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Abstract

Background: Networks of interacting genes and gene products mediate most cellular and developmental
processes. High throughput screening methods combined with literature curation are identifying many of the
protein-protein interactions (PPI) and protein-DNA interactions (PDI) that constitute these networks. Most of the
detection methods, however, fail to identify the in vivo spatial or temporal context of the interactions. Thus, the
interaction data are a composite of the individual networks that may operate in specific tissues or developmental
stages. Genome-wide expression data may be useful for filtering interaction data to identify the subnetworks
that operate in specific spatial or temporal contexts. Here we take advantage of the extensive interaction and
expression data available for Drosophila to analyze how interaction networks may be unique to specific tissues
and developmental stages.

Results: We ranked genes on a scale from ubiquitously expressed to tissue or stage specific and examined their
interaction patterns. Interestingly, ubiquitously expressed genes have many more interactions among themselves
than do non-ubiquitously expressed genes both in PPI and PDI networks. While the PDI network is enriched for
interactions between tissue-specific transcription factors and their tissue-specific targets, a preponderance of the
PDI interactions are between ubiquitous and non-ubiquitously expressed genes and proteins. In contrast to PDI,
PPI networks are depleted for interactions among tissue- or stage- specific proteins, which instead interact
primarily with widely expressed proteins. In light of these findings, we present an approach to filter interaction
data based on gene expression levels normalized across tissues or developmental stages. We show that this filter
(the percent maximum or pmax filter) can be used to identify subnetworks that function within individual tissues
or developmental stages.

Conclusions: These observations suggest that protein networks are frequently organized into hubs of widely
expressed proteins to which are attached various tissue- or stage-specific proteins. This is consistent with earlier
analyses of human PPI data and suggests a similar organization of interaction networks across species. This
organization implies that tissue or stage specific networks can be best identified from interactome data by using
filters designed to include both ubiquitously expressed and specifically expressed genes and proteins.
Background
The phenotypic identities of cells and tissues are gov-
erned in part by the particular regulatory networks that
are active in them. Steady progress has been made to
map the molecular interactions that constitute these net-
works, including the interactions among proteins and
between transcription factors (TFs) and the genes that
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they regulate. Tens of thousands of protein-protein in-
teractions (PPI) and TF-gene interactions have been
identified for human and several model organisms, pro-
viding a foundation for identifying cell or tissue specific
regulatory networks [1-4]. Most of the available inter-
action data, however, are noisy (i.e., include false posi-
tives and false negatives) and are derived from methods
that are independent of the in vivo spatial or temporal
context of the interactions. A majority of available PPI,
for example, have come from two methods: the yeast
two-hybrid system, which detects interactions between
proteins expressed in a yeast nucleus [5-7], and protein
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complex determination [8,9], which usually involves forced
expression of a tagged bait protein in a cultured cell line
(for example, see [10,11]). The resulting data from these
approaches can be used to build composite interactome
networks representing many of the possible in vivo in-
teractions. However, since only a fraction of these inter-
actions may be active in a particular spatial or temporal
context, filters are needed to identify the regulatory net-
works that are relevant to specific cells, tissues, or de-
velopmental time points.
To identify spatially or temporally relevant subnet-

works, composite interactome networks can be filtered
using gene expression or transcriptome data. It has been
shown, for example, that interactions between proteins
encoded by genes with similar or correlated expression
patterns are more likely than those with dissimilar ex-
pression patterns to be genuine in vivo interactions
[11-14]. This correlation can be used to predict new pro-
tein interactions [15,16], to score experimentally de-
tected PPI [17-19], and to characterize different types of
hub proteins within composite networks [20,21]. Corre-
lated expression, however, is a relatively weak predictor
of in vivo PPI and thus may not be useful for filtering in-
teractome data to identify relevant subnetworks. An al-
ternative approach would be to search the interactome
data for subnetworks of genes that are specifically expressed
in cells or tissues of interest. Recent studies on human PPI
and transcriptome data, however, have suggested that
tissue-specific proteins are involved in relatively few interac-
tions, most of which are with house-keeping or ubiquitous
proteins [22-24]. These studies suggested that tissue-
specific proteins primarily interact with the more conserved
ubiquitous proteins to modulate tissue-specific functions. If
this were a general principle, filtering interaction data based
on tissue-specific expression patterns would not be an ef-
fective method for identifying tissue-relevant subnetworks.
In this study we examined the relationship between

the interactome and transcriptome of Drosophila. We
took advantage of the extensive PPI and protein-DNA
interaction (PDI) data available for Drosophila [25], and
recent high quality transcriptome data for tissues [26]
and developmental stages [27]. As suggested by the stud-
ies with human PPI data, we found that for Drosophila,
tissue-specific proteins infrequently interacted among
themselves but instead interacted primarily with widely
expressed proteins. In addition, we show that stage-
specific proteins have many more interactions with
ubiquitously expressed proteins than with other stage-
specific proteins. In contrast, we find that the Drosophila
PDI network is enriched for interactions between tissue-
and stage-specific TFs and their relevant tissue- and stage-
specific targets, yet there is a preponderance of interactions
between specifically expressed TFs and non-specifically
expressed targets.
The specific interaction networks active in particular
cells or tissues will be determined in part by the genes that
are expressed in them. The problem of filtering an interac-
tome network based on quantitative gene expression data,
however, is particularly challenging because fully active
genes can be expressed at widely different levels. In Dros-
ophila, for example, mRNA abundances of different genes
at their maximal level of expression can range over four
orders of magnitude [26,27]. This problem, along with the
finding that specifically expressed genes frequently inter-
act with genes that are not expressed specifically, led us to
develop a normalization procedure for gene expression
data that takes into account the levels of expression across
samples. The normalized expression value for a gene in a
tissue or developmental stage is represented as the per-
centage of its maximum expression level across all tissues
or stages, respectively. In order to identify networks that
operate in different contexts, composite interactome net-
works can be filtered using this intuitive and quantitative
gene expression filter. We show that the subnetworks
identified with this filter are enriched for genes with mu-
tant phenotypes that are relevant to different stages and
tissues.

