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Novel insights into pore-scale 
dynamics of wettability alteration 
during low salinity waterflooding
Rimsha Aziz1, Vahid Joekar-Niasar   1, Pedro J. Martínez-Ferrer2, Omar E. Godinez-Brizuela1, 
Constantinos Theodoropoulos1 & Hassan Mahani3

Low salinity waterflooding has proven to accelerate oil production at core and field scales. Wettability 
alteration from a more oil-wetting to a more water-wetting condition has been established as one 
of the most notable effects of low salinity waterflooding. To induce the wettability alteration, low 
salinity water should be transported to come in contact with the oil-water interfaces. Transport 
under two-phase flow conditions can be highly influenced by fluids topology that creates connected 
pathways as well as dead-end regions. It is known that under two-phase flow conditions, the pore 
space filled by a fluid can be split into flowing (connected pathways) and stagnant (deadend) regions 
due to fluids topology. Transport in flowing regions is advection controlled and transport in stagnant 
regions is predominantly diffusion controlled. To understand the full picture of wettability alteration 
of a rock by injection of low salinity water, it is important to know i) how the injected low salinity 
water displaces and mixes with the high salinity water, ii) how continuous wettability alteration 
impacts the redistribution of two immiscible fluids and (ii) role of hydrodynamic transport and mixing 
between the low salinity water and the formation brine (high salinity water) in wettability alteration. 
To address these two issues, computational fluid dynamic simulations of coupled dynamic two-phase 
flow, hydrodynamic transport and wettability alteration in a 2D domain were carried out using the 
volume of fluid method. The numerical simulations show that when low salinity water was injected, the 
formation brine (high salinity water) was swept out from the flowing regions by advection. However, 
the formation brine residing in stagnant regions was diffused very slowly to the low salinity water. The 
presence of formation brine in stagnant regions created heterogeneous wettability conditions at the 
pore scale, which led to remarkable two-phase flow dynamics and internal redistribution of oil, which 
is referred to as the "pull-push" behaviour and has not been addressed before in the literature. Our 
simulation results imply that the presence of stagnant regions in the tertiary oil recovery impedes the 
potential of wettability alteration for additional oil recovery. Hence, it would be favorable to inject low 
salinity water from the beginning of waterflooding to avoid stagnant saturation. We also observed that 
oil ganglia size was reduced under tertiary mode of low salinity waterflooding compared to the high 
salinity waterflooding.

Pore-Scale Mechanisms of Low Salinity Waterflooding.  Low salinity waterflooding is a relatively new 
enhanced oil recovery (EOR) technology in which the ionic strength and composition of injection water are 
designed to achieve an additional oil recovery. Low salinity waterflooding has been a point of discussion since 
19671. The potential of this technology was first demonstrated by Tang and Morrow2 through experiments, where 
up to 15% additional oil was produced from the core with substantial reduction of salinity of the injecting water2. 
In sandstone reservoirs, the injection water should have a much lower salinity compared to the formation brine, 
while in carbonate reservoirs that cannot be necessarily the case due to the fundamental differences in geochemis-
try and rock-fluid interactions. Several factors such as rock heterogeneity, mineralogy of rock, brine composition 
and crude oil chemistry control performance of low salinity waterflooding3–5. The general consensus in literature 
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supports that low salinity waterflooding changes wettability from oil-wet to more water-wet state2,6–8 which leads 
to additional oil recovery as shown in some experimental studies at field scale, core scale and pore-scale2,9–12.

Wettability is a key property of the solid-fluid system, which controls the fluid configuration in the pore space. 
Therefore, alteration of wettability will cause a substantial change in fluid occupancy and its behaviour3,12,13. The 
wettability state of a reservoir is a result of a complex interaction between crude oil, brine and rock (COBR)3,7,10,14, 
therefore, many mechanisms have been proposed to explain this phenomenon5,8. The mechanisms can be divided 
into two categories: liquid-liquid and solid-liquid interactions8. Liquid-liquid mechanisms include a) osmosis 
effect and b) visco-elastic interface. In the osmosis effect the oil acts as a semi-permeable membrane and oil 
droplets are relocated under osmosis gradient, absorbing water to create new pathways for oil recovery5 and in 
the visco-elastic behaviour of interface, the rigidness of the interface decreases due to the low salinity water8. 
Solid-liquid mechanisms include a) double layer expansion and b) multi-ion exchange. Under low salinity con-
ditions, the double layer expands due to increased repulsive electro-static forces leading to the increase of film 
thickness7,10,15 and reduces the interaction between crude oil and rock;7,15–17 ultimately changing wettability 
towards more water-wet conditions2,6,7,10,15,18. In multi-ion exchange the divalent ions are desorbed under low 
salinity water and are replaced with monovalent ones19. Divalent ions bond to the surface of the clay and to the 
polar compounds found in the crude oil, leading to an oil-wet state19. Therefore, the removal of these ions leads 
to a more water-wet state, as the adhesion between the rock and the crude oil decreases10,20,21. Note that the 
multi-ion exchange, double layer expansion, pH variation and contact angle change due to the low salinity water-
flooding can be all theoretically explained in a single system of theories as discussed in the literature15. Other 
possible mechanisms postulated in the literature can be found in the recent review papers5,8.

