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Abstract: Plant viruses are commonly vectored by flying or crawling animals, such as aphids and
beetles, and cause serious losses in major agricultural and horticultural crops. Controlling virus
spread is often achieved by minimizing a crop’s exposure to the vector, or by reducing vector numbers
with compounds such as insecticides. A major, but less obvious, factor not controlled by these
measures is Homo sapiens. Here, we discuss the inconvenient truth of how humans have become
superspreaders of plant viruses on both a local and a global scale.
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1. Introduction

In the year 2020, the world has seen the fast and perverse spread of SARS-CoV-2, which has
led to a shutdown of our societies and the loss of 1.3 million human lives worldwide so far [1].
Although unfamiliar to most people, plants are also susceptible to infection by wide range of viruses.
Furthermore, damages caused by plant viruses on human lives can be as strong, or even more serious
than those caused by their animal counterparts. Throughout history, the outbreak of diseases caused
by plant viruses have been major contributors to chronic food insecurity [2], a scenario that tends to
worsen with our ever-growing population.

Plant viruses constitute a major cause of plant diseases with an estimated economic impact of
more than USD 30 billion annually [3]. Some viruses can wipe out entire plantations, resulting in
100% yield loss [4,5] and, subsequently affecting the revenue of farmers, increasing the price of food,
and in more extreme cases, its availability to the market. Globally, the most destructive plant viruses
are identified to be members of begomoviruses, tospoviruses and potyviruses. Significant epidemics
caused by these viruses include not only those affecting economically important plants, but also staple
food crops such as cassava, maize, rice and banana. Therefore, in addition to causing damage to
farmers’ and countries’ economies, such plant disease epidemics can also lead to the starvation of a
significant portion of the world’s population who depend on these plants for their subsistence [3,6].

While the spread of animal viruses is most often associated with direct contact or proximity
to infected individuals, plant viruses are transmitted through wounds on the plant or via a vector,
most often insects, fungi and nematodes that feed or infect the plant [3]. Although these vectors have
often been the major target for controlling the spread of plant viral diseases, it is apparent that human
activities also play a major role in the dissemination of plant viruses (Table 1). Man has distributed
most of the cultivated plants around the world by removing them from their centre of domestication.
As such, humans are greatly responsible for the novel encounters between plants and their pests [7].
Since many plant viruses have a broad range of hosts and vectors [8], introduction of crops to a
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new area can enable indigenous viruses from native plants to spread to the crops, and vice versa [3].
Moreover, modern agricultural systems, such as monocultures, have intensified and altered agricultural
practices. Continuous cropping patterns encourage the accumulation of viruses and proliferation of
their vectors in the field, leading to pandemics.
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Table 1. Human intervention in the spread of plant viruses.

Virus Genus Vector Host Human Intervention

Banana bunchy top virus (BBTV) Babuvirus Aphids Banana, plantain, abaca and other plants in
family Musaceae

Trade of vegetative planting and tissue culture
material [9]

Banana streak virus (BSV) Badnavirus Mealybugs Banana, Heliconia Trade of vegetative planting and tissue culture
material [10]

African cassava mosaic virus (ACMV) Begomovirus Whitefly Cassava, castor bean Exchange of virus infected plant material. Trade of
infected seeds and plant material [11]

Tomato yellow leaf curl virus (TYLCV) Begomovirus Whitefly French bean, Solanaceous plants Accidental movement of insect vector [12]

Cauliflower mosaic virus (CaMV) Caulimovirus Aphids Cauliflower, Chinese cabbage, brussels
sprout, turnip

Virus contaminated machinery, equipment and
workers [13].Trade of infected plant material [14]

Cucumber mosaic virus (CMV) Cucumovirus Aphids Soybean, tobacco, pepper Trade of infected seeds and plant material [15]

Tobacco necrosis virus (TNV) Necrovirus Olpidium brassicae French bean, cowpea, mung bean, melon,
tulip, tobacco, cucumber