Results and discussion
Comparison of genes expressed ubiquitously or in
specific tissues or developmental stages
To examine the interaction properties of Drosophila genes
expressed in different patterns we classified genes based
on the specificity of their expression across tissues or de-
velopmental stages (Methods). We used tissue expression
data from FlyAtlas [26], which covers 15 adult and 8 larval
tissues, and developmental stage expression data from the
modENCODE project [27], which covers 30 developmen-
tal times points from embryo to adult. We classified genes
expressed predominantly in one tissue as tissue specific
(2838 genes), or in one stage as stage specific (3566 genes).
We classified genes expressed across all tissues or all
stages as tissue ubiquitous (3960 genes) or stage ubiqui-
tous (4972 genes), respectively; 3226 of these genes are
both tissue ubiquitous and stage ubiquitous and we refer
to these as the common ubiquitous genes (Additional
file 1). Overall, we classified 31% of the Drosophila genes
as tissue ubiquitous and 22% as tissue-specific in this
study. This is comparable to a study of human genes [23]
in which 26% of the genes were classified as ubiquitous
across 15 human tissues and cell lines and 13% were con-
sidered tissue-specific. As expected, the Drosophila com-
mon ubiquitous genes are enriched for genes involved in
basic cellular processes, including protein synthesis, traf-
ficking and degradation, RNA transcription and process-
ing, and cytoskeleton organization (p values < 1 × 10−8).
The ubiquitously expressed genes are also enriched for
intracellular proteins (p values < 1 × 10−8) while the
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tissue- and stage-specific genes are enriched for extra-
cellular proteins (p values < 5 × 10−9) (Methods). This
is in partial agreement with the results of a human
study where the tissue-specific proteins were found to
be enriched for extracellular and membrane proteins
[23]. The Drosophila ubiquitously expressed genes are
also more evolutionarily conserved than the tissue- or
stage-specific genes (Additional file 2). For example, about
37% of the ubiquitously expressed genes have yeast ortho-
logs while only 12% of the tissue-specific genes and 8% of
the stage-specific genes have yeast orthologs. Clear human
orthologs exist for 80% of the ubiquitously expressed genes
and only 19% and 14% of the tissue- and stage-specific
genes, respectively. Among the genes that have orthologs in
yeast or metazoans, about 50% are ubiquitously expressed
while only 9-12% are tissue-specific and only 11-15% are
stage-specific. This is in agreement with several studies
examining the conservation of ubiquitously expressed and
tissue-specific proteins in other organisms [28-32].

Tissue- and stage-specific proteins predominantly interact
with ubiquitously expressed proteins and not with each
other
To determine the interaction properties of Drosophila
proteins encoded by genes that are expressed ubiqui-
tously or in specific tissues or stages we examined the
235,950 protein-protein interactions (PPI) available in
the DroID database [25]. These include 93,544 interac-
tions that were detected experimentally with Drosophila
proteins, and a partially overlapping set of 144,171 po-
tentially conserved interactions (interologs) that were
predicted from experimental data in other species. For
simplicity we refer to proteins encoded by ubiquitously
expressed genes as “ubiquitous proteins”, and similarly
to “tissue-specific proteins” and “stage-specific proteins”,
keeping in mind that measured mRNA abundance may
be an imperfect surrogate for protein abundance [33].
We found that the ubiquitous proteins have about three
times more interactions per protein than the tissue- or
stage-specific proteins (Table 1). When interologs are re-
moved from the analysis (Table 1, numbers in paren-
theses), the ubiquitous proteins still have about three
times more interactions than the tissue- or stage-specific
Table 1 Interactions involving ubiquitously and specifically e

Proteins Interactions/protein T

Tissue ubiquitous 3960 37 (15)

Stage ubiquitous 4972 35 (14)

Tissue specific 2838 12 (6)

Stage specific 3566 10 (5)

Numbers are for all Drosophila protein interactions including those predicted from
in parentheses are for protein interactions detected experimentally with Drosophila
proteins, indicating that the difference is not due simply
to the fact that ubiquitous proteins are more conserved
and therefore have more interactions that are interologs.
This finding is in general agreement with findings for an
analysis of human proteins in which proteins expressed
in more tissues or cell lines had more interactions [23].
Next we looked at the numbers of interactions within
and between the ubiquitous and the specific proteins.
Roughly half of the protein interactions that involve ubi-
quitous proteins are with other ubiquitous proteins
while only 12 – 15% of their interactions are with the
specific proteins (Table 1). In contrast, fewer than 10%
of the interactions involving the tissue- or stage-specific
proteins are with other specifically expressed proteins,
whereas around 60% of their interactions are with ubi-
quitous proteins (Table 1). Again, these differences were
found independent of whether or not the interolog data
was included. The finding that Drosophila tissue-specific
proteins frequently interact with a core set of ubiqui-
tously expressed proteins is consistent with analyses of
the human interactome [22,23]. Combined, these results
suggest that ubiquitous proteins frequently interact with
each other while tissue- and stage-specific proteins fre-
quently interact with widely expressed proteins and that
this is a common feature of protein interaction networks
identified in different species.
The above analyses relied on counting interactions

within and between groups of proteins, which may not
be a good measure of the interaction tendencies of those
groups. For example, if a group of proteins has few over-
all interactions (as do the specific proteins), then they
will likely have few interactions among themselves just
by chance. Likewise, proteins with many overall interac-
tions are more likely to interact with each other just by
chance. Moreover, since protein interaction networks
generally follow a power law distribution of interactions
per protein (degree) [34], the average degrees of groups
of proteins may not be representative or useful for com-
paring between groups. Thus, to further compare the in-
teractions of the ubiquitously and specifically expressed
Drosophila proteins we calculated fold difference be-
tween the number of interactions among or between
these groups and among random sets of other proteins
xpressed proteins

Percent of interactions with:

otal interactions Ubiquitous NUNS Specific

148,849 49 (41) 37 (43) 14 (16)

175,061 48 (46) 40 (37) 12 (16)

34,600 59 (54) 33 (40) 8 (7)

37,897 56 (63) 35 (29) 9 (8)

other species (interologs) but not measured with Drosophila proteins. Numbers
proteins. NUNS are non-ubiquitous, non-specific proteins.
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of the same sizes (Methods). We found that both the
tissue- and stage-ubiquitous proteins had about 8-fold
(p-value 7.6 × 10−5) more interactions among themselves
compared to other random proteins in the network
(Figure 1). In contrast the tissue- and stage-specific PPI
networks had about 5- to 6-fold (p-value 7.6 × 10−5)
fewer interactions than the random proteins (Figure 1).
It is perhaps not surprising to find few interactions

among all of the tissue- or stage-specific proteins, since
many of them are never expressed together in the same
tissue or at the same developmental stage. To determine
whether the tissue- or stage- specific proteins interacted
with each other within each tissue or stage, we built net-
works of genes expressed in each of the 23 adult and lar-
val tissues and performed the same comparisons. The
tissue-specific proteins within every tissue except the
ovary had many fold fewer interactions among themselves
than did random sets of other proteins expressed in the
same tissue (Additional file 3A). Similarly, stage-specific
proteins at each of the 30 developmental time points had
relatively few interactions among themselves, with the ex-
ception of proteins specifically expressed in the one-day
old female and the 6–8 hour embryo (Additional file 3B).
The tissue- or stage-specific proteins rarely interacted
among themselves even indirectly through third non-
specific proteins (Additional file 4). We did the same
analyses with larval tissue networks and obtained similar
results (Additional file 5). Because the tissue- or stage-
specific proteins rarely interacted with each other directly
or indirectly, we determined whether they primarily
Figure 1 Ubiquitous proteins frequently interact with each other whi
proteins more frequently than with each other. For each set of protein
specific-specific) or between sets (ubiquitous-specific) was compared to the
from the composite PPI network. Each bar shows average fold-difference fo
significance for each case is <7.56 × 10-5 at a CI = 99.99%. Ubiquitous-ubiqu
larval tissue-ubiquitous proteins, and stage-ubiquitous proteins. Specific-spe
larval tissue-specific proteins, and stage-specific proteins. Ubiquitous-specifi
tissue-specific proteins or between stage-ubiquitous and stage-specific pro
interacted with the ubiquitous proteins. Both the tissue-
and stage-specific proteins interacted about five-fold
more with the ubiquitous network than did random sets
of proteins (Figure 1). Thus, tissue- and stage-specific
proteins generally do not form well-connected subnet-
works but frequently interact with widely expressed
proteins.
We considered the possibility that bias in the inter-