Some experimental studies show that there is a shift in relative permeability and capillary pressure (contin-
uum scale parameters) as a result of wettability alteration (sub-pore scale process) under low salinity waterflood-
ing22–24. However, the impacts of wettability on pore-scale two-phase flow processes responsible for the observed 
trends at continuum scale are not well understood8. This gap in the physical scale urges the necessity to develop 
pore-scale models to investigate the role of transport of low salinity water and its mixing with the formation brine 
as well as multiphase flow dynamics induced by wettability alteration.

The dynamics of two-phase flow under wettability alteration induced by the low salinity waterflooding is still 
unknown to a large extent and very few studies have provided some insights. Low salinity waterflooding can be 
injected into porous medium from the beginning (secondary mode) or after high salinity waterflooding (tertiary 
mode)25–27. In experimental studies, secondary mode of low salinity waterflooding has produced a higher oil 
recovery than tertiary mode2,16,25–29. Even though secondary mode of low salinity waterflooding has always pro-
duced significant additional oil recovery compared to high salinity waterflooding, tertiary mode of low salinity 
waterflooding has not always resulted in the same way17,30,31. This is due to the state of oil present at pore-scale 
during secondary and tertiary mode. Under secondary mode of low salinity waterflooding, oil is found as a con-
tinuous phase, since low salinity waterflooding improves sweep efficiency, this leads to higher oil recovery30,32. 
Under tertiary mode of low salinity, oil is found as discrete oil clusters (ganglia) and cannot be remobilised 
easily30. Favourable oil recovery under tertiary mode of low salinity waterflooding has been recorded when oil 
banking has been observed12,33. Overall, low salinity waterflooding studies have shown a significant reduction 
of oil ganglia size in experimental pore-scale studies11,12,34–37. An experimental study on a 2D micro model have 
shown that high salinity waterflooding displaces oil from larger pores which allows the smaller pores to be more 
accessible for wettability modification or osmosis gradients (salt gradient)38. This is further confirmed by other 
experimental studies in which low salinity waterflooding has displaced a large fraction of the smallest pores in 
the porous medium33,39. Since wettability alteration in experimental studies cannot be controlled or systemat-
ically changed and is highly dependent on COBR interaction; hence experimental pore-scale studies have not 
been able to evaluate the optimal wettability conditions for low salinity waterflooding under tertiary mode. In a 
recent pore network modelling study, in which pre-defined wettability alteration mechanisms were simulated, it 
was concluded that a greater change in wettability towards water-wet conditions leads to higher oil recovery in 
the tertiary mode40. This is interesting because without wettability alteration, the optimum wettability is neutral 
wet to weakly-wet3, but in case of wettability alteration, stronger water-wet conditions are more preferred40. This 
discrepancy in conclusions depending on the flooding conditions has not been clearly addressed in the literature 
and pore-scale simulations can potentially explain them.

Transport of low salinity water through the porous media and heterogeneous wettability alteration.  
After high salinity waterflooding, the pore space is filled with oil and high salinity water which may have reached 
the steady-state flow. The pore space occupied by high salinity water can be decomposed to flowing regions 
(which contribute to flow) and stagnant regions (which are hydro dynamically inactive) as they are mostly situ-
ated in the dead-end regions of the water phase41–44. These two regions have different transport time scales. Thus, 
after injection of low salinity water, the high salinity water residing in the flowing regions are pushed away by the 
injected low salinity water, while the high salinity water in the stagnant regions remains for very long time and 
mix with low salinity water by counter-diffusion. In theory, low salinity water can reach flowing pathways within 
one pore volume and will take many more pore volumes to mix low salinity water into high salinity water in the 
stagnant region44. Therefore, stagnant regions will experience wettability changes much later in time than flowing 
pathways, thus creating heterogeneous wettability conditions at the pore-scale. Two-phase flow dynamics through 
heterogeneous/mixed wettability porous medium is unknown in literature and very few studies have provided 
some theoretical understanding of flow dynamics under such conditions45. Modelling of low salinity waterflood-
ing has been attempted at continuum scale22,46–49, these studies have assumed stagnant regions have no significant 
influence on the flow dynamics.
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Objectives.  Mixing of low salinity water with the resident high-salinity water directly influences the local 
wettability alteration. Due to the heterogeneous spatial distribution of pore-scale velocities, transport and mixing 
would not occur homogeneously over the void space and it is important to capture the impact of transport of low 
salinity water on wettability alteration under two-phase flow conditions. Therefore, it is important to develop a 
computational fluid dynamic model to capture two-phase flow dynamics, transport and mixing of low salinity 
with high salinity water as well as wettability alteration. Also, we aim to address the signature of stagnant regions 
on wettability alteration and oil recovery under secondary and tertiary modes.

