a closed system, the product space
of pectin was more restricted than that of inulin (see Fig. S1 in the supplemental
material); in particular, inulin had more potential for H, production, while pectin had
more potential for the production of CO, (Fig. 1c). Model predictions were conserved
even if further constraints were placed on the system, i.e., 15% of C in the fiber is
converted into biomass as in a typical carbohydrate fermentation (Fig. S2a, S2b, and
S2¢) (21).

Pectin degradation takes up reducing agents from the environment. We next
asked if our theoretical predictions could be experimentally validated using an ex vivo
framework in which we measured the response of stool microbiota to fiber addition.
First, stools from 9 healthy human subjects were each homogenized with phosphate-
buffered saline (PBS) under anaerobic conditions to create fecal slurries. The slurries
were then incubated in serum bottles at 37°C starting with 100% N, in the headspace,
with inulin, pectin, cellulose, or no additional fiber input (Fig. 2a). Since our preliminary
testing showed that degradation of soluble fibers in this system was almost entirely
complete within 24 h (19), we used the gas and SCFA concentrations at 24 h as the
experimental product concentrations for comparison to those predicted from our
theoretical models. Because the fecal slurry itself contained a certain amount of residue
material from food digestion in the human body, even samples that did not receive
additional fiber produced gas and SCFAs; the fermentation products of a certain fiber
in a sample were thus determined as the difference between product concentrations
measured in a sample which received additional fiber and those in a sample which did
not. We found the gas and SCFA concentrations of samples with cellulose was not
significantly different from the control samples, likely because cellulose was not soluble
in water and precipitated as a thick white layer at the bottom of the serum bottles. We
thus focused our analyses on samples with soluble fiber input, i.e., inulin and pectin.
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FIG 1 Modeling community production with mass and electron balance. (a) Detailed representation of the theoretical model Ms = 0,
where M is a matrix with n chemicals (j inputs and k products). In M, inputs are represented in negative numbers, while outputs are
represented in positive numbers. Each row in M represents an element (or electrons) that needs to be balanced. (b) The specific M matrix
corresponding to our system of interest, fermentation of two different fibers, inulin and pectin. (c) Set of selected 2D projections of the
feasible product space predicted from our theoretical model for the fermentation of 1 mol inulin or 1 mol pectin. See Fig. S1 in the
supplemental material for the full set of 2D projections for all fermentation products.

Focusing on gas production in the ex vivo systems, we found that the amount of H,
produced by pectin fermentation was significantly lower than that of inulin (Fig. 2b)
(Kruskal-Wallis test, paired, P = 0.004), and the total amount of gas production was also
lower (Kruskal-Wallis test, paired, P = 0.07). However, we did not observe a larger
amount of CO, production in pectin fermentation than in inulin fermentation as
theoretically predicted; in fact, the measured CO, productions from pectin fermenta-
tion did not fall within the previous theoretically predicted range (Fig. 3a). This was also
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FIG 2 Inulin fermentation produces more H, and less acetate than pectin in an ex vivo system. (a) Experimental
scheme for studying fiber fermentation products in an ex vivo system. (b) Major product concentrations in the ex
vivo system after 24 h measured as moles product production per mole of fiber. **, P < 0.01 for paired

Kruskal-Wallis test; ns, not significant.

the case for acetate production in some samples that fermented inulin. Since our model
only considers the most basic laws of chemistry and represents the maximum possible
theoretical product range for a closed system, we hypothesized that the experimental
violation of the results from the theoretical model was due to assuming that our
experimental system was closed. Indeed, despite the serum bottle being a closed
system with no material exchange with the environment outside the bottle, fermen-
tation of the additional fiber should be seen as a subsystem that can exchange
products with the other subsystem in the bottle that ferments residue material in the
fecal slurry (Fig. 3b).

