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Graphical Abstract

1. A newmolecular feature of ESCC that involves both active posttranscriptional
and posttranslational regulation was unveiled.
2. ESCC-related signaling and metabolic pathways, networks among omics data,
and common cancer/testis antigens along with established cancer drivers and
kinases were delineated.
3. Proteins with close linkage to ESCC prognosis were discovered, and a new
prognostic protein, fibrillarin (FBL), was further validated, functionally studied,
and found to correlate negatively with patient outcomes.
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Abstract
Esophageal squamous cell carcinoma (ESCC) is a major histological subtype of
esophageal cancer with inferior prognosis. Here, we conducted comprehensive
transcriptomic, proteomic, phosphoproteomic, and metabolomic characteri-
zation of human, treatment-naive ESCC and paired normal adjacent tissues
(cohort 1, n = 24) in an effort to identify new molecular vulnerabilities for ESCC
and potential therapeutic targets. Integrative analysis revealed a small group of
genes that were related to the active posttranscriptional and posttranslational
regulation of ESCC. By using proteomic, phosphoproteomic, and metabolomic
data, networks of ESCC-related signaling and metabolic pathways that were
closely linked to cancer etiology were unraveled. Notably, integrative analysis
of proteomic and phosphoproteomic data pinpointed that certain pathways
involved in RNA transcription, processing, and metabolism were stimulated
in ESCC. Importantly, proteins with close linkage to ESCC prognosis were
identified. By enrolling an ESCC patient cohort 2 (n = 41), three top-ranked
prognostic proteins X-prolyl aminopeptidase 3 (XPNPEP3), bromodomain PHD
finger transcription factor (BPTF), and fibrillarin (FBL) were verified to have
increased expression in ESCC. Among these prognostic proteins, only FBL, a
well-known nucleolar methyltransferase, was essential for ESCC cell growth in
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vitro and in vivo. Furthermore, a validation study using an ESCC patient cohort
3 (n= 100) demonstrated that high FBL expression predicted unfavorable patient
survival. Finally, common cancer/testis antigens and established cancer drivers
and kinases, all of which could direct therapeutic decisions, were characterized.
Collectively, our multi-omics analyses delineated new molecular features
associated with ESCC pathobiology involving epigenetic, posttranscriptional,
posttranslational, and metabolic characteristics, and unveiled new molecular
vulnerabilities with therapeutic potential for ESCC.

KEYWORDS
esophageal squamous cell carcinoma, fibrillarin, molecular feature, multi-omics

1 INTRODUCTION

Esophageal carcinoma (EC) is the ninth most com-
mon cancer and ranks sixth with respect to lethality in
the world.1 In China, the morbidity and mortality of
EC are ranked fifth and fourth, respectively, across all
cancers.2 The major histological type of EC in China is
esophageal squamous cell carcinoma (ESCC), accounting
for approximately 90% of all EC cases.1 To decipher the
molecular aberrations that drive ESCC tumorigenesis
and progression, The Cancer Genome Atlas (TCGA) and
other research teams have conducted extensive genomic,
epigenomic, and transcriptomic profiling, discovering
unique signatures of ESCC that contain frequent genomic
amplifications of tumor-promoting genes and those
modulating cell cycle and apoptosis genes that have high
mutational frequency.3–9 Notably, a predominant event
in ESCC development is mutation and inactivation of a
well-known tumor suppressor, TP53.4,9 Another typical
hallmark of ESCC is mutation and/or genomic amplifica-
tion of cell cycle kinases including cyclin D1 (CCND1) and
cell division protein kinase 6 (CDK6).3,4,6 Additionally, it is

common to observe mutations of genes involved in epige-
netic processes andNotch/PI3K/EGFR/Hippo pathways in
ESCC.3,4,6
Due to the advances in genomic study, more targeted

therapies are being designed for ESCC treatment. Unfortu-
nately, except from HER2-positive ESCC tumors, random-
ized controlled trials of targeted therapies for other tar-
gets, such as EGFRandmesenchymal–epithelial transition
pathways, have failed.1 The results of these trials demon-
strate the complexity of ESCC oncogenesis and progres-
sion and demonstrate the limitation of genomic profiling
alone for identifying effective curative treatments. Hence,
a multi-omics approach may provide the necessary infor-
mation required to unveil more effective molecular targets
for ESCC treatment.
In this study, we performed a multi-layer omics study

to characterize human, treatment-naive ESCC tumors and
paired normal adjacent tissues (NATs), aiming to delin-
eate the mechanisms of ESCC pathobiology and unveil
new therapeutic targets for precise and personalized clini-
cal intervention.
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2 MATERIALS ANDMETHODS