action data may contribute to the observation that ubi-
quitous proteins have more interactions than specific
proteins. As shown in Figure 2A for adult tissues, all of
the interaction data sets are biased toward tissue ubiqui-
tous proteins. This is likely due to the fact that widely
and highly expressed proteins are more readily identified
in screens that have limited sensitivity, including mass
spectrometry-based co-complex screens and yeast two-
hybrid screens, the two methods accounting for the bulk
of the interaction data. The bias toward ubiquitous pro-
teins and against specific proteins does contribute to the
numbers of interactions among these groups as illus-
trated in Figure 2B for tissue specific proteins. The data-
set most biased toward ubiquitous proteins (Figure 2B,
“co-AP”) has the highest frequency of interactions be-
tween specific and ubiquitous proteins and the lowest
frequency of interactions between specific proteins,
while the dataset with the least bias (Figure 2B, “Y2H
array”) has the highest frequency of interactions among
specific proteins. The least biased dataset, however, still
shows a preponderance of interactions between the spe-
cifically expressed and the widely expressed proteins.
le tissue- and stage- specific proteins interact with ubiquitous
s the number of interactions within the set (ubiquitous-ubiquitous and
number of interactions in each of 5000 random protein sets taken
r 5000 trials. Standard deviations are shown as error bars. The p-value
itous interactions were tested with adult tissue-ubiquitous proteins,
cific interactions were tested with adult tissue-specific proteins,
c interactions were tested between adult tissue-ubiquitous and
teins.



A

B

Figure 2 Protein interaction data are biased toward ubiquitously expressed genes and interactions. A. The fractions of proteins from the
indicated interaction datasets that belong to each of three expression classes based on adult tissues: ubiquitous, non-ubiquitous non-specific
(NUNS), and specific. B. The fraction of interactions involving tissue specific proteins that interact with ubiquitous, NUNS, or other tissue specific
proteins. The tissue specific interactions include those from the same tissue (matched) or another tissue (other). Gene sets included all genes with
tissue expression data (All Genes), and all genes with protein interactions in DroID (All Genes in PPI). Interaction data sets included data from
yeast two-hybrid array screens (YTH Array), yeast two-hybrid cDNA screens (YTH cDNA), interologs from yeast, C. elegans, or human (Interologs),
and protein interactions from co-affinity purification studies (coAP).
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Combined, these results suggest that tissue- or stage-
specific proteins frequently interact with the ubiquitous
core network. Thus, tissue- or stage-specific subnet-
works must consist of a combination of specifically
expressed proteins and widely expressed proteins. This
further suggests that identification of tissue- or stage-
specific networks could not be achieved by focusing only
on tissue- or stage-specific protein interactions.
Tissue- and stage-specific transcription factors frequently
bind to ubiquitously expressed target genes in the
protein-DNA interaction network
Next we determined the interaction tendencies of the
ubiquitous and specific genes in the PDI. Not surpris-
ingly, the ubiquitous TFs bound to ubiquitous targets
more than expected by random chance (p-value 1.92 ×
10−5). In addition, approximately half of the regulatory
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interactions of ubiquitous TFs involve non-ubiquitous
targets. The PDI network is more limited than the PPI
network because of the relatively small number of TFs
that have been experimentally shown to bind target
genes [35]. For each adult tissue there were only two or
fewer tissue-specific TFs in the available PDI. Thus it is
difficult to determine whether the tissue-specific TFs
preferentially interact with the corresponding tissue-
specific targets. Nevertheless, it is clear that a large frac-
tion of the targets of tissue-specific TFs are not
expressed exclusively in the same tissue. For example,
the two testis-specific TFs in the PDI are involved in 562
interactions in the PDI and only 14 (2.5%) of these are
with testis-specific targets. Likewise the single ovary-
and heart-specific TFs in the PDI have 279 and 282 tar-
gets, only 7 (2.5%) and 3 (1.1%) of which are ovary- or
heart-specific, respectively. In each case, most of the tar-
gets for tissue-specific TFs are expressed ubiquitously or
in several tissues. We also examined a TF regulatory net-
work that was predicted based on the integration of
physical and functional interaction data [36]. Because
one of the predictors for this network was developmen-
tal expression data, it would not be surprising to find en-
richment for interactions between TFs and targets that
are specifically expressed in the same patterns. Indeed,
we found that the predicted network was from 1- to 9-
fold enriched for interactions between adult tissue- or
stage-specific TFs and targets that are specifically expressed
in the corresponding tissue or stage (data not shown).
Overall, tissue-specific TFs interact with their corre-

sponding tissue-specific targets about 3-fold more than
expected from random chance. Thus, in contrast to the
PPI network, the PDI network is enriched for interac-
tions between TFs and targets that are expressed exclu-
sively in the same tissue or stage (Additional file 6).
Nevertheless, like the PPI network, in the PDI network
most of the tissue-specific TF interactions are with non-
specific targets. In the predicted PDI network, the 65
tissue-specific TFs are involved in 11,963 interactions,
only 615 (5.1%) of which are with the corresponding
tissue-specific targets. In contrast, 4355 (36.4%) of the
interactions are with ubiquitously expressed targets, and
most of the rest are with targets that we classified as
neither tissue-specific nor ubiquitous; i.e., expressed in
a subset of all tissues. Since the ubiquitous targets are
by definition ubiquitously expressed, their regulation
by specific TFs suggests that their levels are modulated
in a context-dependent manner.