Our final objective is to delineate the role of stagnant regions and wettability alteration on two-phase flow 
dynamics and fluids redistribution.

Results and Discussion
Additional oil recovery by low salinity waterflooding.  Simulations of low salinity waterflooding were 
performed for the three different initial conditions, explained in the previous section. Under high-salinity con-
ditions the contact angle was 140° and under low salinity conditions contact angles of 30° and 60° were assumed.

Under high salinity waterflooding 0.47 of oil saturation was recovered. Then the additional oil recovered by 
injection of low salinity water in secondary and tertiary modes were estimated as shown in Fig. 1a,b. Figure 1 
shows the change of water saturation with pore volume. Secondary mode under both wettability alteration sce-
narios have shown a better oil recovery compared to the tertiary mode. In the secondary mode, an additional oil 
recovery equivalent to the 12.3% and 15.8% of pore volume was produced for both wettability scenarios. Tertiary 
mode produces between 7% and 12% pore volume of additional recovery, see Fig. 1b. Interestingly the contact 
angle of 30° seems to be more favorable for the tertiary mode, while the contact angle of 60° is more favorable for 
the secondary mode.

Figure 1b shows the ultimate additional oil recovery for different cases. The tertiary mode simulations were 
run until the steady-state saturation was reached. The additional oil recovery under low salinity waterflooding 
in both modes is due to the improved sweep efficiency, caused by the wettability change, as more pores are inva
ded16,25,30,45,50. Not all studies in the literature have shown favourable oil recovery despite the low salinity water 
injection and wettability alteration under tertiary mode5,10,12,33.

These results are in line with many experimental studies on low salinity waterflooding, where injecting low 
salinity in the secondary mode is more favourable for oil recovery than tertiary mode16,17,25–27,30,31,51,52. However, 
Fig. 1b clearly shows under tertiary mode when the stagnant regions have been discarded by abrupt change of 
contact angle from oil-wet to water-wet, the additional oil recovery has been significantly increased, which can 
potentially highlight the undermining role of stagnant regions.

“Pull and Push” Mechanism and Fluids Redistribution.  The initial conditions for secondary and ter-
tiary low salinity waterflooding have been shown in Fig. 2a–c. Under secondary mode, the oil is found in the 
porous medium as a continuous phase; however, in tertiary mode the porous medium is filled with oil ganglia and 
high-salinity water, see Fig. 2b. Since wettability alteration targets change of capillary forces and can potentially 
redistribute the fluids, under tertiary mode the oil phase has more flexibility to redistribute inside the porous 
medium that can make additional oil recovery more difficult to happen. Another aspect of low salinity water-
flooding in the tertiary mode is the heterogeneous distribution of salinity which can lead to mixed wettability in 
the water-filled regions. This has not been addressed in the literature.

Figure 1.  (a) Water saturation (y-axis) against pore volume (x-axis) for high salinity waterflooding, secondary 
mode of low salinity injection and tertiary modes of low salinity injection and tertiary mode with step-wise 
wettability change for contact angle 30 and 60. (b) Additional oil recovery for three cases of initial condition and 
two wettability alteration scenarios, additional oil recovery was calculated by taking the difference between the 
final water saturation at the end of high salinity waterflooding and the respective cases.
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In the tertiary mode, low salinity water fills the pore space initially filled by the high salinity water and conse-
quently the wettability changes along the transport of the low salinity water. Previous studies of transport under 
two-phase flow conditions illustrate the transport within the water-filled area does not happen homogeneously 
and some regions are more advection controlled and some other regions such as dead-end regions are predomi-
nantly diffusion controlled41–44.

The dead-end regions have been shown in dark blue color in Fig. 3, frames 2 to 5. Under low salinity water-
flooding in the tertiary mode, pores which are part of flowing pathways (red regions) will experience wetta-
bility changes at an earlier time compared to the dead-end regions, which leads to different local wettability 
conditions with parts of the water topology remaining oil-wet (dead-end regions) and other regions experience 
water-wettability (flowing regions). Note that in reality the spatial variation of wettability conditions will depend 
on a) size of dead-end clusters which can highly vary depending on the variation in pore morphology of the 
rock, b) the difference between the wettability alteration time scale (which has not been considered in this study) 
compared to the diffusion time scale in dead-end regions which can be potentially much larger than the dead-end 
regions in the presented simulations.