We thus investigated what input the “fiber subsystem” would need from the
“residue subsystem” for the measured CO, to fall within the feasible product range
determined by the theoretical model. Since, on average, the samples that did not
receive additional fiber produced approximately one-third as much gas and SCFAs as
those that did (see Fig. S4), we limited the input from the residue subsystem to the
equivalent amount of product that can be produced by 1/3 mol of inulin or pectin.
Allowing one input at a time, we found that only when H, or CH, was used as input
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represent standard deviations from biological replicates.

would the measured CO, fall within the predicted range (Fig. 3c). Although we did not
observe net uptake of either H, or CH, in our experimental data, but because both H,
and CH, are chemicals with reducing power, there was likely influx of other reducing
substrates not presented in our model from the “residue subsystem” to the “fiber
subsystem.” Thus, in our ex vivo system, pectin degradation not only had a lower net
production of H, than that of inulin but also took up reducing agents from the
surrounding environment. We thus speculate that when pectin is degraded in the
human gut, it is also taking up reducing agents—a process for which consequences are
unclear and possibly worth further investigation.

H,, acetate, and butyrate distinguish the product profile of inulin and pectin
degradation. We next asked if the overall product profiles of inulin degradation and
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FIG 4 Principal-coordinates analysis (PCoA) of the Euclidian distance matrix of the fiber fermentation
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added to the system. Each point is labeled by the source (human subject [H]) from which the stool
sample was collected.

pectin degradation can be distinguished from each other and whether changing the
fiber or microbial community contributed more to the variation in product profiles. We
found that product profiles primarily clustered by fiber and secondarily by human
subjects (Fig. 4) (permutational multivariate analysis of variance [PERMANOVA], R2 4.,y =
0.79, Psibery = 0.001; R2((ypjects) = 0.12, Pisupjectsy = 0.02). Given that inulin fermentation
generated significantly more H, and butyrate but less acetate that that of pectin
(Fig. 2b), we hypothesized these are the three major products that would allow the
product profiles of inulin and pectin fermentations to be distinguished. Indeed, the top
products found to separate the inulin and pectin samples in the PERMANOVA were
acetate, butyrate, and H,. Importantly, the coefficients for the more reduced products,
H, and butyrate, were in the opposite direction of acetate (see Fig. S3). The more
oxidized substrate, pectin, produced more of the most oxidized SCFA, acetate, while
inulin produced more H, and the most reduced SCFA, butyrate (Fig. 2b).

Relative effects of microbiome and substrate chemistry on gas production
differ among gases. We further explored if there were signatures within the
microbiomes that promoted the production of gases. Since levels of H, production
were generally low for pectin fermentation, we investigated if there were specific
ASVs associated with net H, production during inulin fermentation. Selecting for
these ASVs via Lasso regression identified a Lachnospiraceae amplicon sequencing
variant (ASV) positively associated with net H, production (Fig. 5a) (Pearson’s r = 0.97,
P = 1.14 X 107°) (see Fig. S5). Since net H, production in the gut is the difference
between the total production of H, and the total consumption of H, (12), and
Lachnospiraceae can be either hydrogen producers or consumers (22, 23), the positive
association of the Lachnospiraceae ASV with H, production in the human gut may
indicate that net H, production is more dependent on H, production than on con-
sumption. Consistent with this hypothesis, H, consumption abilities of gut microbiota
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CAZymes in the metagenomes of 160 different people in the HMP data set. All gene counts were increased by 10~> so that the log-scaled x axis could
accommodate samples with zero hits.

may be more consistent between different people than H, production because of the
higher diversity of H, consumption pathways (methanogenesis, reductive acetogenesis,
and sulfate reduction) than those for production. It was, however, observed that net H,
production was lowest in the samples that produced methane, probably because the
amount of sulfate in the ex vivo system is not enough to for the most energetically
favorable H, consumption pathway, sulfate reduction, to consume all the H, produced
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(see Text S1), and methanogenesis is more energetically favorable than reductive
acetogenesis (24).