2.1 Nano-liquid
chromatography-tandemmass
spectrometry analysis

2.1.1 Proteomic analysis using a
data-independent approach

Data-dependent analysis (DDA) was performed first to
generate a DDA spectral library. Fractionated and recon-
stituted peptides (∼1 μg each fraction) of each pooled sam-
ple were resolved using a micro-tip C18 column (75 μm
× 25 cm) packed with ReproSil-Pur C18-AQ, 5 μm resin
(Dr. Maisch GmbH, Germany) coupled to a nanoflow
HPLC Easy-nLC 1200 system (Thermo Fisher Scientific,
cat#LC140)with LC gradient rate at 250 nl/min. Two buffer
solutions were used, including buffer A (a mixture of
formic acid:H2O = 1:1000 [vol/vol]) and buffer B (a mix-
ture of formic acid:acetonitrile = 1:1000 [vol/vol]). Pooled
sample resolving was achieved with the following sepa-
ration gradient: 8%–30% buffer B from 0 to 97 min; 30%–
100% buffer B from 97 to 100 min; 100% buffer B from
110 to 120 min. Subsequent assays were conducted on a
Q-Exactive HF mass spectrometer (Thermo Fisher Scien-
tific, cat#IQLAAEGAAPFALGMBFZ). Positive ion mode
was used for detection. The MS1 full scan was set with a
range of 300–1800 m/z, and with resolution of 60,000 at
m/z 200, AGC target 3e6, and maximum IT 50 ms. A total
of 20 MS2 scans were collected after the MS1 scan based
on the inclusion list. The MS2 scans were acquired at reso-
lution of 30,000 at m/z 200, AGC target 3e6, maximum IT
120 ms, activation type as HCD, and normalized collision
energy at 27 eV.
Subsequently, for data-independent analysis (DIA), 2 μg

digested peptides of each case mixed with iRT standard
peptides were resolved with the same instrument and
buffer solutions used for DDA. Then, the following separa-
tion gradient with aminormodificationwas implemented:
10%–30% buffer B from 0 to 97 min; 30%–100% buffer B
from 97 to 100 min; 100% buffer B from 110 to 120 min. The
samemass spectrometer was employed for DIA assay with
analytic time of 2 h/sample. EachDIA cycle was composed
of one fullMS1 scanwith a range of 350–1650m/z (scan res-
olution 120,000 at 200 m/z, AGC target 3e6 and maximum
IT 50ms) and 30MS2 scans at a DIAmode (scan resolution
30,000 at 200m/z, AGC target 3e6,Maximum IT auto, acti-
vation type as HCD, normalized collision energy at 30 eV
with spectral data type set as profile).

2.1.2 Phosphoproteomic analysis

The iTRAQ-labeled phosphopeptides were enriched and
separated with a C18 column (Thermo Scientific Acclaim
PepMap100, 100 μm × 2 cm, NanoViper) packed in a cap-
illary column (Thermo Scientific EASY column, length
10 cm, ID 75 μm, particle size 3 μm, C18-A2) and coupled to
a nanoflow HPLC Easy-nLC 1200 system (Thermo Fisher
Scientific, cat#LC140) with LC gradient rate at 300 nl/min.
Two buffer solutions were used, including buffer A (a mix-
ture of formic acid:H2O = 1:1000 [vol/vol]) and buffer B
(a mixture of formic acid:acetonitrile = 1:1000 [vol/vol]).
The same mass spectrometer that was used for proteomic
investigation was applied for phosphoproteomic analysis.
Positive ion mode was selected for measurement. The MS1
full scan was conducted with a range of 300–1800m/z, and
with resolution of 70,000 atm/z 200, AGC target 1e6,maxi-
mum IT 50ms, and dynamic exclusion time as 60 s. A total
of 20MS2 scanswere obtained after theMS1 scan at resolu-
tion of 17,500 at 200 m/z, activation type as HCD, isolation
window as 2m/z, normalized collision energy at 30 eV, and
underfill at 0.1%.

2.1.3 Database searching of proteomic data

First, we used DDA mass spectrometric data to generate
a DDA spectral library. DDA data analysis was conducted
with MaxQuant software (version 1.5.3.17) and human
UniProt database (download in September, 2019) plus iRT
peptide sequence (>Biognosys|iRT-Kit|Sequence_fusion
LGGNEQVTRYILAGVENSKGTFIIDPGGVIRGTFIIDPAA
VIRGAGSSEPVTGLDAKTPVISGGPYEYRVEATFGVDES
NAKTPVITGAPYEYRDGLDAASYYAPVRADVTPADFSE
WSKLLQFGAQGSPFLK). Of note, the DDA analysis was
performed with the following parameters: trypsin as the
enzyme, 2 for maxmissed cleavages, carbamidomethyl (C)
as the fixed modification, oxidation (M), and acetyl (Pro-
tein N-term) as the dynamic modification. Peptides and
proteins were identified with a false discovery rate (FDR)
<1%. Finally, spectral library was established with the
Spectronaut software (Spectronaut Pulsar X_12.0.20491.4,
Biognosys) by combining DDA raw files and the results of
database searching.
DIA mass spectrometric data were analyzed with Spec-

tronaut software (Spectronaut Pulsar X_12.0.20491.4, Biog-
nosys) and referenced to above established DDA spectral
library. The following parameters were used for analysis:
“dynamic iRT” was selected for retention time prediction



4 of 25 JIN et al.

type, “enabled” was chosen for interference on MS2 level
correction,while “enabled”was used for cross-runnormal-
ization. FDR of peptide and protein was<1%. The raw pro-
teomic data were deposited to The National Omics Data
Encyclopedia (NODE) database (https://www.biosino.org/
node) at Bio-MedBigData Center (BMBDC) affiliatedwith
Shanghai Institute of Nutrition and Health (SINH), Chi-
nese Academy of Sciences (CAS), with a project ID of
OEP002405.