Induced wettability alteration at the capillary interfaces, destabilises the saturation profile established under 
high-salinity water flooding. As a result of the wettability alteration the capillary pressures at the main menisci 
(interfaces between oil and water) which change towards more water-wet, will assist water invasion to new 
regions during waterflooding. Since stagnant regions are oil-wet, water would pull out from the dead-end regions 
(arrows in Fig. 3, frames 3 and 4) and in some new regions water would push the oil out of pores (the red arrow 
in Fig. 3, frame 5).

Note that this fluids’ redistribution is possible due to the spatial distribution of positive and negative capillary 
pressures. Under oil-wet conditions, the capillary pressure at menisci (difference between the oil and water pres-
sures) is negative and in order for water to invade a new pore, extra energy is required to overcome the entry cap-
illary pressure of a pore. Under water-wet conditions the difference between the oil and water pressures becomes 
less negative or even positive, which facilitates water filling (imbibition) events into new pores. Based on the 
simulation results, we hypothesize that stagnant regions enhance internal counter-current flow and redistribu-
tion of fluids, which undermine the performance of low salinity waterflooding. In our simulations, this Pull-Push 
dynamics was only unique to low salinity injection in tertiary mode due to the presence of stagnant saturation 
and was not observed in the secondary mode.

In order to confirm whether the stagnant zones limit the reach of low salinity waterflooding or not, a hypo-
thetical case was created with the fluids distribution identical to the start of tertiary low salinity waterflooding. 
However, we initiated the simulation by setting all the water-filled regions to low-salinity water concentration and 
its corresponding contact angle. Therefore, wettability changed all around the water topology as a step-function 
from the oil-wet to the water-wet, instantaneously, see Fig. 2c, Thus, the stagnant regions were fully eliminated. 
The simulations were run until the saturation reached the steady state. The additional oil recovery are shown in 
Fig. 1a,b. Both scenarios of wettability change (60° and 30°) showed a higher oil recovery compared to the tertiary 
mode of low salinity waterflooding with presence of stagnant saturation.

This clearly indicates that stagnant regions under high salinity waterflooding can decrease the potential of 
low salinity waterflooding and delay the ultimate oil recovery. Note that here this negative impact of high-salinity 
regions is not only due to the mixing, but due to the induced fluids redistribution as a result of local wettability 
alteration. These results provide additional potential explanations to why the secondary mode of low salinity 
waterflooding is more favourable for oil recovery. From these results, it can be concluded that it is much more 
efficient to inject low salinity water from the beginning, this will not only eliminate the drawback of “stagnant 
regions” but due to the better connectivity of oil at the secondary mode, can potentially lead to higher oil recovery. 
The presented results are focused on pore-scale fluids distributions. However, the negative impact of stagnant 
regions can be found at larger physical scales, where the rock heterogeneity may be found. The formation heter-
ogeneity would cause high-salinity water to remain in low permeable regions and gradual mixing with the low 
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Figure 2.  (a) Initial conditions for the low salinity waterflooding in the secondary mode, (b) Initial condition 
for the low salinity waterflooding in the tertiary mode, (c) Initial condition for the low salinity waterflooding 
with step-change of wettability.
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salinity water in the main flow path. This would deplete the quality of low salinity water and impede the wetta-
bility alteration.

These results strongly recommends to include the stagnant regions in larger scale simulations of low salinity 
waterflooding, which is missing in previous continuum-scale modelling studies22,46–49. Former experimental and 
modelling studies suggest that the stagnant saturation is a function of the total injecting phase saturation42–44. 
Therefore, the response to low salinity waterflooding can vary depending on the starting total water saturation of 
high salinity water. The highest stagnant saturation was observed in intermediate water saturation, which is the 
injection point for tertiary mode of enhanced oil recovery method53.

Please note that at the larger physical scale, in case of larger dead-end regions and higher salinity contrasts, 
the mixing of high-salinity water with the low-salinity water, increases the net concentration of the flowing water. 
Hence the performance of the low salinity water is impeded by the deterioration of the quality of low salinity 
water, which requires a larger scale simulation at the continuum scale.

Spatial Distribution of Filling Events during Tertiary Low Salinity Waterflooding.  As explained 
in the methodology section, we analysed the spatial distribution of the pore-filling events by comparing each two 
consecutive simulation time steps. These event maps provide insights into the fluids movements and their spatial 
distribution during high-salinity and low-salinity water flooding as shown in Fig. 4.

