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The hexosamine biosynthetic pathway (HBP) generates the substrate for the O-linked

β-N-acetylglucosamine (O-GlcNAc) modification of proteins. The HBP also serves as

a stress sensor and has been reported to be involved with nuclear factor of activated

T-cells (NFAT) activation, which can contribute to multiple cellular processes including

cell metabolism, proliferation, and inflammation. In our previously published report,

Fibroblast Growth Factor (FGF) 23, an important endocrine pro-inflammatory mediator,

was shown to activate the FGFR4/phospholipase Cγ (PLCγ)/nuclear factor of activated

T-cells (NFAT) signaling in chronic inflammatory airway diseases such as cystic fibrosis

(CF) and chronic obstructive pulmonary disease (COPD). Here, we demonstrate that

FGF23 increased the O-GlcNAc modification of proteins in HBECs. Furthermore, the

increase in O-GlcNAc levels by FGF23 stimulation resulted in the downstream activation

of NFAT and secretion of interleukin-6 (IL-6). Conversely, inhibition of FGF23 signaling

and/or O-GlcNAc transferase (OGT)/O-GlcNAc reversed these effects. Collectively, these

data suggest that FGF23 induced IL-6 upregulation and secretion is, at least, partially

mediated via the activation of the HBP and O-GlcNAc levels in HBECs. These findings

identify a novel link whereby FGF23 and the augmentation of O-GlcNAc levels regulate

airway inflammation through NFAT activation and IL-6 upregulation in HBECs. The

crosstalk between these signaling pathways may contribute to the pathogenesis of

chronic inflammatory airway diseases such as COPD and CF as well as metabolic

syndromes, including diabetes.

Keywords: O-GlcNAc, FGF23 = fibroblast growth factor 23, NFAT (nuclear factor expression of activated T cell),

IL-6 (Interleukin 6), inflammation

INTRODUCTION

Human fibroblast growth factors (FGFs) are classified as intracrine, paracrine, and endocrine FGFs
depending on their action process with endocrine FGFs playing key roles in metabolism including
bile acid, energy, and phosphate/active vitamin D metabolism (1, 2). FGF23 is a 27-kDa protein
that has been shown to be strongly associated with the risk of chronic kidney disease progression,
systemic inflammation, and mortality (3, 4). Our recent data characterized FGF23 signaling
as an important mediator in inflammatory airway diseases such as cystic fibrosis (CF) and
chronic obstructive pulmonary disease (COPD) (5, 6). In the COPD lung, FGF23 activated the
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phospholipase Cγ (PLCγ)/nuclear factor of activated T-cells
(NFAT) signaling pathway leading to airway inflammation(5).

NFAT signaling has also been linked to inflammatory cytokine
production in hepatocytes, angiogenesis, cardiomyocyte
hypertrophy, and many other biological processes (7–
10). On a molecular level, NFAT is regulated by the
phosphatase calcineurin, which dephosphorylates NFAT
and triggers cytoplasmic to nuclear translocation. Upon nuclear
translocation, NFAT interacts with multiple factors to regulate
gene expression of molecules involved in the aforementioned
disease processes.

Although the activation of the PLCγ/NFAT signaling pathway
by FGF23 has been studied, the downstream molecules that
are affected have not been fully characterized. Several reports
have shown that the activation of the hexosamine biosynthetic
pathway (HBP) (11, 12), a stress sensor, is linked to NFAT
activation and may have a definitive role in inflammation
(13, 14). It is well-documented that the HBP serves as a
precursor for several glycosylation pathways (14–16). Once
activated, the HBP generates the sugar nucleotide UDP-N-
acetyl-glucosamine (UDP-GlcNAc), which is a substrate for
hyaluronan (HA), N-linked glycosylation, and for theO-linked β-
N-acetylglucosamine (O-GlcNAc) modification of proteins (17).
The O-GlcNAc modification is a single monosaccharide addition
to proteins at unoccupied serine and threonine residues and
is similar to protein phosphorylation. Addition or removal
of O-GlcNAc is a dynamic process that is regulated by
the glycosyltransferase OGT (O-GlcNAc transferase) and the
glycosyl hydrolase OGA (β-N-acetylglucosaminidase), each of
which serves as a stress sensor and flux mediator (16, 18,
19) in response to changes in the cellular microenvironment
(i.e., stress stimuli) (20, 21). An imbalance in the OGT/O-
GlcNAc axis has been shown to regulate several cellular functions
including cell cycle and proliferation, cardiac hypertrophy, cell
metabolism, and inflammation (22, 23). We have previously
shown that OGT expression/activity was elevated in the
pulmonary vascular disease, pulmonary arterial hypertension,
regulated pulmonary arterial smooth muscle cell proliferation,
and was associated with clinical disease worsening (24).
However, its role in chronic inflammatory airway diseases has
not been determined. Furthermore, the role the O-GlcNAc
modification on PLCγ/NFAT signaling in airway inflammation,
specifically upon FGF23 activation, has not been established.
Here, we demonstrate that FGF23 stimulates the O-GlcNAc stress
response in human bronchial epithelial cells, which is essential for
NFAT transcriptional regulation of the inflammatory cytokine,
IL-6, and may be involved in chronic inflammatory airway
diseases such as COPD and CF.