2.1.4 Database searching of
phosphoproteomic data

The analysis of phosphoproteomic data was carried out
with MaxQuant software (version 1.5.5.1) against the
human Swiss-Prot database (version: swissoprot_human_
20422_20190522). The following parameters were used for
analysis: “trypsin” as the enzyme, “2” for max missed
cleavages, “6 ppm” for main search, “20 ppm” for first
search, “20 ppm” forMS/MS tolerance, “carbamidomethyl
(C) & iTRAQ8 plex (N-term) & iTRAQ8 plex (K)” as the
fixed modifications, “oxidation (M) & acetyl (Protein N-
term) & Phospho (STY)” as the variable modifications,
“reverse” as the database pattern, and “true” for included
contaminants. Peptide, protein, and site were identified
with an FDR <1%. The raw phosphoproteomic data were
deposited to NODE database at BMBDC affiliated with
SINH, CAS, with project ID of OEP002366.

2.2 Metabolomic analysis

Tissue and cell culturemediummetabolites were extracted
as previously described.10,11 For tissue samples, approx-
imately 20 mg of each tissue sample was weighed and
a 250-μl pre-chilled exaction solvent mixture of chlo-
roform, methanol, and water (vol/vol/vol = 2:5:2) was
added. Samples were homogenized for 3 min and then
placed in a −20◦C freezer for 20 min to precipitate pro-
teins and extract metabolites. For culture media of ESCC
cell line KYSE150 (Stem Cell Bank, Chinese Academy
of Sciences), 20 μl medium of each case was collected
and the metabolites were extracted with the addition of
pre-chilled solvent mixture of chloroform, methanol, and
water (vol/vol/vol = 2:5:2).
For above mixtures containing extracted metabolites,

after centrifuging at 12,000 × g and 4◦C for 10 min, a
volume of 150-μl supernatant was acquired and moved
to a clean sample vial. Internal standards were added
into the metabolite solution and the mixture was then
vacuum-dried at −20◦C. The residue was derivatized by
use of a two-step procedure and then analyzed based on

those previously described protocols12,13 using the Pega-
sus High-Throughput Gas Chromatography with Time-of-
Flight Mass Spectrometer system (Leco Corporation). In
brief, a 1-μl derivatized sample was injected using a mode
of splitless under temperature of 270◦C for the injector. A
flow rate of 1.0 ml/min was used for controlling the carrier
gas helium. The temperature of the oven was set at 70◦C
for 2 min, then raised to 180◦C (10◦C/min as the increas-
ing rate), and to 230◦C (6◦C/min as the increasing rate),
finally to 295◦C (40◦C/min as the increasing rate). Oven
temperature at 295◦Cwas sustained for 5 min. Notably, the
transferline interface and ion source were manipulated at
temperatures of 270◦C and 220◦C, respectively. Mass spec-
trometer scan was implemented in a range of 50–550 m/z
and the data were acquired at a rate of 20 spectra/s. The
identities of metabolites were determined by searching the
internal library constructed by chemical standards. The
raw metabolomic data were deposited to NODE database
at BMBDC affiliated with SINH, CAS, with a project ID of
OEP002347.

2.3 Proteome and phosphoproteome
data analysis

2.3.1 Missing value imputation

In the proteomic study, there were 6507 unique proteins to
be identified across 48 tissue samples. Proteins that simul-
taneously possessed 50%missing values in ESCC and NAT
tissues were excluded. For the remaining 5511 proteins,
missing values were replaced by the smallest non-missing
value in the data as previously reported.14
In the phosphoproteomic study, there were 3215 phos-

phorylated proteins along with 11,232 phosphosites to be
identified. To ensure data reliability in this small sample
size (n = 6), we extracted 2740 phosphorylated proteins
along with 7186 phosphosites with no missing values for
further analysis.

2.3.2 Differential expression analysis

For the proteomic data, the nonparametric and paired
two-class Wilcoxon rank-sum test with Bonferroni cor-
rection was used. FDR q-values were computed using
an R package qvalue (v3.10) (http://github.com/jdstorey/
qvalue). Fold change (FC) values were acquired by divid-
ing themedian value of each protein inNAT samples by the
median value of corresponding protein in ESCC tumors.
Differentially expressed proteins (DEPs) between ESCC
tumor and NAT samples were determined by Bonferroni-
adjusted p < .05, FDR q < .05, and FC cutoff as 1.5.

https://www.biosino.org/node
https://www.biosino.org/node
http://github.com/jdstorey/qvalue
http://github.com/jdstorey/qvalue
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For the phosphoproteomic data, the paired two-class
Student’s t-test with Bonferroni correction was used. FC
values were acquired by dividing the mean value of each
protein in NAT samples by the mean value of correspond-
ing protein in ESCC tumors. Differentially expressed phos-
phosites between ESCC tumor and NAT samples were
determined by Bonferroni-adjusted p < .05 and FC cutoff
as 1.5.

2.4 Metabolomic data analysis

2.4.1 Missing value imputation

Metabolites that simultaneously possessed 50% missing
values in ESCC and NAT tissues were excluded. Subse-
quently, there were 200 unique metabolites to be identi-
fied across 48 tissue samples. Missing values were imputed
using the random forest method as previously reported.15

2.4.2 Differential expression analysis

We implemented nonparametric and paired two-class
Wilcoxon rank-sum test with Bonferroni correction to
identify differential metabolites. We then calculated the
FDR q-value for each metabolite using an R package
qvalue (v3.10) (http://github.com/jdstorey/qvalue). Differ-
ential metabolites between ESCC tumor and NAT samples
were determined by Bonferroni-adjusted p < .05 and FDR
q < .05.