Water filling events are shown in the middle column of Fig. 4 and oil filling events are shown in the right col-
umn. These maps clearly highlight how much more active the porous medium is under low salinity waterflooding 
in comparison to high salinity waterflooding. During the same amount of injected volume, the porous medium 
experienced up to 15 oil/water pore filling events under the low salinity waterflooding in comparison to the high 
salinity waterflooding, see the middle and right columns of Fig. 4. Tertiary mode (140–30°) experienced a higher 
number of water/oil filling events compared to the tertiary mode (140–60°) and it produced twice as much oil 
(see Fig. 1b). The number of oil filling events and water filling events in the porous medium were summed up and 
the difference between them was calculated to estimate the net number of events for a given simulation. Under 
tertiary mode 140–60° the water filling events were less frequent compared to the tertiary mode 140–30°. This was 
due to the larger capillary force induced under 140–30° which led to more displaced oil. Hence, we can conclude 
that a higher number of water filling events would lead to a greater oil recovery. Figure 4 clearly shows the large 
amount of oil filling events that indicate a significant spatial redistribution of oil in the porous medium due to 
wettability alteration experienced under low salinity waterflooding.

Oil recovery is mainly driven by water filling events which indicate higher mobilisation efficiency of oil at 
pore scale. Under wettability alteration, due to “pull-push” behaviour of water, oil can migrate to larger pores 
by displacing high salinity water. This will cause spatial redistribution of oil. To show the impact of pull-push 
behaviour on redistribution of fluids, the cumulative additional oil saturation was plotted against the cumulative 
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Figure 3.  A snapshot serie of oil and water redistribution during the tertiary mode of low salinity waterflooding 
(time sequence is shown at the top of each snapshot). Oil is shown in black colour and high salinity water is 
shown in (dark) blue colour. Other colors correspond to different salinity values in water. The stagnant regions 
remain filled with the high salinity water (oil-wet), while the main flow path has been filled by the low salinity 
water (water-wet). As a result of mixed wettability destabilisation of capillary interfaces, fluids redistribution 
takes place. Water pulls out from the high salinity water-filled regions (in direction of yellow arrow in frame 2) 
and water pushes the oil out from nearby pores (in direction of the red arrow in frame (5).
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redistributed oil saturation for both wettability scenarios in the tertiary mode as well as the step-wise wettability 
alteration model in Fig. 5. The cumulative redistributed oil, presented in terms of saturation, is the amount of oil 
redistributed internally in the porous medium from the time of starting low salinity water flooding to the end of 
low salinity water flooding. Since the oil can be moved internally this does not mean that all the oil would be pro-
duced from the outlet boundary. Looking at Fig. 5, to achieve the same additional oil recovery in different cases, 
the tertiary mode simulations have gone through larger redistribution of fluids that indicates the lower perfor-
mance of the dynamic system compared to the cases where stagnant regions do not exist. For the case of 140–60°, 
initially the step-wise wettability alteration case shows a suppressed production however, at the later stage, the oil 
production overtakes the tertiary mode case (Fig. 5).

Oil Ganglia Size after Low Salinity Waterflooding.  Figure 6a shows the cumulative probability of the 
size of oil ganglia at the end of high salinity waterflooding and low salinity waterflooding in the tertiary mode. 
Figure 6b shows the snapshots of the oil ganglia at the end of the simulation. After low salinity waterflooding 
the size of oil ganglia decreases. This is clearly shown when the probability of small ganglia size increased under 
wettability alteration scenario of 140–30°. This trend has also been seen in recent pore-sale studies of low salinity 
waterflooding11,34–36. Our results show that greater wettability alteration (140–30°) leads to more breakdown of 
oil ganglia compared to the case of 140–60°. This is due to the higher capillary forces induced in 140–30° which 
remobilises more oil and leads to a higher recovery factor. Oil banking is absent in our simulations due to a high 
viscosity ratio, which has been similarly reported in the experimental results54.

We also investigated the displacement of oil under low salinity water by calculating the pore size distribution 
where the oil is trapped after high salinity and low salinity waterflooding, refer to Fig. 7. Figure 7 shows greater 
fraction of the smaller pores have been invaded under low salinity waterflooding as wettability is altered towards 
more water-wet state. These results are well supported by the recent experimental study33, where low salinity 
waterflooding in tertiary mode displaced oil from the narrowest pores in the porous medium. This behaviour can 
be explained as water becomes the wetting phase due to wettability alteration, water is imbibed into the smaller 
pores easier due to the support of capillary forces.