Virus contaminated machinery, equipment and
workers [16]

Plum pox virus (PPV) Potyvirus Aphids Apricots, peaches, plums, almonds Grafting, budding, and transplanting of infected
plant material [17]

Potato virus Y (PVY) Potyvirus Aphids Potato, tomato, capsicum, tobacco Virus contaminated machinery, equipment and
workers [18]. Trade of infected plant material [19]

Maize dwarf mosaic virus (MDMV) Potyvirus Aphids Maize, sugarcane, sorghum Trade of infected plant material [20]

Sweet potato feathery mottle
virus (SPFMV) Potyvirus Aphids Sweet potato, wild Ipomoea sp. Nicotiana sp. Trade of infected tubers and cuttings, grafting, and

mechanical inoculation [21]

Zucchini yellow mosaic virus (ZYMV) Potyvirus Aphids Cucumber, pumpkin, rockmelon, zucchini Virus contaminated machinery, equipment and
workers [22]

Sugarcane mosaic virus (SCMV) Potyvirus Aphids Sugarcane and Poaceae plants Trade of infected plant material [23]

Rice yellow mottle virus (RYMV) Sobemovirus
Adult beetles in family
Chrysomelidae,
Grasshoppers

Rice
Virus contaminated sickles, hands and crop
residues. Tight contact between plants during
planting [24,25]

Tobacco mosaic virus (TMV) Tobamovirus Grasshoppers, Caterpillars
(occasionally) Tobacco, tomato, Solanaceous plants Virus contaminated machinery, equipment,

farmers and smokers [26,27]

Tomato spotted wilt virus (TSWV) Orthotospovirus Thrips Peanut, pepper, tomato Use of infected cuttings and bulbs for
propagation [28]

Rice tungro virus (RTV) Tungrovirus Leafhopper Rice Trade of infected seeds, and transplanting infected
seedlings [29]
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2. Direct Human Intervention in Virus Spread

There are several ways in which humans currently affect the spread of plant viral diseases.
For example, the exchange of virus contaminated material between people plays a major role in
transferring the virus to uninfected plants, most often as a result of limited knowledge in viral aetiology
of symptomatic plants. For instance, the initial course for the spread of both African cassava mosaic
virus (ACMV) [11] and sweet potato virus disease (SPVD) [30] is the exchange of infected stem cuttings
and vines, respectively. If farmers are not vigilant, purchasing plant materials (i.e., seeds and tissues for
vegetative propagation) from uncertified seed networks can increase the risk of global dissemination
of plant virus diseases [31]. The effects are the same with the use of infected plant material for grafting,
budding, and transplanting [17].

Another common way in which some viruses spread within crop fields is due to poor agricultural
practices, such as the usage of unsterilised tools, not clearing plant debris, and even the continuous use
of clothes and shoes that have been in the contaminated field [30,32]. No-till farming is a technique
with several benefits to agriculture. However, not removing plant material from one season to
another in contaminated fields can spread the virus to new plants and increase its accumulation [30].
Tobacco mosaic virus (TMV) is the typical case where the spread of the disease benefits from continuous
cropping system, as it can survive or hibernate in crop debris, soil and other perennial hosts. In addition,
these viruses can transmit within the field through mechanical wounds caused by contaminated
tools, clothes, and footwear [26]. Interestingly, TMV is also capable of spreading via tobacco products
(i.e., air-cured tobacco), where smokers rolling their cigarettes can transmit the virus with their
contaminated hands [27].

Some plant diseases rely heavily on insect vectors for the transmission of the virus to a healthy plant.
Tomato yellow leaf curl disease is one such case where the disease spreads by the feeding of whitefly
vector carrying tomato yellow leaf curl virus (TYLCV) [7]. In this specific example, the insect-mediated
viral spread is limited by the flight range of the whiteflies [33]. However, long-distance movement
of insect-infested material/commodities by humans have tremendous consequences to how far the
insect vector, and therefore the disease, can spread. Indeed, accidental import/export of insect
vector-contaminated materials are identified as a major cause of plant virus outbreaks [12].