MATERIALS AND METHODS

Cell Culture, Reagents, and Treatment
Conditions
16HBE cells (or HBECs), a SV40-immortalized human bronchial
epithelial cell line, were grown on plates, coated with Collagen
IV (6.5 µg/cm²; Sigma; St. Louis, MO), in medium consisting

of Eagle’s Minimum Essential Medium (EMEM) supplemented
with 10% heat-inactivated fetal bovine serum (Atlas Biologicals;
Fort Collins, CO) and without antibiotics as shown previously
(5). Human recombinant FGF23 was utilized at 20 ng/ml and
stocks were prepared in sterile PBS containing 0.1% BSA as
recommended by the manufacturer (PeproTech; Rocky Hill,
NJ). Where indicated, a 1 h pretreatment for all inhibitors,
including the PLCγ inhibitor (U73122; 0.1mM and 1.0mM);
FGFR4 inhibitor (100 nM R4 final; BLU9931; Selleck Chemicals;
Houston, TX); Cyclosporine, a calcineurin inhibitor that down-
regulates NFAT activation (CsA; 100 nM final); Thiamet G, an
OGA inhibitor (TG; 25 nM final); and OSMI-1, an OGT inhibitor
(25µM final), was performed prior to the addition of FGF23, all
incubated for 24 h. Unless indicated otherwise, all inhibitors were
purchased from Sigma (St. Louis, MO).

Western Immunoblotting and Antibodies
Cell lysates were prepared in RIPA buffer with 1x protease
and phosphatase inhibitor cocktails (RPI; Mount Prospect, IL),
PUGNAC (50µM; Sigma, St. Louis, MO), and Thiamet G
(25µM, Sigma) added to block removal of the O-GlcNAc
modification and subjected to immunoblotting as previously
described (24). Briefly, nitrocellulose membranes were probed
with antisera for the following: (1) anti-mouse O-GlcNAc
(1:1,000; clone CTD 110.6 Biolegend, San Diego, CA, USA), anti-
rabbit OGT (1:5,000, Sigma), anti-rabbit OGA (1:5,000 Bethyl
Laboratories, Montgomery, TX, USA), anti-rabbit phospho-
PLCγ (8713S) (Cell Signaling, Danvers, MA, USA), anti-rabbit
PLCγ (2822S) (Cell Signaling), anti-rabbit phospho-ERK (9101S)
(Cell Signaling), anti-rabbit ERK (4695S) (Cell Signaling),
and anti-mouse β-actin (Sigma). Probed blots were developed
using enhanced chemiluminescence Supersignal Femto Substrate
(Thermo Scientific; Grand Island, NY, USA). All blots were
imaged using the GE Imaging System (GE Healthcare, USA) and
densitometric analyses was performed using Image J (25).

IL-8 and IL-6 ELISA and mRNA Assessment
IL-8 and IL-6 enzyme-linked immunosorbent assays (ELISA)
from Invitrogen (Thermo Scientific) were used according to the
manufacturer’s protocol. HBECs were stimulated for 24 h with
FGF23, TG, or OSMI-1, and 100 µl of the medium (undiluted)
was used for measurement.

RNA was extracted using the GeneJET RNA purification kit
(Thermo Scientific, Grand Island, NY, USA). For gene expression
analysis, qPCR was performed by using Taqman probes (Life
technologies/Applied Biosystems, Carlsbad, CA, USA) with the
following: Hs00174103_m1 for IL-8, Hs00174131_m1 for IL-6,
and Hs02758991_g1 for GAPDH.