Conclusions
We simulated coupled pore-scale two-phase flow, transport and wettability alteration using the computational 
fluid dynamics implemented by the volume of fluid in OpenFOAM. The objectives of this study were to show a) 
the importance of transport and stagnant regions in low salinity waterflooding, b) the possible redistribution of 
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Figure 4.  Pore-filling events maps: left column shows final oil (red) and water (blue) distribution at the end of 
high salinity waterflooding (top row), tertiary mode low salinity waterflooding for ultimate contact angles of 60° 
(middle row) and 30° (bottom row). In the same sequence of simulations, the middle column shows the maps 
of water filling events. The right column shows the map of oil filling events. Lighter colors correspond to higher 
number of events for a given position.
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fluids during tertiary mode of low salinity waterflooding and their impact on the oil recovery, c) the impact of 
initial condition (secondary versus tertiary modes) on final performance of oil recovery.

We defined three wettability alteration scenarios and two different initial conditions to simulate secondary 
and tertiary modes. Our study showed higher oil recovery can be achieved when low salinity waterflooding 
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Figure 5.  Cumulative of additional oil saturation produced from the start of low salinity water injection till the 
end for tertiary mode for contact angles of 140–30/60° (solid lines) and step-wise wettability change of 140–
30/60° (dashed lines) is on y-axis. Cumulative of redistributed oil saturation from start till the end of low salinity 
injection is shown for the same cases. Indicative of high degree of oil redistribution in porous medium under 
cases with stagnant regions (tertiary mode simulations).
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Figure 6.  (a) Oil ganglia size on x-axis shown in terms of the amount of pore volume occupied by oil cluster 
with cumulative probability on y-axis at the end of waterflooding in high salinity waterflooding and tertiary 
mode of low salinity. (b) Snapshot of oil ganglia present at the end of the simulations.
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was deployed in the secondary mode compared to the tertiary mode. During the tertiary mode, the pres-
ence of high salinity water and low salinity water, induces a spatial mixed wettability which can potentially be 
counter-productive and leads to the redistribution of fluids. As a result, oil production rate is decelerated which 
can impede the net ultimate production as well.

We can conclude that the presence of stagnant regions might have two negative impacts on oil recovery:

•	 Low salinity waterflooding in the tertiary mode initiates with destabilization of the capillary interfaces. Due 
to the change of wettability at these interfaces towards more water-wet (less oil-wet) case, a unique “pull-
push” behavior was observed, which can be explained as following. In the tertiary low salinity waterflooding 
the flowing regions carry the low salinity water while the dead-end (stagnant) regions remain filled by the 
high-salinity water for a long time. As a result of this heterogeneous distribution of salinity, spatially-mixed 
wettability is resulted. After destabilisation of capillary interfaces, water from the high-salinity regions is 
pulled out towards the main water flow path and low salinity water pushes oil out from new regions.

•	 Due to the pull-push mechanism, there is a significant redistribution of fluids in the porous medium (as 
shown in the activity maps in Fig. 4), which do not necessarily lead to oil production. In our simulation 
results, volume of the redistributed oil phase is almost 5 times larger than produced oil.

•	 Under tertiary low salinity waterflooding ganglia size decreases and the possibility to recover oil from smaller 
class pores becomes higher due to the stronger capillary forces under more water-wet conditions.

Methods
There are a number of techniques to model pore-scale multiphase flow through porous media. Notable examples 
are dynamic pore-network modelling55, Lattice Boltzmann56, volume of fluid method (VoF)44,57,58, smoothed par-
ticle hydrodynamics, and level set method. We utilize the VoF method to solve the Navier-Stokes equations cor-
responding to immiscible two-phase flow, available in OpenFOAM59. In this study, we have modelled two-phase 
flow using the Volume of fluid (VOF) method, coupled with the mass and momentum equation for different 
wettability alteration mechanisms using OpenFOAM. Although this technique has been used before to simulate 
the wettability alteration32,40, the critical role of transport and mixing and their contribution to two-phase flow 
have not been investigated.

Volume of Fluid Method.  Immiscible and incompressible two-phase flow in porous media was simulated 
using the VOF method implemented in InterFoam59,60, which has been successfully used in former porous media 
research57,58.

In the two-phase VOF method, each fluid phase is represented by its volume fraction: α1 represents oil and α2 
(α2 = 1 − α1) represents water. At the interface between two fluids, there is a transition zone between the α phases. 
Thus, to avoid this transition zone, in grid cells containing intermediate values of α α< <(0 1), a sharp interface 
at α = 0.5 is reconstructed.

In the two-phase VOF method, each fluid phase is represented by its volume fraction: α1 represents oil and α2 
(α2 = 1−α1) represents water. At the interface between two fluids, there is a transition zone between the α phases. 
Thus, to avoid this transition zone and define a sharp interface, in grid cells containing intermediate values of α 

α< <(0 1), a sharp interface at α = 0.5 is reconstructed. The volume fraction α1 solved using Eq. (1).

