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ABSTRACT
Background: Continuous glucose monitor (CGM) devices enable
characterization of individuals’ glycemic variation. However, there
are concerns about their reliability for categorizing glycemic
responses to foods that would limit their potential application in
personalized nutrition recommendations.
Objectives: We aimed to evaluate the concordance of 2 simulta-
neously worn CGM devices in measuring postprandial glycemic
responses.
Methods: Within ZOE PREDICT (Personalised Responses to
Dietary Composition Trial) 1, 394 participants wore 2 CGM devices
simultaneously [n = 360 participants with 2 Abbott Freestyle
Libre Pro (FSL) devices; n = 34 participants with both FSL and
Dexcom G6] for ≤14 d while consuming standardized (n = 4457)
and ad libitum (n = 5738) meals. We examined the CV and
correlation of the incremental area under the glucose curve at 2 h
(glucoseiAUC0–2 h). Within-subject meal ranking was assessed using
Kendall τ rank correlation. Concordance between paired devices
in time in range according to the American Diabetes Association
cutoffs (TIRADA) and glucose variability (glucose CV) was also
investigated.
Results: The CV of glucoseiAUC0–2 h for standardized meals was
3.7% (IQR: 1.7%–7.1%) for intrabrand device and 12.5% (IQR:
5.1%–24.8%) for interbrand device comparisons. Similar estimates
were observed for ad libitum meals, with intrabrand and interbrand
device CVs of glucoseiAUC0–2 h of 4.1% (IQR: 1.8%–7.1%) and 16.6%
(IQR: 5.5%–30.7%), respectively. Kendall τ rank correlation showed
glucoseiAUC0–2h-derived meal rankings were agreeable between
paired CGM devices (intrabrand: 0.9; IQR: 0.8–0.9; interbrand: 0.7;
IQR: 0.5–0.8). Paired CGMs also showed strong concordance for
TIRADA with a intrabrand device CV of 4.8% (IQR: 1.9%–9.8%) and
an interbrand device CV of 3.2% (IQR: 1.1%–6.2%).

Conclusions: Our data demonstrate strong concordance of CGM
devices in monitoring glycemic responses and suggest their potential
use in personalized nutrition. This trial was registered at clinicaltri-
als.gov as NCT03479866. Am J Clin Nutr 2022;115:1569–1576.
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Introduction
Previous studies have reported high interindividual variability

in postprandial glycemic responses to identical meals (1–4),
stressing the need for more personalized nutritional approaches
to reduce the unfavorable impact of glycemic excursions on
obesity, diabetes, and related complications (5–8). By measuring
interstitial glucose every 5–15 min, continuous glucose monitors
(CGMs) better characterize individuals’ dynamic glycemic
profiles in response to physiological and environmental stimuli
than point-in-time glucose quantification approaches (9, 10).
Furthermore, the dynamic assessment of glycemic variability
(GV) enabled by CGMs offers insight into other features
of postprandial glycemic responses besides 2-h incremental
area under the glucose curve (glucoseiAUC0–2 h) (11). Features
including peak concentration, nadirs “below baseline,” time
in range (TIR), and GV have been associated with patho-
physiological conditions such as oxidative stress and inflam-
mation (12–14) and physiological changes including hunger
and energy intake (15). These findings highlight the utility
of CGMs to expose the complexity and nuances in glycemic
excursions in both healthy individuals and people with metabolic
diseases.
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With the increased demand for CGM use in healthy popula-
tions and the emergence of remote clinical testing and citizen
science, questions have been raised regarding the reliability of
CGMs in correctly ranking (categorizing) glycemic responses to
foods and meals (16, 17). A recent study including 16 healthy
adults who wore 2 CGM devices simultaneously reported highly
discordant meal rankings between devices, suggesting that meal
categorization is device-dependent (17). Although these results
are important, because they call into question the use of CGM
devices for precision nutrition applications, they rely on a single
domiciled feeding study and warrant further replication.