In contrast to H,, whose production was strongly affected by substrate, we found
that methane production was solely dependent on whether there were detectable
levels of Methanobacteria in the microbiota (Fig. 5b). Given that methane is a down-
stream product of H, (Fig. 5¢), we asked why methane production was not affected by
substrate chemistry but H, production was. We hypothesized that this is because there
are generally large amounts of bacteria in the human gut that contain carbohydrate-
active enzymes and hydrogenases that allow fiber breakdown and hydrogen produc-
tion; thus, the amounts of these enzymes are not a limiting factor, allowing hydrogen
production to be instead dependent on substrate stoichiometry. Meanwhile, a large
portion of the human population does not harbor sufficient numbers of methanogens,
making them the limiting factor for methane production; however, when the number
of methanogens is sufficient, they are not limited by the amount of H, production
because methanogens are stronger competitors for H, than reductive acetogens. To
test this hypothesis, we surveyed the abundances of carbohydrate-active enzymes
(CAZymes) for inulin and pectin as well as hydrogenogenic hydrogenases and methyl
coenzyme M (methyl-CoM) reductases (mcrA, marker gene for methanogens) in the
metagenomes of 160 randomly selected healthy human subjects from the human
microbiome project (HMP). While only approximately 20% of subjects had detectable
levels of methanogens, nearly all subjects harbored CAZymes for inulin and pectin
degradation as well as hydrogenogenic hydrogenases (Fig. 5d). The percentage of
subjects (20%) with detectable methanogens in the HMP data is in accordance with our
results: 2 of the 9 subjects were methane producers in our ex vivo experiment. Thus,
overall, the production of more-“general” metabolites such as H, is more likely to be
affected by the chemical composition of the prebiotic, while more-“rare” metabolites
such as methane are more likely to be limited by the organisms that produce it.

DISCUSSION

In this study, we used a combination of theoretical models and an ex vivo experi-
mental framework to examine how the chemistry of prebiotics and the composition of
the gut microbiota influence gas production during prebiotic fermentation by gut
microbiota. Specifically selecting two different common prebiotics (inulin and pectin)
with different levels of oxidation, we find that metabolites that can be produced by
more organisms in the human gut, such as H,, are more affected by the chemical
composition of prebiotics than metabolites that are produced by less common organ-
isms in the gut, such as methane. Overall, these results suggest that both the chemical
nature of the prebiotic and the individual’s gut microbiome needs to be considered
when administering prebiotics to individuals.

Our data also reveal that there may be general trade-offs in the production of SCFAs
versus that of gas. For example, while inulin fermentation leads to more production of
the more reduced SCFA butyrate, it also leads to more production of the reducing
agent H,, in turn, increasing overall gas production. However, which is more preferable
for the subject—more production of butyrate, less production of overall gas, or just less
production of H,—is often unknown and specific to the individual subject. This can be
further complicated if interindividual differences in H, and SCFA production are con-
sidered: not every individual produces more butyrate when fermenting inulin. Similarly,
for pectin, we were able to infer by comparing the experimental data to the theoretical
product range that pectin degradation requires uptake of reducing agents from the
surrounding environment. Again, what effect this has on the host is unknown: would
the uptake of these reducing agents lead to the generation of more reactive oxygen
species that can directly attack cells in the gut epithelial barrier, interfere with iron
uptake, or initiate lipid peroxidation processes (25)? Would this be costlier to the host
than generating more H,? More importantly, we also lack a way to evaluate if the scale
of the differences is large enough for them to count as a factor in prebiotic selection.

These problems emphasize that the effect of prebiotics on gut and human health
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must be looked at from both individual and systems perspectives. Often, a compound
is deemed as a prebiotic because it can increase the growth of known beneficial
microbes such as bifidobacteria and lactobacilli or promote the production of target
metabolites. However, the full diversity of a mixed-culture environment such as the
human gut must be considered when selecting for prebiotics: it is very hard to only
selectively grow organisms that produce one or a few metabolites of interest, and the
effect of any by-products must be considered. Interindividual differences in product
formation due to heterogeneity in gut microbiota composition, as well as responses to
the metabolites produced, must also be considered. Our use of theoretical modeling
and the ex vivo experimental system to explore gas production and its relationship to
SCFA production is just a beginning: these are relatively inexpensive and simple
methods to shine light on important points that should be considered in prebiotic
design.

The ex vivo experimental system can be seen as where techniques originating from
many fields come together in a compromised way. Compared to the breath test often
used in clinical practice for diagnosis of lactose intolerance or small intestinal bacterial
overgrowth (26), it fails to measure gas production in situ; also, compared to cultures
with known bacterial content and medium composition, it is more challenging to
obtain measurements that can directly match the results of theoretical models. The fact
that some of our experimental measurements do not fall within the predicted theo-
retical range reflects both the strength and weaknesses of our system: while our system
is not perfect for testing hypotheses, it is a good system for pointing at possible
directions and generating hypotheses that could be further tested. An important future
improvement to the system would be better separation of the gut microbial commu-
nity with the fecal matter from which it originates so that the experimental system truly
mimics the “closed system” as described in the theoretical model. Specifically, a known
reductive substrate could be added to the system to quantitatively measure the uptake
of reducing agents during the degradation of different fibers.