Gene Silencing of OGT and NFAT Isoforms
Using siRNA
16HBE cells were used for NFAT and OGT siRNA-mediated
knockdown (KD) experiments as previously described (5, 25).
Briefly, 5 × 104 cells were seeded in coated 24-well plates
and transfected for 6 h in 0.5mL OptiMEM with 5 nmol
of either AllStar negative control or OGT siRNAs (Thermo
Scientific, Grand Island, NY, USA) or NFATC2 (NFAT2c) or
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NFATC3 (NFAT3c) siRNAs (Qiagen; Hilden, Germany) using
1.5 µL/well of Qiagen HiPerFect transfection reagent. Following
the transfection, medium was replaced with complete medium
and the cells were subjected to an additional 48 h incubation to
allow for NFAT or OGT knockdown. After a 24 h treatment with
FGF23, wells were washed with 1.0mL cold phosphate buffered
saline (pH 7.4) and RNA was extracted using the GeneJET RNA
purification kit (Thermo Scientific, Grand Island, NY, USA). For
some experiments, HBECs were transfected with siRNA against
OGT or NFAT2c/3c and 100 ul of conditioned medium was
collected for ELISA.

NFAT Luciferase Reporter Assay
As described previously (5), 16HBE cells plated at 1.5 × 104

per well in a coated 96-well plate were transfected with 100
ng of DNA mixture containing the constitutively-active Renilla-
luciferase construct, as a transfection control, together with a
Fire Fly Luciferase reporter construct, and a NFAT reporter
construct serving provided with the NFAT Cignal Reporter Assay
Kit (Qiagen; Hilden, Germany). Transfection was performed
overnight under serum-free conditions in OptiMEM using
Lipofectamine 2000 transfection reagent (Thermo Scientific,
Grand Island, NY, USA). Cells were collected after an additional
24 h treatment and a Luciferase assay was performed using
the Dual-Luciferase Reporter Assay System (Promega; Madison,
WI, USA) as directed by the manufacturer (Promega; Madison,
WI, USA). Relative light units (RLUs) were measured utilizing

a SpectraMax i3x plate reader equipped with dual injectors
(Molecular Devices; Sunnyvale, CA, USA).

Statistics
Data were analyzed with Prism5 (GraphPad Software, Inc., La
Jolla, CA) and shown as mean ± SEM using Student’s t-test
and analysis of variance or Kruskal–Wallis H-test with one-way
ANOVAwith appropriate post tests for at least three independent
experiments. Significance was accepted at p < 0.05.

RESULTS

FGF23 Stimulates the HBP/O-GlcNAc
Modification of Proteins in Human
Bronchial Epithelial Cells
To determine the effect of FGF23 on the O-GlcNAcmodification,
we assessed the changes in global protein O-GlcNAc levels,
and OGT and OGA protein expression in human bronchial
epithelial cells (HBECs). FGF23 treatment of HBEC induced
global changes in the O-GlcNAc modification of proteins
(Figures 1A,B; Ctrl: 4.14± 0.25; FGF23: 5.23± 0.25, p= 0.0221),
similar to the effects of the OGA inhibitor Thiamet G (Ctrl: 4.14
± 0.25; TG: 7.22 ± 0.52, p = 0.0018), and opposite of the effects
of OGT inhibition with OSMI-1 (FGF23: 5.23 ± 0.25; OSMI-1:
3.27 ± 0.43, p = 0.016). Consistent with the O-GlcNAc changes,
both OGT and OGA levels were also increased following FGF23
stimulation (Figure 1A) with more of an increase in OGA than

FIGURE 1 | FGF23 stimulates the HBP/O-GlcNAc modification of proteins via the PLCγ signaling pathway in human bronchial epithelial cells. (A) Representative

Immunoblots showing global O-GlcNAc, OGT, OGA, and β-Actin from HBECs treated as described. (B–D) Densitrometric quantitation of O-GlcNAc, OGT, and OGA

from (A). (E) Representative Immunoblots showing phosphorylation of PLCγ and ERK, total PLCγ and ERK, and β-Actin from HBECs treated as described.