Here, we leveraged data from the ZOE PREDICT (Person-
alised Responses to Dietary Composition Trial) 1 study including
394 healthy participants monitored with 2 CGM devices in
parallel who consumed 4457 standardized meals and 5738 ad
libitum meals during a 14-d period to investigate the repeatability
of CGM devices in a free-living setting.

Methods

Study design and population

ZOE PREDICT 1 (NCT03479866) was a single-arm, multi-
center intervention study to investigate variations in postprandial
responses to standardized meals and ad libitum free-living foods
based on individuals’ characteristics, as described elsewhere (4).
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In brief, ZOE PREDICT 1 enrolled 1002 healthy individuals aged
18–65 y with no recent diagnosis of metabolic, inflammatory, or
mental health diseases, dietary restrictions, and not taking medi-
cations that could influence metabolism. We excluded individuals
with type 1 diabetes, those taking antidiabetic medications, and
those with a capillary glucose concentration >12 mmol/L based
on fingertip glucose measurements. Participants were enrolled
in a 14-d intervention consisting of test meal challenges of
various nutritional content (Supplemental Table 1), including
1 full day of clinical measurements with a controlled test
meal challenge at baseline. Participants wore digital devices
including CGM sensors and recorded all foods and drinks
consumed via a mobile phone application specially designed
for the study. Primary outcomes are reported elsewhere (4, 18)
and include gut microbiome profile, blood lipids and glucose,
sleep, physical activity, and hunger and appetite assessment. Data
for the secondary outcome of CGM interdevice concordance in
a subgroup only are reported in this article. Participants were
invited to take part in this secondary analysis based on their period
of enrollment into the study (October 2019–April 2021) and no
additional recruitment criteria were applied to this subgroup.

Ethical approval for the study was obtained in the United
Kingdom from the Research Ethics Committee and Integrated
Research Application System (IRAS 236407) and in the United
States from the Partners Healthcare institutional review board
(IRB 2018P002078). The trial was conducted in accordance with
the Declaration of Helsinki and Good Clinical Practice.

CGM devices

Participants’ glucose was measured continuously throughout
the study period using digital CGM devices. As part of this
secondary analysis, a total of 394 ZOE PREDICT 1 participants
were monitored with 2 CGM devices worn in parallel during the
study period. Among them, 360 individuals were monitored with
the Abbott Freestyle Libre Pro CGM (FSL; referred to as Device
A), and 34 participants simultaneously wore the FSL and the
Dexcom G6 CGM (DEX; referred to as Device B).

Monitors were fitted by trained nurses on the upper arms,
1/side, at participants’ baseline visit and were covered with
Opsite Flexifix adhesive film (Smith & Nephew Medical Ltd) for
improved durability. The rationale to place the DEX in the upper
arm instead of the lower abdomen, as suggested per manufacturer
specifications, was to reduce the burden to participants caused by
monitoring at 2 separate sensor locations, without compromising
sensor accuracy (19). The glucose concentration in the interstitial
compartment in which CGM devices operate mirrors that of the
intravascular compartment within minutes, thus making this a
useful glycemic metric for both locations (20). FSL devices were
worn for the entire study duration, whereas DEX devices have
a shorter recording limit and were therefore worn until day 12
(while ensuring all participants completed all standardized test
meal days). Subjects were blinded to CGM glucose readings.

Once removed, CGM devices were mailed back to study staff.
The data for each monitor were downloaded at the end of each
study period. Per manufacturer instructions and a previous study
of longitudinal accuracy, only those CGM data points collected
from 12 h onwards after activating the device were considered
(21, 22).
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Standardized and ad libitum meals

Participants’ postprandial glycemia was measured in response
to both standardized and ad libitum meals. Supplemental Tables
1 and 2 detail nutritional characteristics of standardized meals
consumed during the study intervention and the consumption
protocol. Briefly, standardized test meals consisted of a metabolic
challenge breakfast and lunch meal containing 1390 kcal
combined; a range of 500-kcal meals delivered in the form of
muffins, milkshakes, and energy bars; and finally a 300-kcal
oral-glucose-tolerance test (OGTT), consumed at home after
overnight fasts. The meals varied in their nutritional compositions
(ranges: 28–95 g carbohydrate, 0–53 g fat, and 0–41 g protein),
and were consumed as breakfast and lunch of days 2–3 and
as breakfast alone during days 4–12. Standardized meals were
consumed either singularly or in duplicate, and the meal order
was block randomized (23).