2.5 Bioinformatic analysis

2.5.1 GO and KEGG analyses

Gene ontology (GO) and KEGG analyses were performed
using ClueGO,16 a software package based on cytoscape,
formRNAs and proteins. In ClueGO, pathway analysis was
conducted using two-sided hypergeometric test.

2.5.2 Gene set enrichment analysis

Gene set enrichment analysis (GSEA) analysis was imple-
mented using an R package fgsea for all proteins in this
study. FC values (ESCC samples/NAT samples) of all pro-
teins were input for computation. The enriched path-
way information was pooled from the GO, Reactome, and
KEGG databases.

2.5.3 Proteomap analysis

We executed an approach, proteomaps,17 to visualize
the composition of proteomes with a focus on protein
abundances and functions. DEPs between ESCC and NAT
samples were recruited, and median values of DEPs of
ESCC group and NAT group were used for construction of
proteomaps.

2.5.4 Quantification of pathway activity

All pathway scores of the enrolled samples were inferred
by gene set variation analysis (GSVA) method from the
GSVA R package.18 The gene sets used for computa-
tion included KEGG, Reactome, and BIOCARTA. The
Benjamini–Hochberg method was used to adjust p-values
of pathways between ESCC and NAT samples.

2.5.5 Metabolite set enrichment analysis

Metabolite set enrichment analysis (MSEA) was carried
out by using differentially expressed metabolites between
ESCC tumors and NATs with an online tool Metabo-
Analyst 4.0.19,20 Before running the analysis, data of
metabolites was log2-transformed. During the analysis,
the metabolite set library was pathway-associated with
metabolite sets (KEGG) (Oct2019).

2.5.6 Identification of tumor antigens,
potential cancer drivers and kinases

Proteomic data were used for identification of tumor anti-
gens, potential cancer drivers and kinases. A cancer/testis
(CT) antigen list was downloaded from the CTDatabase
(http://www.cta.lncc.br/modelo.php). A potential cancer
driver list was acquired from a previous study.21 A kinase
list was obtained from the databases of PhosphoSitePlus
and NetworKIN.22 By comparison to these lists, tumor
antigens, potential cancer drivers and kinases were
identified.

2.5.7 Drug annotation of potential cancer
drivers and key kinases

In this study, two drug databases, DrugBank23 and
PKIDB,24 were used to annotate those identified poten-
tial cancer drivers and key kinases with available drugs or
inhibitors.

http://github.com/jdstorey/qvalue
http://www.cta.lncc.br/modelo.php
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3 RESULTS

3.1 Molecular landscape of ESCC by
multilayer omics profiling

We enrolled 24 ESCC patients (treatment-naive cases)
as cohort 1 and harvested their paired tumor and NAT
samples. Each sample underwent RNA-sequencing (RNA-
seq), data-independent acquisition (DIA)-based proteomic
and nontargeted metabolomic investigations (Figure 1A).
Due to the limitation of tissue samples, only three pairs
of tumor and NAT tissues were selected for phospho-
proteomic assay using mass spectrometry-based isotope
tagging for relative and absolute quantification (iTRAQ).
Furthermore, esophageal tissues from control mice and
ESCC mice induced by the carcinogen 4-nitroquinoline-
1-oxide (4-NQO) were collected for RNA-seq and nontar-
geted metabolomic surveys in order to verify the conserva-
tion of ESCC molecular features between distinct species
(Figure 1A). Clinical characteristics of ESCCpatient cohort
1 are summarized in Figure 1B.
The quality of samples and data was stringently con-

trolled. For patients, their ESCC regions with >80% tumor
cells (median [range]: 90% [80%–98%]) were harvested for
analysis. The sample quality of RNAs and proteins from all
specimens was verified (Figure S1, Table S1). For RNA-seq
samples, the sequencing library quality was determined by
Agilent 2100 Bioanalyzer, and data quality was evaluated
by the Phred quality score (Table S2, Figure S2A). For
proteomics analyses, the variability of quality control
(QC) samples, data points for each peak, peak capability,
internal calibration standards, and distribution of protein
false discovery rate (FDR) were analyzed, indicating
negligible instrument drift and high quality of the data
(Figure S2B–F). For phosphoproteomics analyses, mass
error distribution, phosphorylated peptide score distribu-
tion, and phosphorylated peptide ratio distribution were
assessed (Figure S2G–I), indicating data of high quality.
For metabolomics profiling, low variability of QC samples
was observed, indicating stability of the measurement
system (Figure S2J). For mice, the pathophysiological
characteristics of their esophageal tissues were confirmed
using hematoxylin and eosin (H&E) staining together with
immunohistochemistry (IHC) staining for the esophageal
marker keratin 14 and cell proliferation marker Ki-67
(Figure S3A). Furthermore, RNA-seq data quality was
confirmed by the Phred score (Figure S3B).
To confirm whether our data were able to accurately

capture the molecular features of human ESCC, we first
examined the expression of well-established ESCC mark-
ers between ESCC tumors and NATs of patients using our
multi-omics data. The esophageal carcinogenesis marker
keratin 14 (K14, encoded by KRT14), growth factor recep-