3. Virus Spread Coupled with Climate Change

The successful emergence and spread of plant viruses, and that of their vectors, are also indirectly
influenced by the behaviour of mankind. Global climate change linked to human activities has increased
global temperature and CO2 concentrations, leading to altered rainfall patterns, recurrent extreme
weather events, as well as variations in wind velocity and direction [3,34,35]. Such changes have
a range of impacts on the host plants, the virus, and their vectors. While some of these events can
be beneficial for the plant to fight against infections, an abrupt change in the climatic conditions
can also be especially helpful for the dissemination of viral diseases [36]. For example, elevated
temperatures have been shown to enhance small RNA mediated defence against ACMV and cymbidium
ringspot virus in Nicotiana benthamiana [37,38]; however, it also increases the contact transmission,
the rate of virus multiplication and systemic movement of the virus within the plant [39]. In addition,
higher temperatures are favourable for insects as vectors due to the increase in numbers of winged
aphid morphs [40], shorter adult-to-adult generation time [41] and increased flight activity [42].
Moreover, alterations in wind speed and direction can affect how viruliferous vectors disseminate over
long distances, affecting their distribution [39].

4. Challenges in Mitigating Plant Viral Diseases

Undoubtedly, lifestyle and reluctance to heed science-based information, at both an individual and
societal level, have been major reasons contributing to the current COVID-19 pandemic. Modern people
are accustomed to frequent domestic and international travel, large gatherings such as sporting events
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and concerts, all of which have played a central role in how fast and far the virus has spread.
Similarly, the transmission of exotic plant viruses across local and international borders has been
aggravated along with increased global trades of food and agriculture products. In addition, food items
infected with viruses can easily travel across borders with the world’s population travelling more often
and further. Overall, trade-in plants, plant products, and the movement of people are accountable for
the 71% of factors known as routes of emerging plant viral diseases, while 16% is due to change in
the vector populations [43]. A few examples of viruses intercepted at Australian and New Zealand
quarantine stations, where strict quarantine measurements are in place, are peanut stripe virus G,
apple stem grooving virus, grapevine virus B and sweet potato virus G [43].

The COVID-19 pandemic has shown us the importance of containment measures, such as
self-isolation and quarantine, in halting the spread of the disease [44]. The same strategy can
also be applied to combat the spread of plant viruses. Indeed, the spread of banana bunchy
top virus, potato leafroll virus, sugarcane mosaic virus and plum pox virus have been controlled
using effective containment programmes [43] (Figure 1). However, such approaches are limited to
situations where there are reliable diagnostics, appropriate infrastructure and community adherence
to regulatory protocols. This method is heavily dependent on the commitment and actions of local
and federal governments, as well as individuals, which is not always the case. It seems unlikely that
the extreme actions leading to changes in our lifestyle, as seen for the COVID-19 crisis, can be easily
implemented for fighting against plant viruses.

Figure 1. Containment measures as a strategy to mitigate the spread of plant viral diseases.
Some countries such as Australia have strong policies to halt the spread of plant diseases, including
viral ones, based on confinement and limitation on the movement of plant material and equipment.
Image credit (bottom picture): Biosecurity Queensland.
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5. Conclusions

Ultimately, unless the threat of virus infection of food crops is perceived to be of sufficient impact
(as may one day be the case due to the escalating world population and reducing areas of fertile arable
land), changing human behaviour in order to minimise crop losses seems less likely to be achieved than
the development of crops with new sources of virus or vector resistance. To finish on an optimistic note:
never before has humanity possessed such extensive genomic information and insights about crops,
their wild relatives, their pathogens and their pests; nor has it possessed such powerful molecular and
genetic technologies for accelerated breeding and synthetic biology. It is probably with this information
and these tools that resilient crops can be developed to increase sustainable food supplies to such a
level that they offset the damages wrought by Homo sapiens, the superspreader of plant virus diseases.
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