In addition to standardized meals, participants consumed an
ad libitum diet during the at-home study period. Participants
were trained to accurately weigh and record ad libitum dietary
intake using photographs, product barcodes, product-specific
portion sizes, and digital scales over the entire 14-d study period
(4). Data logged into the study app were uploaded onto a digital
dashboard in real time and assessed for logging accuracy and
study compliance by study staff (Supplemental Methods 1).
Any uncertainties were clarified actively with the participant
through the app’s messaging system or via phone while on the
study.

All meals were reviewed by study staff in real time to assess
the accuracy of logged meals and compliance in consuming the
standardized test meals. As part of our quality control assessment,
we excluded meals containing <70 kcal and where the meal
quantity consumed was <15 g, and meals that had incomplete
time points.

Outcome measures

The primary outcome of this secondary study was repeata-
bility of CGM measures for glucoseiAUC0–2 h, in response to
standardized and ad libitum free-living meals. Repeatability
was assessed using the intrabrand device and interbrand device
CVs of glucoseiAUC0–2 h. These analyses were restricted to
participants with ≥2 meals passing internal quality checks
(n = 359 intrabrand device group; n = 34 interbrand device
group) (Supplemental Figure 1). To avoid overlap between ≥2
glucose responses to food items consumed at temporal proximity,
glucoseiAUC0–2 h was derived only from those foods and meals
consumed within 30 min of each other as noted by participants’
real-time digital diet logs, or standardized meals followed by
the prescribed 3- to 4-h fasting period. We also investigated
the correlation of meal ranking within participants derived from
paired glucoseiAUC0–2 h readings and the concordance of between-
person meal ranking for glucoseiAUC0–2 h.

Secondary outcomes included time in range according to the
American Diabetes Association cutoffs (TIRADA) (24), as well as
an alternate cutoff designed for individuals without diabetes [time
in range according to nondiabetic adjusted cutoffs (TIRND)]. We
also considered glucose variability (glucose CV) calculated by
dividing glucose SD by mean glucose.

Statistical analysis

We summarized differences in clinical, demographic, and
biochemical characteristics between individuals wearing 2
intrabrand or 2 interbrand devices using the Kruskal–Wallis
test for continuous measurements or the chi-square test for
categorical variables. We also assessed differences in baseline
characteristics between participants wearing a double-device or
single-device from the original PREDICT 1 cohort.

The mean glucoseiAUC0–2 h was calculated using the trapezoid
rule with respect to the baseline glucose measurement, divided
by the duration of the postprandial measurements. The mean
glucoseiAUC0–2 h for standardized meals and high-carbohydrate
ad libitum meals with >25 g carbohydrate was log and square
root transformed, respectively, and normal distribution was
tested using the Shapiro–Wilk test. The correlation between
each pair of mean glucoseiAUC0–2 h readings derived from
parallel-worn devices was analyzed by Pearson’s correlation
(if normally distributed) and Spearman’s correlation (if not
normally distributed), for both intrabrand and interbrand device
comparisons. Bland–Altman analysis was done on the log-
transformed glucoseiAUC0-2 h values from interbrand devices
derived from all meal types as well as high-carbohydrate meals
only to assess if meal carbohydrate content and magnitude of
glucoseiAUC0–2 h biased device agreement.

Concordance between meal ranking of paired devices was
investigated using the CV for each pair of readings of
glucoseiAUC0–2 h. A Kendall τ rank correlation was used to
measure the agreement between paired CGM devices in ranking
of meals, based on their glucoseiAUC0–2 h measures on a per-
participant basis. Further analysis was done on between-person
meal ranking, where individuals’ meal glucoseiAUC0–2 h measures
were averaged per device to obtain a person rank relative
to the rest of the study population, with 1 rank/device. The
concordance in an individual’s 2 rankings was analyzed between
the top and bottom quintiles of ranks to calculate a percentage
agreement. Because standardized meals were consumed in
duplicate, intraindividual concordance between meal rankings
for the same meal (OGTT) consumed on different days was
investigated using the CV of the glucoseiAUC0–2 h.