(F,G) Densitrometric quantitation of Immunoblots from (A). (H) Representative Immunoblots of global O-GlcNAc, OGT, OGA, and β-Actin from HBECs treated with a

PLCγ inhibitor (U73122 at 0, 0.1, and 1.0µM) and FGF23 (20 ng/ml) for 24 h. (I–K) Densitrometric quantitation of O-GlcNAc, OGT, and OGA from (H). Western blots

were performed as triplicates of the same experiment. Statistical analysis was done using ANOVA or Student’s t-test showing means ± S.E.M. with *p < 0.05, **p <

0.01, and ***p < 0.001. Ctrl, Control; FGF23, fibroblast growth factor 23; TG, thiamet G (OGA inhibitor); OSMI-1, OGT inhibitor.
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OGT [Figures 1C,D; (OGT: Ctrl: 0.35 ± 0.03; FGF23: 0.54 ±

0.032, p = 0.0059) and (OGA: Ctrl: 0.58 ± 0.06; FGF23: 1.5 ±

0.19, p = 0.003)], which has been shown in previous reports
when O-GlcNAc levels are increased or treated with an OGA
inhibitor (26).

Modulation of O-GlcNAc Is Regulated
Through the PLCγ Signaling Pathway Upon
Stimulation With FGF23
To determine whether FGF23 activates PLCγ (FGFR4-mediated),
ERK (FGFR1-mediated), or both FGF23 signaling pathways in
HBECs, we immunoblotted for total and phosphorylated PLCγ

and ERK proteins Phosphorylation of PLCγ and total PLC was
significantly increased without change in ERK phosphorylation
following FGF23 administration [Figures 1E–G; (p-PLCγ: Ctrl:
0.38 ± 0.02; FGF23: 0.56 ± 0.02, p = 0.0054) and (ERK: Ctrl:
1.02 ± 0.02; FGF23: 0.96 ± 0.053, p = 0.375)]. Interestingly,
OGA inhibition (TG) had a similar effect as FGF23 on the
phosphorylation of PLCγ and ERK [Figures 1E–G; (p-PLCγ:
Ctrl: 0.38 ± 0.02; TG: 0.51 ± 0.023, p = 0.022) and (ERK:
Ctrl: 1.02 ± 0.02; TG: 0.90 ± 0.068, p = 0.21)], whereas
OGT inhibition (OSM-I) did not have any affect on the
phosphorylation of PLCγ or ERK levels [Figures 1E–G; (p-PLCγ:
Ctrl: 0.38± 0.02; OSMI-1: 0.42± 0.01, p= 0.339) and (ERK: Ctrl:
1.02± 0.02; OSMI-1: 0.77± 0.12, p= 0.102)].

To determine whether the changes in O-GlcNAc following
FGF23 are regulated through the PLCγ signaling pathway, we

blocked PLCγ activation using a PLCγ inhibitor (U-73122),
which has been shown to block FGF23 signaling through
FGFR4 (27, 28). As shown in Figure 1H, O-GlcNAc was dose-
dependently reduced following PLCγ inhibitor administration
(Figure 1I: NT: 0.92± 0.090; 0.1µM PLC inhibitor: 0.76± 0.07;
1.0µMPLC inhibitor: 0.54± 0.02; p= 0.0095). In addition, OGT
and OGA protein levels were decreased after PLCγ blockade
(Figures 1H,J,K: OGT NT: 1.30 ± 0.15; 0.1µM PLCγ inhibitor:
1.00 ± 0.08; 1.0µM PLCγ inhibitor: 0.64 ± 0.10; p = 0.0073
and OGA NT: 1.08 ± 0.08; 0.1µM PLCγ inhibitor: 0.91 ± 0.10;
1.0µMPLCγ inhibitor: 0.57± 0.05; p= 0.0045) Altogether, these
data suggest that FGF23 activates the PLCγ signaling pathway
that regulates the O-GlcNAc changes observed in HBECs.

Knockdown of OGT Abrogates the
O-GlcNAc Modification of Proteins and the
Effects of FGF23 Signaling
Previous reports have shown that there is an extracellular OGT
(eOGT), which resides in the ER and transfers the GlcNAcmoiety
to epidermal growth factor-like domains (29). Interestingly, it has
been shown to have high expression in the lung (30). Therefore,
we wanted to determine whether the increase O-GlcNAc levels,
stimulated by FGF23, is transferred by OGT and not the ER-
resident eOGT in HBECs. To confirm that OGT is the sole
enzyme responsible for O-GlcNAc transfer in these cells and
affected by FGF23 signaling, we used siRNA targeted knockdown
of OGT. As shown in Figure 2, FGF23 induced O-GlcNAc and

FIGURE 2 | Knockdown of OGT reduces the O-GlcNAc modification of proteins. (A) Representative Immunoblots showing global O-GlcNAc, OGT, OGA, and β-Actin

from HBECs treated as described or (B) HBECs were transfected with siRNA against OGT in the presence and absence of FGF23. Western blots were performed as

triplicates of the same experiment. Ctrl, Control; FGF23, fibroblast growth factor 23; si ctrl, small interfering RNA control; and si OGT, small interfering RNA against