Overall, our study is a first step toward developing a system where the unique
microbiome composition of each individual can be measured simultaneously with its
fermentation products for different kinds of fibers. In the future, a more systematic
evaluation on what important factors other than the formation of beneficial metabo-
lites should be considered in prebiotic design is needed.

MATERIALS AND METHODS

Experimental model and participant details. Nine healthy human volunteers were enrolled into
the study under the supervision of the MIT Committee on the Use of Humans as Experimental Subjects
(COUHES), who approved the study under protocol number 1510271631. All participants provided
written informed consent, and the study was conducted in accordance with the relevant guidelines and
regulations. To be included, participants had to be between 18 and 70 years of age, have a body mass
index (BMI) between 18 and 30, and not have a history of inflammatory bowel diseases/syndrome, type-2
diabetes, kidney diseases, intestinal obstruction, or colorectal cancer. They were also not currently
pregnant or breastfeeding and had not received antibiotic treatment in the 6 months leading up to the
study. Enrollment occurred between June 2017 and Oct 2017. The study group included 4 female and
5 male individuals, all between 25 and 40 years of age.

Linear system model for modeling community production. The product space for the system
Ms = 0 is a polytope defined by linear combinations of the basis vectors of null(M), i.e., Bx = s.
Constraints on the product space (i.e., for the closed system, all elements in s corresponding to products
are nonnegative) were used to find the vertices of the polytope of x by converting the half-space
representation (the intersection of half spaces, represented by Bx = s) into vertex representation (set of
extreme points of the polytope). Vertices of the polytope of s were calculated by multiplying B with the
vertices of polytope x. The vertices for s were used to draw two-dimensional (2D) hulls for pairs of
products to visualize the product polytope, as in Fig. 1c and 3a and c. When product input was allowed
for the system, the constraint on the element in s corresponding to the input product was relaxed to be
larger than the negative of the equivalent amount of product that can be produced by 1/3 mol of inulin
or pectin (on average, control samples produced approximately one-third as much SCFA and/or gas than
samples with inulin or pectin treatment) (see Fig. S4 in the supplemental material).

The basis set of vectors for the null space of matrix M was calculated from the QR-decomposition of
the matrix using the R package “pracma” (27). The conversions of half-space representation to vertex
representation of polytopes were performed using the R package “rcdd” (28).
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Setup of ex vivo system. The setup of the ex vivo system was the same as that by Gurry et al. (19),
with some adaptation for gas measurements. Briefly, fresh stool samples were collected and homoge-
nized with reduced PBS containing 0.1% L-cysteine at a ratio of 1 g/5 ml. Fiber was spiked in to the
homogenates from stock solutions such that the final concentrations of fibers in the samples were as
follows: control (no fiber), 10 g/liter inulin, 5 g/liter pectin, or 20 g/liter cellulose. The concentration of
the fibers spiked in were in accordance with the highest daily amount of the certain fiber that a healthy
subject could ingest without experiencing discomfort determined in a previous in vivo dietary study (29)
as well as with the relative solubility of the fibers (more total input if the fiber was less soluble). For
each participant, 2 ml of the final fecal slurry of each condition was added in triplicates to 60-ml
glass serum bottles (Supelco, Bellefonte, PA). The serum bottles containing the samples were
transferred to a vinyl anaerobic chamber filled with 100% N, with no detectable amounts of CO, and
H,, and sealed in the chamber using magnetic crimp seals with polytetrafluoroethylene (PTFE)-
silicone septa (Supelco, Bellefonte, PA). A total of 12 bottles per participant were incubated at 37°C
for 24 h with no shaking.