tors epidermal growth factor receptor (EGFR, encoded
by EGFR), epidermal growth factor receptor 2 (HER2,
encoded by ERBB2), nuclear receptor cyclin D1 (encoded
by CCND1), cell proliferation markers proliferating cell
nuclear antigen (PCNA, encoded by PCNA), and Ki-67
(encoded byMKI67) were selected for analysis. As reported
previously, cyclin D1 expression is a common genetic alter-
ation as well as a key driver of ESCC.25 Furthermore, K14,
EGFR, cyclin D1, PCNA, and Ki-67 are upregulated both at
RNA and protein levels, while HER2 is elevated only at the
protein level in ESCC tissues.26–31 In agreement with these
previous findings, our RNA-seq data demonstrated that
KRT14, EGFR, CCND1, PCNA, andMKI67, but not ERBB2,
were transcriptionally upregulated in ESCC tissues (Figure
S4A). Additionally, our proteomic data revealed that K14,
EGFR,HER2, PCNA, andKi-67were all increased in ESCC
tissues (Figure S4B). However, cyclin D1 was not identi-
fied in our proteomic investigation. Therefore, the results
of ourmulti-omics data identifiedmany of the well-known
molecular features of ESCC.
Prior to thoroughly analyzing the molecular features

of ESCC using our multi-omics data, it was important to
ascertain whether our omics data were consistent with
established omics datasets. A previous study enrolled
53 ESCC patients, and collected their tumor tissues and
matched NAT tissues for gene expression profiling.28 This
study revealed that 116 genes were dramatically upreg-
ulated, while 43 genes were strikingly downregulated
in ESCC tumor tissues. In our RNA-seq data of ESCC
patients, among those previously reported, upregulated,
116 genes, 76 of them (65.52%) were remarkably increased
in ESCC tumor tissues (Figure S5A). In addition, 32 out of
the previously 43 reported downregulated genes (74.41%)
were found to be downregulated in the ESCC tumor
tissues of our patient cohort (Figure S5B). This result
indicated the consistency between our omics data and the
published omics data.
Alternative splicing (AS) ofmRNAallows for the expres-

sion of multiple RNA isoforms and contributes to the com-
plexity of the proteome.32,33 Hence, we examined gene
expression including their respective isoforms from the
RNA-seq data. We carried out unsupervised hierarchi-
cal clustering and principal component analysis (PCA)
using the multilayer omics data to ascertain human ESCC
molecular features. When compared to NATs, ESCC tis-
sues showed distinct signatures at gene, gene isoform, pro-
tein, phosphoprotein, and metabolite levels (Figures 1C
and S6). As the phosphoproteomic investigation was only
executed in three pairs of samples, phosphoproteomic
data were excluded in the subsequent multivariate anal-
ysis. Next, integrated clustering of RNA-seq, proteomic
and metabolomic data was performed using the iCluster
algorithm,34 and the results clearly discriminated ESCC
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F IGURE 1 Multilayer omics profiling of ESCC and NAT tissues. (A) Strategy of multilayer omics investigations using paired ESCC and
NAT samples from patient cohort 1 (n = 24) along with esophageal tissues from control mice and carcinogen-induced ESCC mice. (B)
Heatmap showing clinical parameters of ESCC patients for multilayer omics investigations. (C) Unsupervised hierarchical clustering of
multi-omics data of ESCC patients. Clinical parameters from 48 tissue samples profiled with each omics data are also depicted. (D) Integrated
clustering of four molecular layers of data showed that tissue samples of patients with ESCC fell into two groups by iCluster that were
virtually identical to histological classes ESCC and NAT. (E) Correlation analysis between any two omics profiles using DIABLO algorithm
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from NAT samples (Figure 1D). Finally, we executed the
DIABLO algorithm35 to extractmolecular profiles from the
omics data for all patient samples, which allowed compu-
tation of the correlation between any two molecular pro-
files. The result revealed strong correlations between any
two omics profiles (Figure 1E), demonstrating a consis-
tent difference between ESCC andNAT samples at distinct
molecular layers.
Subsequently, the RNA-seq and metabolomic data of

mice were used to execute unsupervised hierarchical clus-
tering and PCA analysis. As compared to esophageal tis-
sues from control mice, esophageal tissues from ESCC
mice exhibited distinct molecular features at gene, gene
isoform, and metabolite levels (Figure S7), demonstrating
that the alteration of molecular features in ESCC was con-
served between different species.

3.2 Discordance between transcriptome
and proteome revealed active
posttranscriptional and posttranslational
regulation

To ascertain the global association between transcriptome
and proteome, we computed gene-wise (inter-sample) cor-
relation of 6174mRNA–protein pairs across all patient sam-
ples. We observed a striking discordance between mRNAs
and proteins as showed by a median gene-wise correla-
tion value of 0.07 and a low percentage (15.69%) of mRNA–
protein pairs with significant positive Spearman correla-
tions (Figure S8A). Discordance betweenmRNAs and pro-
tein expression levels indicated active posttranscriptional
regulation in these tissue samples.
The next step involved determination of the mRNA–