An expression filter to identify genes active in
specific contexts
Because the techniques used to collect much of the
available interactome data are context independent, fil-
ters are needed to identify the subnetworks that operate
in specific tissues or at specific developmental times.
One type of filter that can be envisioned is one that re-
tains only genes that are specifically expressed in a tissue
or stage. However, as demonstrated above for Drosophila
and elsewhere for human [22-24], proteins expressed in
specific tissues or stages frequently interact with ubiqui-
tously expressed proteins rather than with other spe-
cifically expressed proteins. In the PDI, ubiquitously
expressed and specifically expressed genes are regulated
by both types of TFs. Thus, a filter based on expression
specificity is likely to remove many of the PPI or PDI in-
teractions that are relevant in specific contexts. A sec-
ond type of filter that can be envisioned is one that
relies on absolute expression levels. For example, genes
are frequently classified as “on” or “off” in a particular
sample based on arbitrary expression thresholds. The
problem with using filters based on expression thresh-
olds, however, is that different genes may function at
widely different expression levels; two genes, for ex-
ample, may differ in their expression levels by several or-
ders of magnitude even at their maximal levels.
We reasoned that a gene is more likely to be active

when it is expressed at levels approaching its maximal
level across all tissues or stages. For example, if a gene is
maximally expressed in the ovary, it is likely to have a
function in the ovary and in any other tissues where its
level approaches the level in the ovary. To test this hy-
pothesis we developed a scale to indicate the fraction of
maximal expression for each gene in each tissue or de-
velopmental stage. For each tissue or stage we calculated
a gene’s expression level as a percent of its level in the
tissue or stage where it is maximally expressed. A gene,
therefore, will have a percent maximum or “pmax” value
for each tissue or stage.
To evaluate the pmax scale, we first asked if we could

obtain gene lists enriched for tissue-relevant functions
by selecting genes expressed above different pmax
thresholds (e.g., pmax >50 or >75) in specific tissues.
We compared these filters to one that selects genes
expressed above the average value for all genes in a
given tissue. We chose a set of six tissues (brain, thor-
acic ganglion, eye, testis, ovary, and larval central ner-
vous system or CNS) and applied the three different
filters to genes expressed in those tissues; the pmax fil-
tered gene lists had in some cases more and in some
cases fewer genes than the corresponding lists of genes
expressed above the average level (Additional file 7). We
evaluated the expression filters by checking for enrich-
ment of tissue-relevant mutant phenotype annotations in
the respective gene lists. The results show that the pmax
filtered gene lists are highly enriched for tissue-relevant
phenotypes in contrast to the gene lists filtered on average
expression levels, which show little or no enrichment for
tissue-relevant phenotypes (Additional file 8). The >75
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pmax filter performed better than the >50 pmax filter for
the selected tissues, supporting the hypothesis that genes
expressed closer to their maximum level in a tissue are
more likely to be functional in that tissue.

Identification of context-relevant subnetworks
To test whether pmax values could be used to identify
biologically relevant subnetworks in the PPI interac-
tome we selected subnetworks containing interactions
between genes expressed above 75 pmax in specific tis-
sues and computed phenotype enrichment and deple-
tion. The PPI subnetworks made from genes expressed
above 75 pmax in specific tissues were highly enriched
for tissue-relevant phenotypes (Figure 3 and Additional
file 9). For example, the ovary subnetwork is enriched
for the phenotype ‘female sterile’ (p-value 2.11 × 10−26),
while the testis subnetwork is enriched for the pheno-
type ‘male sterile’ (p-value 1.32 × 10−07) (Figure 3). The
brain and thoracic ganglion networks are enriched for
phenotypes related to neuroanatomy, neurophysiology,
Figure 3 Heat map of phenotypes enriched in six tissue-relevant sub
subnetworks containing only genes expressed above 75 pmax in ovary, lar
enrichment were log transformed, scaled (inset), and then plotted. Analysis
file 9.
and behavior, while the eye subnetwork is enriched for
‘visual behavior’ phenotypes (p-value 8.33 × 10−06). Like-
wise, many of the PPI subnetworks made from genes
expressed above 75 pmax in specific stages were enriched
for stage relevant phenotypes (Additional file 10). The
early embryo networks, for example, were enriched for
genes annotated with phenotypes related to the cell cycle,
as expected given that early embryogenesis is dominated
by cell division [37]. As development progresses from
early embryo to late embryo, the subnetworks become
enriched for behavioral phenotypes. As development pro-
gresses into larval and pupal stages and to adult, the sub-
networks show little phenotype enrichment. This likely
reflects the differentiation of postembryonic cells into
collections of diverse tissues where it would be more ap-
propriate to use tissue expression data to identify
context-relevant subnetworks. The tissue and stage sub-
networks with genes expressed at >75 pmax are also de-
pleted for phenotypes that would not be expected for
genes in specific tissues or stages (Additional files 11
networks. Heat map of enriched mutant phenotypes for genes in
val CNS, brain, thoracic ganglion, testis, and eye. Corrected p-values for
for a complete list of phenotypes and tissues is shown in Additional
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and 12). For example, the subnetworks for ovary and early
embryo stages are depleted of genes annotated with be-
havioral phenotypes. We also tested networks filtered at
different pmax cut offs and found that generally, as the
pmax cut off increased, the level of enrichment for
genes with expected tissue-relevant phenotypes in-
creased (Additional file 13). For example, networks with
genes expressed >25 pmax or >45 pmax in the eye were
enriched 1.8-fold or 2.5-fold for genes with the pheno-
type “visual behavior defective”, respectively (p-value 3.46 ×
10−03 and p-value 7.63 × 10−04) (Additional file 13).
To further examine the effectiveness of the expression

filter we asked whether the collection of enriched phe-
notypes in networks from each tissue or stage correlated
with the collection of enriched phenotypes in related tis-
sues or stages. We clustered the pmax-filtered subnet-
works based on the similarity of phenotype terms that
are enriched in them. In the case of the tissue-relevant
pmax-filtered subnetworks (Additional file 9), the ovary
and larval central nervous system clustered together as
they are both enriched in genes that share ‘cell cycle’ and
‘lethality’ phenotypes among others. This is perhaps not
surprising as it has been shown that many cell cycle and
maternal genes play major roles in the asymmetric cell
divisions in nervous system development [38,39]. An-
other example is the pmax PPI networks for brain and
thoracic ganglion, which cluster together based on
shared neuroanatomy and neurophysiology phenotypes
among others. The testis subnetwork is an outgroup as
it alone is enriched for the ‘male sterile’ phenotype, and
similarly, the eye subnetwork is the only one enriched
for phenotypes related to vision. Most larval tissue sub-
networks cluster together due to their enrichment for le-
thality phenotypes. The early embryo subnetworks also
cluster together, as do the late embryo subnetworks
along with late pupal subnetworks (Additional file 10).
The subnetwork at the mid-embryo stage from 10 to
12 hours forms an outgroup, consistent with studies
[12,40] showing that transcripts specific for the early-
embryo are down-regulated at this stage while late
embryo-specific transcripts are just beginning to be
expressed. The embryo subnetworks at 14–16 hrs and
16–18 hrs also do not cluster with the other embryo
subnetworks and are not significantly enriched for em-
bryo relevant phenotypes, corresponding to the transi-
tion to late embryo stages. It has been shown that
related tissues show similar expression profiles and that
tissues in consecutive developmental stages cluster to-
gether based on their gene expression patterns [41].
Here we show that related tissue pmax-filtered PPI sub-
networks and as well as consecutive stage pmax-filtered
PPI subnetworks cluster together based on related gene
functions, as indicated by their shared mutant pheno-
types. This result further shows that the pmax filter can
identify subnetworks with the appropriate context rele-
vant functions.
We compared the phenotype enrichment of the 75