For analysis of time in range and glucose CV, we excluded
participants with incomplete days and CGM malfunction (>25
readings at monitor baseline per day or >10% missing reads per
day) from GV analysis (n = 5 wearing device A only; n = 1
wearing devices A and B), yielding a total of 388 participants
(n = 355 intrabrand device group; n = 33 interbrand device
group) (Supplemental Figure 1). In participants wearing the
intrabrand and interbrand devices, the monitoring period ranged
from 2 to 12 d and 2 to 9 d, respectively. The correlation between
time in range readings derived from parallel-worn devices, as
well as glucose CV, was analyzed by Pearson’s correlation
(if normally distributed) and Spearman’s correlation (if not
normally distributed), for both intrabrand and interbrand device
comparisons.

Owing to differences in BMI between both groups, we
conducted a sensitivity analysis after selecting a BMI-matched
subcohort for intrabrand device participants that mirrored the
interbrand device BMI characteristics. Then, we tested the
correlation coefficient of glucoseiAUC0–2 h after a set meal between
the 2 groups.
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TABLE 1 Characteristics of PREDICT 1 study participants who wore two CGM devices simultaneously

Metric
Device A only

(n = 360)
Devices A and B

(n = 34) P value

Demographic
Sex, % female 69.7 44.1 0.000
Age, y 45.8 ± 9.8 43.6 ± 11.5 0.231

Anthropometry
Weight, kg 73.8 ± 14.7 71.1 ± 14.6 0.410
Height, cm 169.0 ± 9.1 172.2 ± 11.0 0.023
BMI, kg/m2 25.8 ± 4.8 23.9 ± 3.7 0.018
Waist circumference, cm 84.9 ± 12.3 83.2 ± 10.5 0.450
Waist:hip ratio 0.84 ± 0.1 0.87 ± 0.1 0.117
Systolic BP, mm Hg 125.8 ± 14.2 125.7 ± 12.4 0.908
Diastolic BP, mm Hg 77.0 ± 10.3 74.8 ± 10.3 0.292

Biochemistry
Triglyceride, mg/dL 1.1 ± 0.6 1.1 ± 0.6 0.780
Cholesterol, mmol/L 4.8 ± 0.9 4.5 ± 0.8 0.039
LDL cholesterol, mmol/L 3.2 ± 0.9 2.9 ± 0.8 0.032
HDL cholesterol, mmol/L 1.7 ± 0.4 1.5 ± 0.5 0.113
Glucose, mmol/L 4.9 ± 0.5 4.9 ± 0.4 0.462
Glucose iAUC, mmol × L−1 × min 6937.4 ± 2431.1 6940.9 ± 1860.6 0.630
HbA1c, % 5.4 ± 0.3 5.4 ± 0.3 0.430
Insulin, mIU/L 5.8 ± 3.9 6.0 ± 3.2 0.467
C-peptide, ug/L 1.1 ± 0.5 1.2 ± 0.6 0.306

Two-sided P values < 0.05 were considered statistically
significant for main analyses. Analyses were performed using R
version 3.4.2 (R Core Team), Python version 3 (CreateSpace),
and GraphPad Prism version 9.1.1 (GraphPad Software, Inc.).

Results

Concordance in glycemic responses

Table 1 presents baseline demographic, anthropometric, and
biochemical characteristics for the study participants. Partici-
pants in the intrabrand device group were more likely than
participants in the interbrand group to be male and have higher
BMI and cholesterol concentrations. Similar differences were
observed between participants wearing duplicate CGMs and
those wearing a single CGM (from the full ZOE PREDICT 1
UK cohort) (Supplemental Table 3). There were no significant
differences in the glucose measures (glucose peak, rise, or
baseline) between devices for the intrabrand or interbrand groups
(Supplemental Table 4).