protein relationship differences between the ESCC and
NAT samples of patients. First, we executed gene-wise
correlation analysis. Although a remarkable discrep-
ancy between mRNAs and protein expression levels was
observed in both groups of samples as shown by the low
median correlation of 0.06 for ESCC tissues and 0 for
NATs, the tumor tissues exhibited a right shift of distribu-
tion of correlation values relative to NATs (Kolmogorov–
Smirnov test p < 2.2 × 10–16) (Figure 2A), indicating more
positive correlations in tumor tissues. Next, we calculated
sample-wise (intra-sample) correlations between mRNAs
and proteins. The median correlation values for ESCC
and NAT tissues were 0.20 and 0.15, respectively. Notably,
ESCC tissues displayed an overt right shift of distribution
of correlation values as compared to NATs (Kolmogorov–
Smirnov test p = 2.34 × 10–5) (Figure 2B), demonstrating
more positive correlations in tumor tissues. Furthermore,
analysis of the FC of mRNA and protein expression
between ESCC tumors and NATs showed that most of

proteins were upregulated in tumor tissues not only when
corresponding mRNAs were increased, but also when
corresponding mRNAs were undisturbed or reduced (Fig-
ure 2C). However, most of proteins were downregulated
in NAT tissues regardless of any expression patterns of
correspondingmRNAs (Figures 2C and S8B). Additionally,
more upregulated mRNAs were observed in ESCC tumors
relative to NATs (Figure 2C). Together, these results
indicated that mRNA transcription and translation were
enhanced, and posttranscriptional regulation was hyper-
active in ESCC tissues. Moreover, to verify the active post-
transcriptional control in ESCC, we performed validation
assay using three randomly selected genes with negative
correlation between their mRNAs and proteins, including
SMNDC1, MTHFD2, and PNO1. RT-qPCR and Western
blotting measurements showed that although mRNAs of
these genes were not altered in ESCC tissues as relative
to NATs, their protein products SMNDC1, MTHFD2, and
PNO1 were markedly elevated (Figure S8C,D), thus under-
scoring the high activity of posttranscriptional regulation
in ESCC.
We hypothesized that those genes with increased

expression at both mRNA and protein levels (namely
with high transcriptional and translational activities)
in ESCC tumors acted as core upstream signals that
led to the observed difference in posttranscriptional
modulation between ESCC and NAT tissues. To validate
our hypothesis, we enrolled genes (n = 480, accounting
for 7.77% [480/6174]) with increased mRNA abundance
in tumor tissues and with positive correlation between
mRNAs and corresponding proteins across all tissues
for analysis. GO biological process analysis revealed that
activities of RNA processing, RNA slicing, and gene
expression were remarkably enhanced in ESCC tumors
as evidenced by the top 10 enriched pathways (Figures 2D
and S8E). Of importance, among these 480 genes, those
producing proteins with extremely high levels in ESCC
tissues, included serine and arginine rich splicing factor 10
(SRSF10), splicing factor 3A subunit 2 (SF3A2), cleavage
stimulation factor subunit 2 (CSTF2), and replication
timing regulatory factor 1 (RIF1) (Figure 2E). In our pro-
teomic data for ESCC tumors, SRSF10, SF3A2, and CSTF2
were positively correlated to proliferation markers Ki-67
and/or PCNA (Figure 2F). In addition, SRSF10 and SF3A2
were negatively associated with differentiation marker
S100A14 (Figure 2F). These results indicated that SRSF10,
SF3A2, and CSTF2 may actively participate in ESCC
malignancy.
We then hypothesized that the protein activities

described above were involved in upstream signaling
that would affect posttranscriptional control via altering
the proteome. Hence, we performed GSEA using all
proteins and selected gene sets involved in posttranscrip-
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F IGURE 2 Correlations between transcriptomic and proteomic data of ESCC patients. (A and B) Density ridgeline plots showing
gene-wise correlations (A) and sample-wise correlations (B) in tumors and NATs, respectively. (C) Multiple line plots displaying the fold
change (FC) values of mRNAs and corresponding proteins between ESCC tumors and NATs. mRNAs were aligned by their FC values with an
increasing order. (D) GO biological process analysis of 480 genes with high transcriptional and translational activities in ESCC tumors. The
top 10 enriched pathways were selected for presentation. Each node size represents the percentage of measured genes in a specific pathway.
(E) Volcano plot displaying the FC values (log2 transformed) and p-values (-log10 transformed) of 480 genes with high transcriptional and
translational activities in ESCC tumors. p-Values of RNAs were derived from edgeR analysis by comparing ESCC and NAT samples, while
p-values of proteins were obtained from the nonparametric and paired two-class Wilcoxon rank-sum test with Bonferroni correction by
comparing ESCC and NAT samples. (F) Spearman correlation analysis between four proteins with extremely high expression in ESCC tumors
and key neoplastic markers. Star marks in heatmap cells represent the correlations between proteins of interest and neoplastic markers with
p < .05. The areas of circles show the absolute value of corresponding correlation coefficients
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tional and posttranslational level control (p < .05). As
expected, tumors were significantly more enriched than
NATs in transcription and translation-related functions,
including RNA processing/transcription, protein transla-
tion, protein modification, and proteolysis (Figure 3A).
Then, we extracted proteins key for posttranscriptional
and posttranslational regulation, including members of
RNA transcription, the nonsense-mediated mRNA decay
(NMD) pathway that regulates the abundance of a large
number of cellular RNAs,36 eukaryotic initiation factor
(eIF) complex key for protein translation, and protein
ubiquitin proteasome system (UPS) key for protein
degradation. Among them, most of the proteins with
differential expression between ESCC and NAT tissues
showed increased upregulation in tumors (Figure 3B–E),
consistent with the expedited rates of RNA transcription,
RNA decay, protein translation, and proteolysis in ESCC
tissues. Among those DEPs between ESCC and NAT sam-
ples involved in pathways listed in Figure 3A, five of them
with extremely high expression in ESCC are highlighted
in Figure S9, including SRSF10, U6 snRNA-associated
Sm-like protein LSM6, SF3A2, mitochondrial ribosomal
protein L21 (MRPL21), and ubiquitin conjugating enzyme
E2 A (UBE2A).
It is known that pre-mRNA alternative splicing (AS)