OGT. Statistical analysis was done using ANOVA or Student’s t-test showing means ± S.E.M. with *p < 0.05, **p < 0.01, and ***p < 0.001.
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FIGURE 3 | FGF23 and OGA inhibition both increase IL-6 secretion in human

bronchial epithelial cells. (A) Bar graphs showing transcript analysis and fold

change of IL-6 and IL-8 levels in HBECs treated in the presence or absence of

FGF23, TG, or OSMI-1 for 24h. (B) IL-6 and IL-8 protein amounts determined

by ELISA from conditioned media of HBECs. All experiments were done in

triplicate and bar graphs shown respresent the mean ± S.E.M.(*p < 0.05;

**p < 0.01, and ***p < 0.001). Ctrl, Control; FGF23, fibroblast growth factor

23; TG, thiamet G (OGA inhibitor); OSMI-1, OGT inhibitor.

OGT levels similar to Figures 1A–C [(O-GlcNAc: Ctrl: 8.23 ±

0.57; FGF23: 11.7 ± 0.13, p = 0.004) and (OGT: 1.18 ± 0.04;
FGF23: 1.66 ± 0.09, p = 0.0068)]. Knockdown of OGT resulted
in decreased O-GlcNAc levels in the presence or absence of
FGF23 in HBECs [(O-GlcNAc: Ctrl: 8.23 ± 0.57; KD Ctrl: 4.73
± 0.77; and KD FGF23: 3.57 ± 0.18, p < 0.001) and (OGT:
Ctrl 1.18 ± 0.04; KD Ctrl: 0.59 ± 0.11; and KD FGF23: 0.60
± 0.04, p < 0.001)]. Altogether, these results demonstrate that
OGT is downstream of FGF23 signaling and solely responsible
for the O-GlcNAc transfer. This data, along with Figure 1,
suggests that FGF23 can modulate O-GlcNAc levels through a
PLCγ-dependent signaling pathway, and can be inhibited by
knockdown of OGT.

Both FGF23 and OGA Inhibition Regulate
IL-6 Secretion in Human Bronchial
Epithelial Cells
We previously demonstrated a significant positive correlation
between circulating FGF23 and IL-6 levels in plasma of COPD
patients (5). However, no studies have investigated the role of

FGF23 and O-GlcNAc on inflammatory cytokine production.
To determine effects of both FGF23 and O-GlcNAc levels on
the inflammatory cytokine production in HBECs, we assessed
mRNA and protein levels of IL-6 and IL-8. FGF23 stimulation
led to a significant increase in IL-8 transcripts [Figure 3A; (IL-
8: Ctrl: 1.0 ± 0.07; FGF23: 1.31 ± 0.10, p = 0.042)], whereas
inhibition of OGA caused a significant increase in both IL-6
and IL-8 mRNA levels [Figure 3A; (IL-8: Ctrl: 1.0 ± 0.07; TG:
1.58 ± 0.14, p = 0.032) and (IL-6: Ctrl: 1.0 ± 0.08; TG: 1.38 ±

0.01, p = 0.013)]. Inhibition of O-GlcNAc transfer by OSMI-1
resulted in a reduction of IL-6 transcripts [Figure 3A; (IL-6: Ctrl:
1.0 ± 0.08; OSMI-1: 0.68 ± 0.09, p = 0.033)]; however, there
was a significant increase in IL-8 mRNA expression upon OGT
inhibition [Figure 3A; (IL-8: Ctrl: 1.0 ± 0.07; OSMI-1: 2.53 ±

0.15, p = 0.0006)]. As shown in Figure 3B, assessment of IL-6
protein secretion from conditioned media by ELISA showed a
significant∼2-fold increase in IL-6 levels (IL-6: Ctrl: 2.10± 0.24;
FGF23: 3.97 ± 0.62, p = 0.035) following FGF23 administration
that was consistent with OGA inhibition [∼2.5 fold, Figure 3B
(IL-6: Ctrl: 2.10 ± 0.24; TG: 4.96 ± 0.93, p = 0.0035). Inhibition
of OGT, though, did not show any effect compared to control.
Surprisingly, IL-8 protein secretion, as assessed by ELISA, was
not significantly different under any condition (Figure 3B, p
= 0.435). These findings suggest that FGF23 and increased O-
GlcNAc can lead to increased secretion of IL-6.