The CV of glucoseiAUC0–2 h after standardized meals was
3.7% (IQR: 1.7%–7.1%) for intrabrand device and 12.5% (IQR:
5.1%–24.8%) for interbrand device comparisons (Figure 1).
Ad libitum meals (carbohydrate median: 35 g; IQR: 20–57 g)
showed slightly higher CVs of 4.1% (IQR: 1.8%–7.1%) for
intrabrand device and 16.6% (IQR: 5.5%–30.7%) for interbrand
device comparisons. When stratifying by carbohydrate content
(> or <25 g), ad libitum meals containing >25 g carbohydrate
(median: 50 g; IQR: 36–69 g) resulted in smaller CVs for
both intrabrand (4.4%; IQR: 1.8%–7.3%) and interbrand device
(15.2%; IQR: 5.6%–38.3%) comparisons than did ad libitum
meals with all carbohydrate contents. Because meals were
consumed in duplicate, the intraindividual CV of glucoseiAUC0–2 h

after the same meal on different days was 29.5% (IQR: 12.7%–
39.2%) for intrabrand device and 30.9% (IQR: 13.5%–38.8%) for
interbrand device comparisons.

The correlation coefficient of glucoseiAUC0–2 h after all meal
types combined was 0.97 (95% CI: 0.96, 0.98) for intrabrand
device and 0.56 (95% CI: 0.28, 0.76) for interbrand device com-
parisons (Supplemental Figure 2). When studying ad libitum
meals with high carbohydrate content (>25 g carbohydrate),
paired CGMs again showed strong agreement between intrabrand
devices (r2 = 0.97; 95% CI: 0.96, 0.98) as well as between
different brands (r2 = 0.61; 95% CI: 0.29, 0.81) (Figure 1).
Bland–Altman analysis demonstrated that discordance between
interbrand devices was not biased by the carbohydrate content
of meals or the magnitude of glucoseiAUC0–2 h (Supplemental
Figure 3). In a sensitivity analysis conducted in a BMI-matched
cohort to investigate if differences in BMI biased our results, we
found that the correlation coefficient of glucoseiAUC0–2 h after a
set meal was similar to the main analysis (r2 = 0.97; 95% CI:
0.97, 0.98).

Concordance in meal ranking

Meal rankings for the glucoseiAUC0–2 h were concordant
between paired CGM devices, with a mean Kendall τ rank corre-
lation coefficient of 0.87 (IQR: 0.83–0.91) for intrabrand device
and 0.68 (IQR: 0.54–0.77) for interbrand device comparisons
(Figure 2). In addition, we investigated how likely a person was
to be ranked in the top quintile of responders for a given ad
libitum meal with 1 CGM and the bottom quintile with its paired
CGM. We showed that the likelihood of misclassifying meals
was small, with an intrabrand CGM discordance between the
top- and bottom-ranked meals of 5% and interbrand discordance
of 19%.
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FIGURE 1 Correlation and concordance of glucose variability obtained from 2 CGM devices worn in parallel. (A, B) Pearson’s correlation of
glucoseiAUC0–2 h readings in response to ad libitum meals with high carbohydrate content (>25 g CHO), obtained from 2 (A) intrabrand (n = 338) and (B)
interbrand (n = 26) CGMs. (C) Pearson’s correlation of short-term GV in the form of glucose CV, from 2 intrabrand CGMs (n = 342). (D) Pearson’s correlation
of TIRADA from 2 intrabrand CGMs (no values in data set <40%, n = 342). (E) Pearson’s correlation of TIRND from 2 intrabrand CGMs (no values in data
set <20%, n = 342). (F) CV of glucoseiAUC0–2 h for standardized meals (n = 359 intrabrand pairs; n = 34 interbrand pairs), for ad libitum meals (n = 351
intrabrand pairs; n = 30 interbrand pairs), and for meals containing >25 g CHO (n = 338 intrabrand pairs; n = 26 interbrand pairs), as well as CVs for TIRND
and TIRADA for paired intrabrand (n = 355) and interbrand (n = 33) CGMs. (A–E) Lines of x = y identity are presented. CGM, continuous glucose monitor;
CHO, carbohydrate; glucoseiAUC0–2 h, incremental area under the glucose curve between 0 and 2 h; GV, glycemic variability; TIRADA, time in range according
to American Diabetes Association cutoffs; TIRND, time in range according to nondiabetic adjusted cutoffs.
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FIGURE 2 Kendall τ rank correlation of incremental area under the
glucose curve between 0 and 2 h obtained from paired intrabrand (n = 359
subjects, 4406 meals) and interbrand (n = 34 subjects, 356 meals) continuous
glucose monitors. Top and bottom barriers of boxes represent the interquartile
range; the central line represents the median; the top and bottom brackets
represent the maximum and minimum respectively.