α
α α α

∂
∂

+ ∇ ⋅ + ∇ ⋅ − =
t

u u( ) ( (1 ) ) 0, (1)r
1

1 1 1

where u is referred to as the velocity field and ur is referred to as the relative velocity between the two fluids 
ur = u1 − u2.

The fluids’ properties at the interface are calculated using α-weighted averaging:

ρ α ρ α ρ= + (2)1 1 2 2

Figure 7.  Pore size distribution of trapped oil at the end of simulations.
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μ α μ α μ= + (3)1 1 2 2

where, ρ1 and μ1 represent density and viscosity of oil and ρ2 and μ2 represent density and viscosity of water.
Mass and momentum of the system is computed using the following Eq. (4).

ρ ρ μ∂
∂

+ ∇ ⋅ = − ∇ + ∇ ⋅ ∇ + ∇ +
t

pu uu u u F( ) [ ( ( ))] (4)
T

sa

∇ ⋅ =u 0 (5)

where, the body force is represented by Fsa, which includes the interfacial forces as well.
The body force Fsa in Eq. (4) is defined as

∫ρ σκδ= ⋅ + − Γ
Γ

ˆx x d xF g n n( ) ( ),
(6)

sa s sz

where Γ is the liquid-liquid interface, and δ −x x( )s  is the Dirac delta function, κ is the curvature of the interface, 
and σ is the interfacial tension between the two fluids. We used the multi-dimensional universal limiter with 
explicit solution (MULES) implemented in OpenFoam ver 2.3.0. There are other alternatives such as high resolu-
tion interface capturing (HRIC) and compressive interface capturing scheme for arbitrary meshes (CICSAM). 
The curvature of the interface is given by κ = − ∇ ⋅ α

α
∇

|∇ |( )1

1
 and the unit vector n is defined as = α

α
∇

|∇ |
n̂ 1

1
. The 

pressure is solved using a pressure and velocity coupling PISO loop61.
For the two-phase flow, the contact angle θ at the contact line is defined as follows:

θ⋅ =ˆ ˆn n cos , (7)s

where n̂ and n̂s are vectors normal to the interface and solid wall, respectively. Note that there are other formula-
tion which explicitly capture the dynamic contact angle in VoF simulations. Recent studies highlight the impor-
tance of dynamic contact angle to match the two-phase flow dynamics, however, in this study to discriminate the 
impact of flow hydrodynamics and salinity on contact angle, we assumed constant contact angle at equilibrium 
conditions.

Time step (δt) is computed using Currant number = < .δ
δ

Co 0 5tU
x

. U velocity magnitude, δx is the cell size. 
Average time step during the simulation was 10−6 s.

To incorporate wettability alteration in the model, a functionality between contact angle and salinity (concen-
tration) should be predefined and inserted in the model. To our current understanding low salinity waterflooding 
alters wettability from oil-wet to water wet conditions, however, the final wettability contact angle is highly varia-
ble between 30−60° degree in experimental studies depending on the COBR system2,7,17,20,21,39,62.

We assumed an equilibrium relation between concentration and contact angle as shown in Fig. 8. This relation 
does not take into account neither the chemical interactions at interfaces (e.g. interfacial tension change, 
visco-eleastic effects) nor the non-equilibrium effects (e.g. multi-ion exchange, double layer expansion)10,20,26,63, 
as the main purpose of this study is not to derive an expression between salinity and contact angle. The primary 
objective is to investigate the dynamics of two-phase flow induced by wettability alteration. We define two scenar-
ios for the contact angle as a function of the scaled salinity in water as shown in Fig. 8. The scaled salinity has been 
defined by dividing the local concentration by the inlet concentration (α αx t( , )/ (0, 0)3 3 ). Values 1 and 0 represent 
the scaled high salinity and scaled low salinity conditions, respectively. At high salinity condition, contact angle 
is assumed to be 140° (oil-wet) and by decreasing the scaled salinity towards zero, the contact angle changes to 
water-wet condition. Two different scenarios for the water-wet case (contact angles of 60° and 30°) have been 
assumed based on a recent experimental study20.

Hydrodynamic Transport of Low Salinity Water.  Low salinity water will be transported into the porous 
media and possibly will mix with the high salinity water due to its miscible nature. To solve the transport of salin-
ity within the water phase, the advection-diffusion equation has been solved, within the water phase (α2).