FGF23 Activates NFAT Through O-GlcNAc
Augmentation in HBECs
Previously published reports have shown an association between
O-GlcNAc signaling and NFAT regulation in cardiomyocyte
hypertrophy (13, 31) and in lymphocyte activation (32). In
addition, we have recently shown that bronchial epithelial cells
express NFAT2c and 3c as main isoforms and are activated by
FGF23, which results in airway inflammation (5). To determine
the role of FGF23 and O-GlcNAc in NFAT activation, we
performed NFAT2c/3c activation assays using a luciferase-
conjugated NFAT reporter gene in HBECs. As shown in
Figure 4A, FGF23 significantly increased NFAT activation (Ctrl:
4.68 ± 0.32; FGF23: 6.68 ± 0.70, p = 0.035), p = 0.012),
which is similar to our previous report (5). Inhibition of O-
GlcNAc removal (TG) resulted in a similar increase in NFAT
activation (Ctrl: 4.68 ± 0.32; TG: 6.80 ± 0.36, p = 0.01).
Interestingly, blocking O-GlcNAc transfer significantly reduced
NFAT activation (Ctrl: 4.68 ± 0.32; OSMI-1: 0.7 ± 0.16, p
< 0.001), which was similar to cyclosporine (CsA; Ctrl: 4.68
± 0.32; CsA: 1.2 ± 0.06, p = 0.003) and noticeably different
compared to control, FGF23, and TG. Also in Figure 4A, FGFR4
blockade (R4) in the presence or absence of FGF23 inhibited
NFAT activation consistent with the no treatment results [(R4:
Ctrl: 4.68 ± 0.32; R4: 4.42 ± 0.21, p = 0.49 and FGF23+R4:
Ctrl: 4.68 ± 0.32; FGF23+R4: 4.55 ± 0.39, p = 0.80)]. These
data suggest that NFAT activation (through FGF23/FGFR4) is
regulated by O-GlcNAcmodulation in a similar fashion to FGF23
stimulation in HBECs.

To determine whether knockdown of NFAT effects O-GlcNAc
modification of proteins, we silenced NFAT2c/3c using siRNA.
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FIGURE 4 | The NFAT activation is regulated by FGF23 and OGA inhibition (TG) and is downstream of O-GlcNAc regulation. (A) FGF23 and TG activate NFAT as

assessed by a luciferase-based reporter gene assay in HBECs and is reduced to normal levels by an FGFR4 inhibitor (R4) or blocked by OSMI-1 similar to the effects

of the NFAT activation inhibitor, cyclosporine (CsA). (B) Western blots of O-GlcNAc, OGT, and OGA following knockdown of NFAT2c and NFAT3c. Experiments were

performed in triplicate. Statistical analysis was done using ANOVA or Student’s t-test showing means ± S.E.M. with *p < 0.05, and ***p < 0.001. Ctrl, Control;

FGF23, fibroblast growth factor 23; TG, thiamet G (OGA inhibitor); R4, FGFR4 inhibitor; OSMI-1, OGT inhibitor; CsA, cyclosporine; and siNFAT, small interfering RNA

against NFAT2c or 3c.

FIGURE 5 | Gene silencing of NFAT2c leads to downregulation of IL-6 expression, while knockdown of both NFAT2c/3c results in reduced IL-6 secretion in HBECs.

(A) Bar graphs showing transcript analysis and fold change of IL-6 levels following NFAT2/3C knockdown with siRNA in HBECs. (B) IL-6 protein level from conditioned

media of HBECs as determined by ELISA. All experiments were done in triplicate and statistical analyses was done using ANOVA or Student’s t-test showing means

± S.E.M. with **p < 0.01 and ***p < 0.001. si control, small interfering RNA control; siNFAT, small interfering RNA against NFAT2c or 3c; small interfering RNA against

OGT; and CsA, cyclosporin.

As shown in Figure 4B, knockdown of NFAT2c/3c did not affect
O-GlcNAc levels, or OGT/OGA protein expression. Altogether,
these data combined suggests that NFAT activation is regulated
through the FGF23 increase in O-GlcNAc levels, which lies
upstream of NFAT in HBECs.