pmax subnetworks with similarly filtered gene lists. For
this we picked the maximally expressed subnetworks
and gene lists of the ovary, larval CNS, brain and thor-
acic ganglion (Figure 4). For example, applying a 75
pmax filter to the ovary results in 2502 genes expressed
at >75 pmax expression level, while applying the same
pmax filter to identify the ovary subnetwork results in a
subnetwork with 2085 of these genes; to be maintained
in the filtered subnetwork a gene expressed at >75 pmax
must interact with another gene expressed at >75 pmax.
As shown in Figure 4, the ovary subnetwork is more
enriched than the ovary gene list for phenotypes such as
‘female sterile’, ‘mitotic cell cycle defective’, and ‘cell cycle
defective’. Similar results were obtained with the other
tissues (Figure 4) and with the PDI network (data not
shown). Thus, pmax filtered subnetworks are better
enriched for tissue-relevant phenotypes compared to the
gene lists filtered at the same pmax. This is likely due to
the fact that genes with related functions are frequently
connected in the PPI and PDI subnetworks while genes
with unrelated functions are more likely to be uncon-
nected. Overall, these results suggest that the pmax filter
is a useful method to identify the PPI and PDI subnet-
works that operate in specific tissue contexts.
To demonstrate how the pmax filter can be used to

identify context-relevant pathways we generated a net-
work for the phototransduction pathway that takes place
in retinal cells (Figure 5). While several members of this
pathway are well characterized, it is likely that additional
members of the pathway remain to be discovered and
that some of these novel members may be found in
existing protein interaction data. The KEGG pathways
database [42] lists 25 Drosophila genes involved in
phototransduction, including genes for the major rhod-
opsin (Rh1), subunits of the heterotrimeric G-protein,
Gq (Gß76C, Gα49B, Gγ30A), a phospholipase C or PLC
(NorpA), diacyleglycerol kinase (inaE), and transient re-
ceptor potential (TRP) channels (TRP and TRPl). The
signaling cascade is initiated when light promotes isom-
erization of a chromophore in rhodopsin leading to a
conformational change that stimulates GDP-GTP exchange
in Gq [43,44]. This stimulates the PLC to hydrolyze phos-
phatidylinositol 4,5-bisphosphate (PIP2) to diacylglycerol
(DAG) and inositol 1,4,5-triphosphate (IP3), which in turn
leads to opening of the TRP channels and influx of Ca2+.
The pathway also includes genes for a protein kinase C or
PKC (inaC), calmodulin (CaM), a G-protein-coupled recep-
tor kinase (Gprk1), a protein that blocks the rhodopsin-Gq
interactions called arrestin 2 (Arr2), a myosin III protein
(ninaC), and a scaffold protein (inaD). We used these 25
genes to search the DroID database [25] and found protein



Figure 4 Heat map of enriched phenotypes in 75 pmax filtered networks compared to 75 pmax filtered gene lists. Heat map of enriched
phenotypes obtained when genes expressed at 75 pmax or networks of genes expressed at 75 pmax in 4 different tissues were used as query genes
and compared to random gene lists or networks. The p-values were log transformed, scaled and plotted.
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interactions for all 25 KEGG phototransduction genes.
The proteins are connected into a single protein inter-
action network containing 1186 proteins and 2655 in-
teractions. At least some of these interactions, however,
may be experimental artifacts, which are not uncom-
mon in protein interaction data, while many other inter-
actions may be biologically relevant in some contexts
but have no role in phototransduction in the eye. To
identify a subnetwork likely to contain additional photo-
transduction pathway proteins we filtered out genes
expressed in the eye below 45% of their maximum value
(pmax) across all tissues because we had shown that
networks filtered for genes expressed >45 pmax are
enriched for tissue-relevant genes (Additional file 13).
This resulted in a network with 491 interactions among
348 proteins and included the 14 phototransduction
genes named above plus another PKC (Pkc53E) (Figure 5).
Among the KEGG phototransduction genes not in-
cluded in the filtered network, only two are known to
have eye-related functions, Act5C and ltp-r83A, and
these are expressed in the eye at 37% and 27% of their
tissue maximum, respectively. Most of the other KEGG



Figure 5 An eye relevant network identified with the pmax expression filter. The DroID database was searched for protein interactions involving
genes in the KEGG pathway for phototransduction. The network was then filtered to remove genes expressed in the eye below 45% of their maximal
value (pmax). The resulting network has 498 interactions among 351 proteins, including 15 of the KEGG pathway phototransduction proteins (squares)
and 55 proteins encoded by genes known to have eye-related mutant phenotypes (see text). Among the proteins encoded by genes with eye-related
phenotypes, 32 had tissue expression data (dark blue) and thus were subject to the pmax filter, while 23 had no expression data (light blue). After the
initial analysis of phenotypes, examination of updated gene annotations and literature revealed an additional two genes with functions related to
phototransduction (red). Edge colors reflect the source of the protein interaction data as described in Methods: dark green and yellow are human and
C. elegans interologs, respectively; light blue and pink are from large co-complex studies; dark blue, green, and dark grey are from three separate large
scale two-hybrid studies; orange are from literature databases; red are from more than one source. The pmax filter was set by default to retain genes
that had no expression data. Deletion of genes with no expression data would result in a network further enriched for genes with eye related
phenotypes, from 16.7% (58/348) to 20.3% (28/138); however, it would also eliminate many eye relevant genes, including genes with known eye
related phenotypes that would no longer be connected to the network just because their expression is currently unknown.
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phototransduction genes that were filtered out are only
paralogs of the known phototransduction genes with as
yet no demonstrated function in the eye. The network
is enriched for genes that are annotated with one or
more of the eye-related phenotype terms, including
‘photoreceptor’ (p < 6.007 × 10−5), ‘retina’ (p < 1.265 ×
10−6), ‘visual behavior defective’ (p < 8.934 × 10−10),
‘phototaxis defective’ (p < 0.008) or ‘sensory perception
defective’ (p < 0.01), in addition to ‘neuroanatomy de-
fective’ (p < 8.021 × 10−4) and ‘neurophysiology defective’
(p < 1.335 × 10−13). In total 55 (16%) of the genes have eye-
related phenotype terms, including 11 of the KEGG path-
way genes (Figure 5 and Additional file 14). The
significant enrichment for genes with known eye-related
functions suggests that some of the poorly characterized
genes in the network may also have eye-related functions.
In support of this idea, a literature search revealed two
additional genes in the network, SK and mts (Figure 5, red
nodes) for which there is experimental evidence for
phototransduction-related functions even though they
were not yet annotated with eye phenotypes. SK is a small
conductance calcium-activated potassium channel that
has been shown to be required in photoreceptors for nor-
mal light response [45], while mts is a PP2A protein phos-
phatase that affects photoreceptor light adaptation by
interacting with and dephosphorylating CaMKII [46].
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Only 11 genes in the eye network have an eye-specific
expression pattern. Thus, most of the genes in the net-
work are expressed in a variety of tissues and could not
have been identified by searching for genes with eye-
specific expression. CaM, for example, is a ubiquitously
expressed gene with a known role in phototransduction
in the eye. While individual members of the pathway
may be expressed in other tissues, we expect the net-
work as a whole to be eye specific, since phototransduc-
tion occurs primarily in retinal cells. To test this we
filtered out genes that were expressed below 45 pmax in
each of several other tissues (Figure 6). This resulted in
a striking disruption of the eye network, leaving behind
mostly genes for which there is no data for tissue ex-
pression. Even the network filtered for brain expression,
which was the one most similar to the original eye net-
work, had only about half of the genes, interactions,
genes with eye-related phenotypes, and KEGG photo-
transduction pathway genes. Combined, these results
show that pmax expression values can be an effective fil-
ter to identify protein networks enriched for pathways
that operate in specific tissues.