is a key posttranscriptional process.37 To provide more
evidence for the active posttranscriptional regulation in
ESCC, we analyzed seven common AS events in our RNA-
seq data, including alternate acceptor site (AA), alternate
donor site (AD), alternate promoter (AP), alternate termi-
nator (AT), exon skip (ES), mutually exclusive exons (ME),
and retained intron (RI) using the SpliceSeq tool.38 We cal-
culated percent-splice-in (PSI) values of RNA transcripts,
which reveal how efficiently these sequences are spliced
into transcripts for a specific AS event.39 There were 3883
RNA transcripts with statistically differential PSI values
between ESCC tumors and NATs, and more AA, AD, AT,
ES, and RI events were observed in tumors (Figure 3F).
This was consistent with previous studies that showed
increased AS events in breast cancer and colorectal cancer
tissues relative to NAT tissues.40,41

3.3 Integrative illustration of molecular
pathways and metabolic signatures

Due to the high discordance between mRNAs and pro-
teins, we used proteomic data together with phosphopro-
teomic and metabolomic data to delineate the multilayer
molecular alterations of human ESCC. First, we analyzed
pathways dysregulated in ESCC using proteomic data.
There were 2890 DEPs in ESCC tissues (adjusted p < .05,

FDR q < .05, FC cutoff as 1.5) (Figure S10A). We then
constructed proteomaps17 to cluster the DEPs accord-
ing to their KEGG pathway annotations and observed
a distinct difference between ESCC tumors and NATs
(Figure 4A). ESCC tumors were dominated by higher
levels of spliceosome, histone, and ribosome-related
proteins along with lower levels of cytoskeleton proteins.
Subsequently, we performed GSVA18 using those DEPs
to quantify pathway activation. A total of 157 pathways
were found to be significantly perturbed in ESCC tumors
(adjusted p < .05) (Figures 4B and S11). Predominantly
activated pathways in ESCC included those related to RNA
transcription/processing/metabolism, DNA synthesis and
repair, protein synthesis, proteolysis, and cell cycle. Con-
versely, pathways related to cell junctions and interactions
were strikingly attenuated in ESCC tumors. Additionally,
ectopic stimulation of oncogenic signaling pathways,
including MAPK, Notch, Wnt, and mTOR, was found
in ESCC tumors. We then extended pathway analysis to
the phosphoproteomic data. There were 517 differentially
expressed phosphosites in ESCC tumors (adjusted p < .05,
FC cutoff as 1.5) (Figure S10B), indicating increased activity
of posttranslational modification. GSVA analysis using the
corresponding proteins of these phosphosites revealed the
activation of pathways involved in RNA transcription, pro-
cessing, andmetabolism in humanESCC tumors (adjusted
p < .05) (Figure 4C).
Subsequently, we analyzed the metabolic signatures

of human ESCC using metabolomic data. There were
56.50% metabolites (113/200) with differential expression
in ESCC tumors (adjusted p < .05, FDR q < .05). Among
these differentially expressed metabolites (DEMs), 83.19%
(94/113) of them were upregulated (Figure 4D), indi-
cating an active metabolic feature of ESCC tumors. We
then performed MSEA19,20 using those 113 DEMs and
observed a total of 17 metabolic pathways with remarkable
perturbation in ESCC tumors (adjusted p < .05, FDR
q < .05) (Figure 4E). Of note, 58.82% (10/17) of these
pathways were involved in amino acid metabolism, indi-
cating that amino acid metabolism was predominantly
disturbed in human ESCC. In line with this finding,
measurement of spent culture media of a human ESCC
cell line KYSE150 manifested that ESCC cells readily
imported and consumed many extracellular amino
acids, including cystine, arginine, proline, and so on
(Figure S12).
Both proteomic and phosphoproteomic data pinpointed

an increased activity in pathways related to RNA tran-
scription, processing, and metabolism, indicating that
these pathways were crucial for ESCC pathobiology. These
pathways are thoroughly analyzed in the next section.
We then performed an integrated analysis for the most
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F IGURE 3 Mechanistic investigations of transcriptional, posttranscriptional, translational, and posttranslational modulations in ESCC.
(A) GSEA analysis of all proteins showing active gene sets involved in transcriptional, posttranscriptional, translational, and posttranslational
level control in human ESCC tissues. One vertical line in the figure represents one protein. (B–E) Differentially expressed proteins between
ESCC and NAT samples involved in gene transcription (B), NMD pathway (C), eIF complex subunit (D), and ubiquitylation (E). (F) Heatmap
displaying RNA transcripts with statistically differential PSI values between ESCC and NAT samples. Seven alternative splicing events were
enrolled for analysis
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F IGURE 4 Multi-omics characterization of molecular features of ESCC. (A) Differential functional categories between NAT and ESCC
specimens as illustrated by Proteomaps using proteomic data. Each polygon corresponds to a single KEGG pathway, and the size was
correlated with the ratio between the two groups of samples. The maps show high dissimilarity between NAT and ESCC tissues. (B) Activity
scores of the top 50 significantly perturbed pathways according to protein levels between ESCC and NAT tissues. Up- and downregulated
pathways are shown as blue and yellow, respectively. (C) Activity scores of significantly disturbed pathways according to protein
phosphorylation levels between ESCC and NAT tissues. Up- and downregulated pathways are indicated as blue and yellow, respectively. (D)
Differentially expressed metabolites between ESCC tumors and NATs as exhibited by the heatmap. Notably, most of these metabolites were
upregulated in ESCC tumors. (E) Significantly perturbed metabolic pathways in human ESCC. The node size represents the statistic q-values
of metabolic pathways derived from MSEA analysis