Knockdown of NFAT2c or OGT Leads to
Downregulation of IL-6 Expression
As shown above, administration of FGF23 or altering the O-
GlcNAc levels in human bronchial epithelial cells resulted in

changes in IL-6 expression (Figure 3). To determine whether
knockdown of NFAT alters IL-6 expression, we silenced
NFAT2c/3c and determined IL-6 transcript levels and protein

secretion. As shown in Figure 5A, IL-6 mRNA was significantly
lower in siNFAT2c compared to siNFAT3c and sicontrol
(sicontrol: 1.0 ± 0.02; siNFAT2c: 0.79 ± 0.03; and siNFAT3c:
0.99 ± 0.04, p = 0.0008). At the protein level, IL-6 secretion was

reduced following NFAT2c/3c knockdown and was consistent
with CsA treatment (Figure 5B: sicontrol: 3.41± 0.06; siNFAT2c:

2.20 ± 0.04; siNFAT3c: 1.11 ± 0.33; and CsA: 1.72 ± 0.64,
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p = 0.0014). These results suggest that silencing NFAT2c/3c,
which is downstream of FGF23 and O-GlcNAc, downregulates
IL-6 in HBECs similar to blocking O-GlcNAc transfer (shown in
Figure 2) or silencing OGT (Figure 5B: sicontrol: 3.41 ± 0.06;
siOGT: 0.07± 0.04, p < 0.001).

DISCUSSION

In this report, we show that FGF23 can increase O-GlcNAc levels
as well as OGT and OGA protein expression in HBECs. This
effect seems to be a downstream target via the FGFR4/PLCγ

signaling pathway (FGFR1/ERK signaling is not affected) since
PLC blockade resulted in decreased O-GlcNAc following FGF23
adminstration (Figure 1H). Furthermore, both FGF23 and O-
GlcNAc lead to increased secretion of IL-6, but not IL-8
(Figure 3). Conversely, reduction of O-GlcNAc levels (by OSMI-
1) reduced IL-6 secretion. Upon assessing effects of the NFAT
activation in HBECs (Figure 4), we found that FGF23 activated
NFAT, which is consistent with our previous report (5). In line
with this, O-GlcNAc modulation resulted in either an increase
in NFAT activation (by blocking O-GlcNAc removal) or a
decrease in NFAT upon inhibiting O-GlcNAc transfer (OSMI-1)
or FGF23 signaling (through blockade of FGFR4). Interestingly,
knockdown of NFAT 2c or 3c did not affect the O-GlcNAc
levels or OGA/OGT expression (Figure 4B). However, NFAT2c
silencing did affect both IL-6 expression and secretion, while
NFAT3c knockdown only affected IL-6 secretion (Figure 5).

In our results, there were discrepancies in the mRNA
expression of IL-6 compared to IL-8 with the different treatments
(Figures 3, 5). In addition, there was higher IL-6 protein
secretion compared to IL-8, which did not correlate with the
respective mRNA levels. This was also similar with the IL-
6 results for NFAT3c in Figure 5. These discrepancies in the
mRNA expression and protein levels of cytokines have been
documented in other studies (33). Therefore, caution should
be used when interpreting mRNA expression as a proxy to
protein levels. In addition, we cannot rule out the fact that
the increased levels of IL-6 (or no change in levels of IL-8)
in our study may be due to altered cytokine uptake/turnover
following treatments. Nevertheless, these data combined suggest
that FGF23 stimulation of O-GlcNAc levels is upstream of NFAT
signaling in HBECs and regulates the secretion of the pro-
inflammatory cytokine IL-6 (Figure 6).

FGF23 has been characterized as a hormonal regulator of
circulating phosphate and vitamin D levels as well as a prognostic
risk factor for cardiovascular mortality in patients with chronic
kidney disease (28, 34–36). The role of FGF23 role as an
inflammatory facilitator has also been recently studied (5, 37, 38).
Interestingly, it may be involved in several metabolic processes,
including glucose and fat metabolism. For example, FGF23 was
shown to contribute to insulin sensitivity in obese adolescents
(39) and was altered in vitamin D deficient patients following an
oral glucose load (40). Based on these findings, administration of
FGF23 may alter metabolic pathways that are involved in glucose
dysregulation and/or inflammation. The O-GlcNAcmodification
has long been studied and defined as cellular nutrient/stress

FIGURE 6 | Model. Upon binding to FGFR4 in human bronchial epithelial cells,

FGF23 stimulates the phosphorylation of PLCγ, which increases the

O-GlcNAc modification of proteins. The increase in O-GlcNAc results in NFAT

activation and translocation from the cytoplasm to the nucleus where it drives

the expression of IL-6 and subsequent secretion out of the cell.

sensor and the connection between the FGF23 and O-GlcNAc
levels is plausible based on these previous reports and our results.