Gas and SCFA measurements. Concentrations of headspace gases were determined using gas
chromatography. We used a Shimadzu GC-2014 gas chromatograph (GC) configured with a packed
column (Carboxen-1000, 5 ft by 1/8 in. [Supelco, Bellefonte, PA]) held at 140°C, argon carrier gas, and
thermal conductivity (TCD) and methanizer-flame ionization (FID) detectors. At the end of the 24-h
incubation period, subsamples of the headspace (0.20 cm?3 at the laboratory temperature, ca. 23°C) from
each serum bottle were taken via a gas-tight syringe and injected into the column. Gas concentrations
were determined by comparing the partial pressures of samples with standards of known concentrations.
The accuracy of the analyses, evaluated from standards, was =5%. Measurements of H, were taken using
the TCD while measurements of CH, and CO, were taken with the FID.

SCFA measurements were made from taking 1 ml of fecal slurry from each serum bottle immediately
after the GC measurements were taken and freezing the fecal slurry at —80°C until time of measurement.
SCFA measurements were made on an Agilent 7890B system with an FID at the Harvard Digestive
Disease Core (Agilent Technologies, Santa Clara, CA). Detailed procedures for SCFA measurements are
the same as those described by Gurry et al. (19). Although the amounts of 10 volatile acids (including
acetic, propionic, isobutyric, butyric, isovaleric, valeric, isocaproic, caproic, and heptanoic acids) were
reported, all but the acetic, butyric, and propionic acids were in trace amounts, and we only used these
three SCFAs for our models.

Machine learning and statistics. The principlal-coordinate analyses of the ex vivo fermentation
products were performed with the R package “ape” using Euclidian distance matrices (30). The alpha and
beta diversities of the microbial community compositions were calculated with the R package “vegan.”
PERMANOVAs were performed with the function adonis in the R package vegan (31), with 999 permu-
tations. The Lasso regression was performed with the R package “glmnet” (32), and cross-validation was
performed with a leave-one-out approach.

DNA extraction, library preparation, and sequencing. The Mo Bio PowerSoil-htp 96 kit (now
Qiagen catalog number 12955-4), with minor modifications, was used to extract the DNA from all fecal
samples. For all samples, 250 ul of the fecal slurry was used with the Mo Bio High Throughput PowerSoil
bead plate (12955-4 BP). 16S rRNA gene amplicon libraries (V4 hypervariable region, U515 to E786) using
a two-step PCR approach were prepared according to the method described by Preheim et al. (33).
Samples were sequenced on an lllumina MiSeq (paired-end [PE] 150 + 150) at the Broad Walk-Up
Sequencing platform (Broad Institute, Cambridge, MA). The average sequencing depth of the samples
was 53,046 reads/sample.

16S rRNA amplicon data analysis. All 16S rRNA amplicon libraries were processed according to a
custom pipeline, where cutadapt (34) was used for primer trimming, QIIME 1.9 (35) was used for
demultiplexing, and DADA2 (36) was used to infer amplicon sequence variants (ASVs). Default settings
were used except that only the forward reads were used due to issues with merging reads, and the
forward reads were truncated to 110 bp. Taxonomy for the sequence variants was assigned using
the RDP database (37). The alpha and beta diversities of all communities are shown in Fig. S6a and b in
the supplemental material.

Metagenome analysis. We downloaded 160 randomly selected metagenomes from the human
stool microbial communities of the Human Microbiome Project (National Institutes of Health, USA).
Each metagenome was rarefactioned to 20 million reads (forward plus reverse) using seqtk seeded
with the parameter —s100. The rarefactioned metagenomes were screened in DIAMOND (maximum
number of high scoring pairs [HSPs] per subject sequence to save for each query = 1, blastx) against
hydrogenogenic hydrogenases retrieved from the HydDB database (38), mcrA genes retrieved from
the PhyMet database (39), and CAZymes from the dbCAN database (40). Results were then filtered
(length of amino acid, >25 residues; percent identical matches, >65% [mcrA and hydrogenases] or
>35% [CAZymes]). Reads were eventually normalized to reads per kilobase million using the formula

actual read count

( average gene length \ [ sequencing depth \ ’

1,000 10°
Data availability. All amplicon sequencing data generated in this study can be accessed on the

US National Center for Biotechnology Information SRA database under BioProject PRINA587309. All
gas and SCFA measurements, ASV tables, and code for data analysis are available at https://github.com/
Cusoiv.
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