We next investigated the intrabrand device correlation for
TIRADA, TIRND, and glucose CV. For these analyses we excluded
6 participants with incomplete days and CGM malfunction.
Excluded participants were older and had higher mean BMI and
cholesterol concentrations than those included in the main analy-
sis (Supplemental Table 3). The population mean ± SD glucose
variability as represented by glucose CV, TIRND, and TIRADA was
19.4% ± 3.9%, 77.2% ± 10.5%, and 89.8% ± 11.4% in partic-
ipants wearing device A only, respectively, and 18.2% ± 3.4%,
73.8% ± 13.0%, and 95.7% ± 7.2% in those wearing devices A
and B, respectively. The correlation coefficient for glucose CV,
TIRADA, and TIRND was 0.88 (95% CI: 0.85, 0.90), 0.63 (95% CI:
0.55, 0.69), and 0.64 (95% CI: 0.57, 0.70), in participants wearing
device A only, respectively (Figure 1) and 0.77 (0.59, 0.88), 0.34
(−0.01, 0.62), and 0.48 (0.15, 0.72) in those wearing devices A
and B, respectively (Supplemental Figure 2). TIRADA and TIRND

showed relatively low variability between parallel-worn devices,
with a CV of 4.78% (IQR: 1.89%–9.77%) and 4.57% (2.24%–
8.74%) for intrabrand devices, respectively, and a CV of 3.24%
(1.08%–6.23%) and 7.47% (2.70%–18.7%) for interbrand device
comparison, respectively.

Discussion
In this study we provide quantitative data on the concordance

of paired CGM sensors in monitoring glycemic responses. We
report strong intrabrand agreement between paired devices in
measuring glucose meal incremental AUC and glucose change
metrics. We also show that the likelihood of meal-response

misclassification between intrabrand devices is low. We report
that agreement between sensors of different brands is lower
than intrabrand agreement, although it is higher than has been
reported elsewhere (17). Taken together, our findings highlight
the potential application of CGMs for monitoring glycemic
responses to foods and meals and their potential applica-
tion for personalized nutrition recommendations in healthy
populations.

Our analysis of daily glycemic change shows high sensor
agreement relative to the acute measure of glucoseiAUC0–2 h.
The low CV values reported for all glycemic metrics here
demonstrate the efficacy of CGMs in capturing different features
of an individual’s glycemic response to food and overall
free-living dietary patterns. The considerable, albeit slightly
lower, agreement between interbrand devices suggests that meal
categorization is not only device-independent but also not biased
by brand. Short-term glycemic change has been shown to be
sensitive to dietary modifications in small studies focused on
individuals with type 1 and type 2 diabetes. Our study is
significant in that we report measures of concordance for time in
range and glucose CV in a large population of generally healthy
participants without diabetes.

Our findings are consistent with a clinical study (20) and a
position statement from worldwide diabetes associations (25),
showing that the mean absolute relative difference (MARD),
a metric often used to assess CGM accuracy under different
physiological or experimental conditions (26), is similar across
new-generation CGM systems and ranges from 10% to 20%.
However, we note that the data presented here do not replicate
the recent study by Howard et al. (17), which reported high
interbrand device discordance in meal rankings for incremental
glycemic responses. The observed mean fraction of missing
glycemic reduction determined by discordant CGM devices
of ∼50% was much larger than that reported in the present
study.