The O-GlcNAc modification regulates nuclear and cytosolic
protein function and cellular signaling. Previous reports have
shown a pro- and anti-inflammatory role for O-GlcNAc (23,
41), and this biphasic effect is dependent on different cell
types and diseases. Previous reports have also shown that
glucosamine activation of the HBP attenuates NFκB activation
in chondrocytes (42) or IL-1β mediation chondrocyte activation
(43). In addition, inhibition of the NFκB pathway by O-GlcNAc
has been shown in acute vascular injury models (44). On the
other hand, the O-GlcNAc modification has been shown to
activate NFκb under increase glucose concentrations in vascular
smooth muscle cells in diabetes and obesity, suggesting a pro-
inflammatory phenotype (45). This pro-inflammatory phenotype
has been shown in other reports where HBP flux augments
the oxidative stress pathways and the expression of other
pro-inflammatory markers vascular cell adhesion molecule-1
(VCAM-1), IL6, IL-1β, TNFα, and NFκB (46). To our knowledge,
we are the first to show the link between FGF23 and O-GlcNAc
regulating IL-6 expression (Figure 3).

Several reports have shown that “outside-in” signaling can be
modulated by O-GlcNAc. In T cell activation, antigen peptide
binding to the T cell receptor have been shown to increase
the O-GlcNAc modification of proteins that were associated
with inflammatory cytokine production and cellular proliferation
(47). In bonemorphogenic protein (BMP) signaling on osteoblast
differentiation, hyperglycemic conditions or activators of the
HBP were shown to alter the O-GlcNAc levels and affect
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osteogenic differentiation (48) suggesting a role for glucose
dysregulation on normal BMP function and signaling. In another
report, FGF signaling was also shown to be altered by loss
of function of a gene that encodes an enzyme in the HBP,
which resulted in defective O-GlcNAc modification of the FGFR
(49, 50). This was shown to impair FGF mediated migration
of mesodermal and tracheal cells during fly development. In
addition, Miura, T. and colleagues demonstrated that O-GlcNAc
modification of PKCζ blocks the signaling effects of FGF4, which
resulted in the maintenance of an ESC undifferentiated state
(51). A role for the O-GlcNAc modification was also shown for
PLC inactivation and subsequent reduction of IP3 and Ca2+
mobilization in myoblast even in response to bradykinin (52).
Similar to these findings, we show that FGF23 signaling, through
PLCγ, increases the O-GlcNAc modification of proteins that
may be involved in inflammatory cytokine production in HBECs
(Figures 1–3). Interestingly, we also observed an increase in total
PLCγ protein expression (Figure 1). The increase in total PLCγ

expression has been shown in other inflammatory associated
complications, including cancer and skin conditions (53) that
may be associated with altered FGF23 levels (54–56) and is
consistent with our findings. Collectively, we show that FGF23
signaling, through PLCγ, increases the O-GlcNAc modification
of proteins that may be involved in inflammatory cytokine
production in HBECs (Figures 1–3).

As stated above, NFAT signaling has also been linked to
inflammatory cytokine production in hepatocytes, angiogenesis,
cardiomyocyte hypertrophy, andmany other biological processes
(27, 28, 37, 57). In addition, T- and B-lymphocytes activation,
which has been documented to be regulated by NFAT (32), can be
regulated by the O-GlcNAc modification, which may be required
for its nuclear translocation. A similar phenomenon was shown

in cardiomyocyte hypertrophy where the activation of NFAT has

been linked to increased O-GlcNAc modification (13, 58). Our
previous report suggested a role for FGF23 activation of NFAT
in the airway (5). However, no experiments have been done to
determine the role of O-GlcNAc on NFAT activation through
FGF23. Based on our results, combined with our previously
published data, we put forth a model (Figure 6), whereby FGF23
regulates NFAT activation through the modulation of O-GlcNAc
(Figures 4, 5), and stimulates IL-6 expression and secretion in
HBECs (Figures 1–3).

Our findings in this report are the first to describe a
role for FGF23 in the augmentation of O-GlcNAc levels.
In addition, the role for FGF23 in the activation of NFAT
through O-GlcNAc stimulation increases our knowledge of
the molecules that may be involved in the process. The
impact of O-GlcNAc by way of FGF23 will open new avenues
for research in lung diseases associated with chronic airway
inflammation such as COPD, cystic fibrosis, and asthma
as well as metabolic disorders including diabetes and heart
failure.
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