Conclusions
In this study we used transcriptome data to examine the
PPI and PDI interactomes of Drosophila and arrived at
several general conclusions. First, ubiquitously expressed
proteins interact among themselves significantly more
Figure 6 Applying gene expression filters for different tissues disrupt
was filtered to remove genes that are expressed below 45% pmax in the in
to the original eye network, yet contains only about half of the proteins an
and less than half of the proteins encoded by genes with eye-related phen
tissue expression data and thus could not have been removed by the expr
than with specifically expressed proteins. Second, tissue-
and stage-specific proteins interact with core networks
of ubiquitously expressed proteins, potentially modifying
them for tissue- or stage-specific functions. Third, we
show that tissue- and stage-specific proteins rarely inter-
act amongst themselves directly or even indirectly
through other non-specific proteins. These results for
PPI are in agreement with previous studies with human
proteins showing that tissue-specific proteins have few
interactions among themselves, ubiquitous proteins fre-
quently interact with each other, and tissue-specific pro-
teins primarily interact with ubiquitous proteins [22,23].
In addition, we have shown that these results hold true
for developmental stage-specific and stage-ubiquitous
proteins. The interactions of the tissue- or stage-specific
proteins with the ubiquitous proteins may take place to
recruit the ubiquitous network to perform context spe-
cific functions (some examples in [47-53]). In the PDI
network, the tissue- and stage-specific TFs tend to regu-
late tissue- and stage-specific targets more than expected
by random chance. A surprising finding in the PDI is
that the tissue-specific TFs frequently regulate ubiqui-
tous targets. The levels of expression of ubiquitous
genes, therefore, may be regulated differently in specific
tissues and stages, potentially rewiring the networks for
specific functions.
These findings indicate that protein networks fre-

quently consist of a core of evolutionarily conserved,
s the eye network. The eye-relevant network (upper left) from Figure 5
dicated tissues. The network filtered for brain expression is most similar
d interactions, only 7 of the 15 phototransduction proteins (squares),
otypes. Many of the genes remaining in the filtered networks have no
ession filter. Colors are as in Figure 5.
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widely-expressed proteins to which are attached a set of
relatively new, tissue-specific proteins. Many of the func-
tions of specific tissues may emerge via a modification of
core non-specific cell networks. This is in contrast to
the notion of cell- or tissue-specific systems that consist
primarily of cell or tissue-specific proteins. The Dros-
ophila phototransduction network (Figure 5) is a good
example. Only 11 of the 351 genes in this network are
specifically expressed in the eye. A large number of
genes in the network that play a defined role in the eye,
as indicated by their mutant phenotypes, are expressed
in many different tissues in addition to the eye. An inte-
gral part of the phototransduction pathway, for example,
is the calcium-signaling module, which is expressed and
has a unique role in many different contexts [44,54].
The identification and characterization of cellular

pathways and other functional modules is a major chal-
lenge in post-genome research. Clues about the constitu-
ents of pathways can be obtained from the huge amount
of protein interaction data that is becoming available
from high throughput screens and collections of data
from published low throughput experiments. Since most
of the available data comes from context-independent
assays, many of the available interactions may not occur
in any given biological setting. Gene expression informa-
tion could be used as a first pass filter to identify inter-
acting proteins that are expressed in the same cell or
tissue. The finding that specifically expressed proteins
frequently interact with ubiquitously expressed proteins
shows that a filter based on tissue-specific expression
would not be effective. Another implication of this find-
ing is that genes encoding pathway members are not ne-
cessarily coordinately regulated across tissues. Thus,
while correlated expression has been useful for finding
groups of genes that may function together, the expres-
sion patterns of many members of specific pathways are
not correlated. Another approach that has been used ef-
fectively in some studies is to first find genes that are
expressed at high levels in a particular tissue in order to
enrich for genes belonging to pathways that are active in
that tissue (for example, [55]). Such an approach can
generate false negatives, however, because some genes
are active even when expressed at very low levels. As an
example, the genes that are known to be required for
Drosophila eye function (with eye-related mutant pheno-
types) are expressed in the eye over a range of two or-
ders of magnitude [26]. Many of the genes that are
expressed at very low levels are transcription factors that
are effectors in signal transduction pathways. Such genes
would not be identified as potential members of eye-
relevant pathways if expression levels were used to filter
protein interaction data.
We set out to develop a method for using gene expres-

sion data to identify context-relevant networks from
interactome data. We reasoned that a gene is likely to be
active in a tissue where it is expressed at its maximal
level relative to other tissues and that the closer a gene
is to its maximal expression level the more likely it is to
be active. The availability of quantitative gene expression
data from a wide range of tissues or developmental
stages has made it possible to test this idea. We used a
normalization procedure that scaled (on a percent scale)
each gene’s expression based on its maximum expression
level in any tissue or stage. Each gene in each tissue or
stage is expressed at a percent of its maximum value, or
pmax. We showed that genes expressed at higher pmax
values in a tissue or stage are more enriched for genes
that function in that tissue. Moreover, filtering compos-
ite protein interaction networks using this scale gener-
ates biologically relevant subnetworks. Such a gene
expression filter will be useful for generating hypotheses
about the composition of pathways and other functional
modules in cells. The pmax filter along with other gene
expression filters should also be useful for understanding
how the interactome changes from cell to cell and in dif-
ferent conditions (i.e., the dynamic interactome), par-
ticularly as additional expression data with better time
and spatial resolution becomes available.

Methods
Interaction and expression data
Protein-protein interaction (PPI) and protein-DNA
interaction (PDI) data were downloaded from DroID
[14,25] version 2011_05, and include 93,544 experimen-
tally detected PPI from yeast two-hybrid data from three
large-scale studies [56-58] and an ongoing project [25],
literature curated PPI from other major databases [59-61],
and recently added PPI data from two large co-AP com-
plex studies for Drosophila [10,62]. The PPI data also
include 144,171 Drosophila interologs predicted from ex-
perimental data in yeast, worm and human [14,25]. In
total we analyzed 235,950 unique PPI involving proteins
from 10,823 genes. The analysis in Figure 2A and B used
all unique, non-self PPI from DroID version 2014_01. In-
dividual data sets included data from yeast two-hybrid
array screens [56,58], yeast two-hybrid cDNA screens
[56], interologs from yeast, C. elegans, or human [25], and
protein interactions from co-affinity purification studies
[10]. The Drosophila PDI data include 158,508 unique
regulatory PDI for 149 transcription factors (TF) and
12,441 of their target genes that were inferred using TF
binding and correlated expression of targets [35,63]. We
separately analyzed ~300,000 computationally predicted
PDI [36]. Tissue-wide gene expression data was down-
loaded from Flyatlas.org [26]. This data includes the
mRNA signal that correlates with mRNA abundance for
about 13,000 genes in 15 adult and 8 larval tissues mea-
sured using Affymetrix Drosophila expression arrays. Data
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was included for probes that mapped to single Flybase
gene identifiers (FBgn). Probe data was included only
where Affymetrix called the mRNA present for all four
replicates. The mean signal from four replicates was used
for all subsequent calculations. The stage-wide temporal
gene expression data was obtained from Graveley et al.
[27]. This data includes the mRNA abundance determined
by RNA-Seq for more than 14,000 genes spanning 30 de-
velopmental time points from embryo to adult.