α
α α

∂
∂

+ ∇ ⋅ − ∇ = Ωαt
Du( ) 0, for (8)

3
3 2,3 3 2

where α3 is the scaled salinity. The salinity is transported in water (α2) using advection and diffusion. The diffu-
sion of salinity into oil (α1) has been set to zero to not allow the mass transfer of salinity from water to oil. To ease 
the numerical simulations, we inserted the term α∇D1,3 1, where D1,3 was set to zero in the divergence term of 
Eq. 8 that resulted in a sharp interface between the scaled salinity (α3) and oil (α1). The diffusion coefficient of 
salinity in water was set to D2,3 = 10−9m2s−1 based on previous experimental study7. If Péclet number is defined 
based on the boundary values in our simulations the Péclet number can be up to a few hundreds. However, it is 
very small in the stagnant regions which is close to diffusion regime44.

We used the second-order schemes for both spatial and temporal terms. Variables were interpolated from cell 
centres to face centres using linear (central) interpolation and the van Leer limiter was applied to the convection 
terms to avoid numerical instabilities and improve accuracy.

Numerical Domain, Boundary and Initial Conditions.  The numerical domain was a square 
two-dimensional geometry with the size of 75 mm × 75 mm and porosity of 0.58 and the average pore size of 500 
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micrometer, as shown in Fig. 9. Top and bottom boundaries are walls and share no-flow conditions with no-slip 
velocity. The right boundary is at constant pressure with zero gradient of scaled salinity (α3) normal to the bound-
ary. The left boundary has constant inlet injection velocity and constant scaled salinity value. The injection rate is 
0.05 ms−1. Water density (ρ2) and viscosity (μ2) were 998 kgm−3 and 10−3 and kgm−1s−1, respectively. Oil density 
(ρ1) and viscosity (μ1) were 844 kgm−3 and 1.910 × 10−2 kgm−1s−1, respectively. The interfacial tension (σ) was 
0.07 kgs−2. Given these properties capillary number in our simulation was = × −Ca 7 10 4, capillary-end effects 
can be ignored due to high capillary number. Capillary number is defined as =

μ

σ
Ca

uw in , in which uin is the inlet 
velocity of water, μw is the viscosity of water and σ is the interfacial tension.

Three different initial conditions were used for low salinity waterflooding: i) the domain was fully saturated 
by the wetting phase (oil) and low salinity water injected, referred to the secondary mode, ii) high salinity water 
was injected at the given rate and the static contact angle between oil and high-salinity water was set 140°. After 
a steady-state saturation was reached, the low salinity water was injected at the same rate. This is referred to as 
the tertiary mode. iii) the same steady-state saturation obtained by high-salinity water flooding was chosen as the 
initial water saturation. However, the transport of low salinity water within the domain was not resolved and it 
was assumed that low salinity water will fill all the space filled by high-salinity water (no stagnant region). Then as 

Figure 8.  The linear equilibrium relation assumed between the contact angle (degree) and the scaled salinity 
(concentration). (a) Oil droplet on rock surface under equilibrium showing initial 140° contact angle. (b,c) 
Final wettability conditions of oil droplet on oil surface for both wettability alterations.

Figure 9.  (a) 2D demonstration of the numerical domain, water (α2) and the scaled salinity (α3) were initially 
set to zero in internal domain, (b) a section of the mesh, (c) the medial axis pore-size distribution.
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a result the contact angle changed as a step function. This scenario, although is hypothetical, shows the dynamics 
of two-phase flow while the impact of stagnant regions were discarded.

The domain was meshed with OpenFOAM utility called snappyHexMesh59. The tool refines mesh around the 
grains to ensure a high-quality mesh in narrower pore throats. The mesh quality was ensured by doing a study 
of grid refinement, where number of cells in the narrowest pore were increased from 4 to 6, 8 and up to 25. The 
residuals, average velocity, and flux errors were calculated in each simulation to check the grid size convergence 
similar to the former study44. Simulations with 15 cells in narrowest pore throat, with same numerical schemes 
and solution, led to the smallest error (<1%) in mass balance calculations and further mesh size refinement did 
not decrease the error. As a result, the size of mesh for the whole pore space was 0.6 million cells.

Generating Event Maps.  To estimate the dynamics and pore-filling cycles during the whole simulations, 
event maps were generated. Event maps show the frequency of pore-filling events at every position within the 
pore space. For every two consecutive time steps, the value of α1 at each cell was checked. If at a given cell the 
value of α1 value changed from 1 to 0, it indicated a water-filling event and change of α1 from 0 to 1 indicated 
the oil-filling event. The changes were tracked from start of the simulation to the end of simulation, at the same 
time intervals. Then the number of times each cell went through oil and water filling events were summed up 
individually in each cell.

Data Availability
After publication the data will be made available upon publication on the IMPRES group website (http://person-
alpages.manchester.ac.uk/staff/vahid.niasar/default.htm).
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