Several differences in study design and execution between
the current study and that by Howard et al. may underlie the
dissimilarity in results. Our study included a larger population
size and tested the validity of intrabrand as well as interbrand
CGM device concordance. In addition, we assessed glycemic
responses after a mixture of standardized test meals, all ad libitum
(regardless of carbohydrate content) meals, and ad libitum high-
carbohydrate meals (>25 g). This distinction is critical in
assessing the development of personalized nutrition guidelines
that are tailored to an individual’s glycemic response as measured
by CGMs (1, 4). Furthermore, it is essential to note the nature of
human nutritional studies, where it is common to use 1 single
brand and version of a study device rather than a multitude. In
this context, it can be appreciated that population studies accruing
their data through a single device brand, as is common practice in
the field, will result in improved device concordance, as we have
shown here.

Potential reasons for the higher discordance in meal rankings
reported by Howard et al. may also involve their inclusion of
individuals from a domiciled feeding study randomly assigned to
ad libitum ultra-processed or unprocessed diet (17) that resulted
in a mean caloric intake > 3500 kcal in both groups. Excess
caloric intake is likely to influence sensor precision, because it
has been shown that CGM performs poorly at the very top or
very bottom of the glycemic range (27, 28). In addition, the
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use of meals with unspecified carbohydrate content might have
also influenced the meal misclassification observed in Howard et
al. Indeed, we show smaller CVs for paired CGM comparisons
for meals with greater carbohydrate content (>25 g). Sensor
attachment sites might also explain reported differences (as
referred to in the Methods). The concordance between devices for
all glycemic metrics used in this study demonstrates the efficacy
of CGMs in capturing different features of an individual’s
glycemic response to food and overall dietary patterns. This
information is fundamental for the eventual implementation
of personalized glycemic recommendations based on CGM
measurements.

Some limitations of this study should be considered. Ad-
vanced error correction methods were not applied to the data
intentionally to mimic the “real-life scenario” in which CGMs
are used in personalized nutrition. However, future studies
investigating CGM-generated data across different studies would
benefit from applying error correction. CGM device allocation
was not randomized and there were marked differences in the
numbers of participants allocated to 2 of the same CGM brand
or 2 different CGM brands. The groups differed in the number of
female participants as well as other baseline characteristics; this
trend was similar when comparing individuals monitored with
1 or 2 devices. Our data were collected using the FSL sensor
and the DEX system, so our results may not be generalizable to
other CGM systems; however, the performance of conventional
CGM systems is largely similar (28). We were unable to
replicate our results in an independent data set, but to the
best of our knowledge, no studies of similar character are
available for replication purposes. We did not investigate 1-h
glucose responses or other postprandial glycemic parameters
(e.g., peak concentrations) that may be relevant for meal ranking
categorization. Although readings at different time points may
provide valuable information on meal ranking concordance and
CGM accuracy, we elected to use 2-h glucose iAUC because it
has been used as a reference value for predicting postprandial
glycemic responses (4) and is highly correlated with other
postprandial glycemic parameters, while also maintaining a
focused scope for this report. Although standardized meals were
consumed either singularly or in duplicate, and the meal order
was block randomized, it is possible that time differences may
have biased our estimates for the ad libitum meals. Finally, the
inclusion of healthy participants might limit the generalizability
of our findings to other populations. However, previous studies
conducted in individuals with diabetes have shown a good cor-
relation between CGM devices and capillary blood (29–31) and
high predictive accuracy in diabetes models (32). Nevertheless,
further technological advances to improve interstitial glucose-
sensing accuracy are needed, especially during the postprandial
state in which rapid changes occur in glucose concentrations
(within minutes) as well as alterations in blood flow rate or body
temperature (27).

In conclusion, our data provide evidence to support the
repeatability and concordance of CGM sensors in assessing
glycemic responses through various glycemic metrics and meal
ranking categorization. These data also support the hypothesis
that observed variation in glycemic responses is influenced by
within-subject variation and meal characteristics rather than
the CGM device. Our results are critical for the continuing
investigation of the determinants and variability of glycemic

responses and the potential for the use of CGMs in personalized
nutrition in the near future.
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