Gene expression specificity scale
Genes were classified according to the specificity of their
expression levels across all tissues or developmental
stages. The expression specificity (Esi) of a gene in tissue
or stage i is simply a fraction of the total abundance
across all tissues or stages and was calculated as follows:

Esi ¼ abundanceiXn

i¼1
abundancei

where abundancei is the raw expression value of a gene
in tissue or stage i. This results in Esi values between 0
and 1 for each gene in each tissue or stage. The sum of
all expression specificity values for each gene across all
tissues or stages equals 1.
We placed genes into three non-overlapping bins based

on their specificity of expression across all 15 adult tissues:
Genes with Esi values of > =0.8 in any of the adult tis-
sues were labeled as tissue-specific (2838 genes); genes
that were not tissue-specific and that had non-zero ex-
pression values across all adult tissues were labeled as
ubiquitous (3960 genes); the remaining genes were la-
beled as tissue non-specific-non-ubiquitous (5830 genes).
For the analyses in Additional file 5, we similarly classified
genes using only the 8 larval tissues. In a separate classifi-
cation, we placed genes into three non-overlapping bins
based on their specificity of expression across 30 develop-
mental stages: Genes with developmental stage Esi values
of > =0.19 were labeled as stage-specific (3566 genes);
genes that were not stage-specific and that had develop-
mental stage Esi values >0.005 across all time points were
labeled as ubiquitous (4972 genes); the remaining genes
were labeled as stage non-ubiquitous, non-specific (6064
genes). The stage-specific bin included genes that showed
a transient and sharp change in abundance that spanned a
maximum of four consecutive developmental time points
in a majority of the cases. The overlap among genes classi-
fied by the two specificity scales (tissue specificity and
stage specificity) is shown in Additional file 1.

Percent of maximum expression level (pmax) scale
We created a normalized gene expression scale to indi-
cate for each gene the extent of its expression in a par-
ticular tissue or stage relative to its maximum level of
expression in any tissue or stage, respectively. We refer
to this normalized expression scale as the percent of
maximum or pmax. To normalize gene expression based
on this scale, the expression of a gene is calculated as
the percent of its maximum expression level across all
tissues or stages. For example, if a gene is maximally
expressed in the ovary compared with all other tissues,
then its pmax value in the mid-gut is its expression level
in the midgut as a percentage of its expression in the
ovary. A gene is expressed in tissue or stage i at a per-
cent (pmaxi) of its value in the tissue or stage where it is
maximally expressed. pmaxi is calculated by:

pmaxi ¼
abundancei

abundancemax
� 100

where abundancei is the raw expression value in tissue
or stage i, and abundancemax is the raw expression value
in the tissue or stage where it is maximally expressed.
For the analysis in Figure 2, genes were similarly classi-
fied based only on adult tissues expression data. The
pmax gene expression data and filters are available at
the Drosophila interactions database, DroID (www.droidb.
org) [25]. The database allows lists of PPI, PDI, and other
interactions to be filtered based on user-defined pmax
values. The pmax expression data can also be used to filter
graphically displayed interaction networks using the inter-
action map browser tool (IM Browser) [64], which is also
available at DroID. All precalculated pmax values for tis-
sue and stage expression data are available for download
at DroID.

Orthology mapping
Potential Drosophila orthologs of yeast, worm and hu-
man proteins were identified using data downloaded
from InParanoid version 7.0 database [65]. InParanoid
performs pairwise comparisons of proteomes and con-
structs orthology groups. An orthology group has at
least one protein from each species (seed orthologs) that
are more similar to each other than to any other se-
quence in the other proteome. The orthology group may
have additional sequences that are closer to the seed
orthologs than to any sequences in the other proteome.
We merged the InParanoid groups keeping a Drosophila
gene as a unique reference to each orthology group.

Network analyses
To compare the numbers of interactions among differ-
ent groups of genes we calculated the fold difference in
interactions over random expectation. First we counted
the number of interactions among genes in the test set.
Then we picked the same number of random genes
from the PPI network minus the test set and counted in-
teractions among them. The fold difference is the

http://www.droidb.org
http://www.droidb.org
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number of interactions among genes in the test set di-
vided by the number of interactions among genes in the
random set. We repeated this 5000 times for each test
set. To calculate a p-value for each test case, we per-
formed 100,000 Monte Carlo simulations by picking
gene sets of the same size randomly and counting the
number of interactions between the genes in each of
these random sets. We computed the number of times
the interactions in the random sets were lower, or
higher, depending on the test case. This number was
used to calculate the binomial confidence interval using
binom.confint in R to calculate the p-value at a confi-
dence of 99.99% (CI = 0.9999) [66,67]. We used the
upper confidence interval as the p-value. Tissue-
relevant networks were made from the composite net-
work by including only the genes that had expression
specificity values above zero in the respective tissues.
Stage-relevant networks included only the genes that
had expression specificity values above 0.005 in the re-
spective stages. The PDI network is a directed network
with a small number of TFs binding to numerous poten-
tially regulated target genes. To find out if the tissue-
and stage-specific TFs regulate tissue- and stage-specific
targets more than expected by chance, for specific TFs
in each tissue or stage we built random networks by
assigning random targets while keeping the node degree
constant. We built 100,000 such random networks for
specific TFs in each of the tissues and stages. We com-
puted the p-values (binom.confint, CI = 0.95) by count-
ing the number of times specific interactions in the
random networks were lower than the number of spe-
cific interactions in the tissue and stage PDI networks.
Example networks were identified using IM Browser
[64] to search and filter the DroID database [25]. Edge
colors in Figures 5 and 6 depict the source of the pro-
tein interaction: dark green and yellow are human and
C. elegans interologs, respectively; light blue and pink
are from large co-complex studies [10,62]; dark blue,
green, and dark grey are from three separate large scale
two-hybrid studies [56-58]; orange are from literature
databases [59-61]; red are from more than one source.

Enrichment analyses
Gene Ontology enrichment analysis was performed using
DAVID 6.7 [68] and the Drosophila protein-coding genes
as background. We used DroPhEA [69] and BiNGO [70]
to perform phenotype enrichment analysis. We used Dros-
ophila phenotype controlled vocabulary terms from the
FlyBase phenotype ontology [71]. The phenotypes result-
ing from single gene loci perturbations were used by Dro-
PhEA and the same were used in the BiNGO analyses as
background. About 4800 genes had phenotypes associated
with them. The p-values were corrected by Bonferroni
correction in DroPhEA and by Benjamini and Hochberg
FDR correction in BiNGO and DAVID. The enriched and
depleted p-values obtained for gene lists were negative log
transformed and scaled (0–1) to create a distance matrix
and then clustered hierarchically. R heatmap.plus package
was used to plot the scaled values. We used BiNGO to
compare phenotype enrichment in variously filtered gene
lists and also to compare phenotype enrichment between
filtered gene lists and filtered networks. We used DroPhEA
to compare enrichment and depletion of phenotypes in dif-
ferent tissue and stage networks filtered for genes expressed
at >75 pmaxi.
Availability of supporting data
All interaction data used in this study is available along
with calculated gene expression pmax values in DroID,
the Drosophila Interactions Database (www.droidb.org).
Additional files

Additional file 1: Overlap of different groups of genes binned
based on expression specificity. Overlap of genes classified as
tissue or stage specific, tissue or stage ubiquitous, and tissue or stage
non- ubiquitous non-specific (NUNS). For tissue expression data only the
adult tissues were used. Numbers in parentheses are total number of
genes in each bin.

Additional file 2: Conservation of ubiquitously expressed genes.
Bars indicate the percentage of ubiquitous, tissue-specific, and stage-specific
Drosophila genes that are conserved in each organism. Conservation is
based on identification of close sequence homology (Methods).

Additional file 3: Within tissue- or stage-specific subnetworks,
tissue- or stage-specific proteins rarely interact with each other.
For each protein set the average fold difference between the number of
direct interactions in the test set and the number of interactions among
other proteins in each of 5000 random sets of proteins expressed in the
relevant tissue or stage is shown. Standard deviations are shown as error
bars. The log p-values for each comparison are shown as red dots
(right axis). (A) Interactions among the tissue-ubiquitous proteins or
among each set of tissue-specific proteins in each of 15 adult tissues.
(B) Interactions among the stage-ubiquitous proteins or among each set
of stage-specific proteins for each of 30 developmental stages.

Additional file 4: Within tissue- or stage-specific subnetworks,
tissue- or stage-specific proteins rarely interact with each other
indirectly through a third protein. For each protein set the average
fold difference between the number of indirect interactions in the test
set and number of indirect interactions among proteins in each of 5000
random sets of proteins expressed in the relevant tissue or stage is
shown. Standard deviations are shown as error bars. The log p-values for
each comparison are shown as red dots (right axis). > > indicates more
than 200-fold less than random sets. (A) Indirect interactions among the
tissue-ubiquitous proteins or among each set of tissue-specific proteins in
each of 15 adult tissues. (B) Indirect interactions among the stage-ubiquitous
proteins or among each set of stage-specific proteins for each of 30
developmental stages.

Additional file 5: Within larval tissue subnetworks, tissue-specific
proteins rarely interact with each other directly or indirectly. For
each protein set the average fold difference between the number of
direct (A) or indirect (B) interactions in the test set and number of direct
or indirect interactions among proteins in each of 5000 random sets of
proteins expressed in the relevant tissue is shown. Standard deviations
are shown as error bars. The log p-values for each comparison are
shown as red dots (right axis). (A) Direct interactions among the larval
tissue-ubiquitous proteins or among each set of larval tissue-specific

http://www.droidb.org
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proteins. (B) Indirect interactions among each set of larval tissue-specific
proteins.

Additional file 6: Tissue- and stage-specific transcription factors
(TFs) regulate tissue- and stage-specific targets in the PDI networks
more than expected by chance. For specific TFs in each tissue or stage
100,000 random networks were built by assigning random targets while
keeping the node degree constant. P-values (binom.confint, CI = 0.95)
were computed by counting the number of times specific interactions
in the random networks were lower than the number of specific
interactions in the tissue and stage PDI networks. The protein-DNA
interaction network (PDI) and the predicted PDI network (Methods)
were analyzed separately.

Additional file 7: Number of genes in the tissue gene lists after
applying different expression filters. Number of genes expressed at
average, greater than 50 pmax and greater than 75 pmax in six different
tissues.

Additional file 8: Heat map of enriched phenotypes in variously
filtered gene lists. Heat map of enriched mutant phenotypes obtained
in lists of genes because they were expressed above the average, greater
than 50 pmax, or greater than 75 pmax in six different tissues. The
corrected p-values for enrichment were log transformed, scaled, and then
plotted.

Additional file 9: Heat map of phenotypes enriched in tissue-
relevant subnetworks. Heat map of enriched mutant phenotypes for
genes in subnetworks containing only genes expressed above 75 pmax
in each indicated tissue. The corrected p-values for enrichment were log
transformed, scaled, and then plotted. Tissues are clustered based on the
similarity of their enriched mutant phenotypes.

Additional file 10: Heat map of phenotypes enriched in stage-
relevant subnetworks. Heat map of enriched mutant phenotypes for
genes in subnetworks containing only genes expressed above 75 pmax
in each indicated stage. The corrected p-values for enrichment were log
transformed, scaled, and then plotted. Stages are clustered based on the
similarity of their enriched mutant phenotypes.

Additional file 11: Heat map of depleted phenotypes in tissue-
relevant subnetworks. Heat map of depleted mutant phenotypes for
genes in subnetworks containing only genes expressed above 75 pmax
in each indicated tissue. The corrected p-values for depletion were log
transformed, scaled, and then plotted.

Additional file 12: Heat map of depleted phenotypes in stage-
relevant subnetworks. Mutant phenotypes for genes in subnetworks
containing only genes expressed above 75 pmax in each indicated stage.
The corrected p-values for depletion were log transformed, scaled, and
then plotted.

Additional file 13: Networks filtered for genes expressed at higher
pmax values are more enriched for context-relevant genes. Top
panel: shows fold enrichment for genes with the indicated phenotypes
in protein interaction networks filtered for genes expressed above 25, 45,
65, or 85 pmax in brain (neurophysiology defective and behavior
defective), ovary (female sterile), eye (visual behavior defective), or testis
(male sterile). Fold enrichment is relative to the frequency of finding
genes with those phenotypes in the unfiltered network. Bottom
panel: Bonferroni-corrected p values for enrichment of the indicated
phenotypes in the filtered networks relative to the frequency of those
phenotypes in the proteome. Note that the unfiltered network is
enriched for genes with some phenotypes, yet the enrichment
increases with higher pmax filters.

Additional file 14: Filtered eye network interactions and genes. List
of all protein interactions in the filtered eye network in Figure 5. Genes are
also listed along with their current function and phenotype annotations.
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PDI: Protein-DNA interaction; TF: Transcription factor; PPI: Protein-protein
interaction; pmax: Percent of maximum expression level.
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