JIN et al. 13 of 25

F IGURE 5 Integrative analysis of molecular signatures of ESCC using proteomic and metabolomic data. (A) Integrative analysis of
significantly altered metabolic enzymes and metabolites for the most perturbed metabolic pathway in ESCC, arginine and proline
metabolism. (B) Spearman correlation analysis between DEMs and DEPs representing key cellular phenotypes of ESCC. Metabolites with
significant correlation to at least one phenotypic protein marker are selected for display. Star marks in heatmap cells represent correlations
between metabolites and proteins with p < .05

perturbed metabolic pathway in ESCC, arginine and pro-
line metabolism, using metabolomic and proteomic data.
The network highlighted that ESCC tumors selectively
expressed several metabolic enzymes to expedite amino
acid production (Figure 5A).
In view of the importance of metabolites in cellular

phenotype determination,42,43 we conducted correlation
analysis between DEMs and DEPs representing key
cellular phenotypes of ESCC (Figure 5B). Overtly, 13
metabolites showed positive linkage to aldehyde dehydro-

genase 1 (ALDH1), a well-established stemness marker of
ESCC.44,45 These metabolites included five amino acids
(cysteine, glutamine, aminomalonic acid, methylcysteine,
and 3-sulfinato-alaninate), two carbohydrates (sorbitol
and arabitol), one nucleotide (cytidine), two organic
acids (malic acid and dehydroascorbic acid), one vitamin
(pyridoxine), and two unclassified metabolites (histamine
and 2-hydroxypyridine). These results suggested that
altered metabolites might be involved in impacting ESCC
stemness.
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3.4 Stimulated pathways of RNA
transcription, processing, and metabolism
unraveled by proteomic and
phosphoproteomic profiling

As mentioned above, both proteomic and phospho-
proteomic data pinpointed those pathways involved in
RNA transcription, processing, and metabolism (Fig-
ure 4B,C), thus implicating the importance of these path-
ways for ESCC malignancy. Consequently, the features
of these pathways were thoroughly dissected. The per-
centage values of remarkably upregulated proteins in
ESCC tumors accounting for totally enriched and dif-
ferential proteins in each pathway were 97.75% (87/89),
100.00% (99/99), 100.00% (67/67), 100.00% (77/77), 100.00%
(52/52), 100.00% (62/62), and 100.00% (63/63) for spliceo-
some (KEGG), processing of capped intron-containing
pre-mRNA (REACTOME), formation and maturation of
mRNA transcript (REACTOME), mRNA splicing (REAC-
TOME), transport of mature mRNA derived from an
intron-containing transcript (REACTOME), elongation
and processing of capped transcripts (REACTOME), and
transcription (REACTOME), respectively (Figures 6 and
S13).While the percentage values of significantly enhanced
phosphosites in ESCC tumors accounting for totally
enriched and differential phosphosites in each pathway
were 87.50% (14/16), 96.15% (25/26), 100.00% (15/15), 95.83%
(23/24), 95.00% (19/20), 93.75% (15/16), and 100.00% (17/17),
respectively (Figures 6 and S13). Collectively, these find-
ings showed that these molecular pathways were aber-
rantly stimulated in ESCC tumors.

3.5 Identification of protein markers
with prognostic potential

Of interest, for the DEPs in ESCC tissues of patient cohort
1, we sought to identify those proteins closely associated
with patient survival and potentially involved in ESCC
progression. In this small cohort (n = 24), higher TNM
stage and lymph node metastasis, two well-known risk
factors for ESCC, were associated with increased hazard
of disease relapse and death with a borderline significance
(Figure S14A), indicating the robustness of the prognostic
data. Univariate Cox model was fitted to assess the associ-
ation between each protein and patient survival. In order
to enhance the recognition of potential prognostic proteins
in this small cohort, we selected a borderline p-value of
.08 together with a 95% confidence interval of hazard
ratios (HRs) to perform statistical analysis as previously
reported,46 and a total of 118 proteins with prognostic
potential were identified. Among these proteins, 66 of
themdisplayed positive associationswith hazard of disease

relapse or death (Figure 7A), while the remaining proteins
exhibited negative linkage to hazard of disease relapse
or death (Figure S14B). KEGG pathway analysis revealed
that these 118 prognostic proteins were mainly enriched in
pathways of phagosome, complement and coagulation cas-
cades, p53 signaling pathway, and fructose and mannose
metabolism (p < .05) (Figure 7B).
For the 66 prognostic proteins positively linked to HRs,

their changes in ESCC tissues of patients at protein and
corresponding mRNA levels were analyzed. Twenty-three
of these proteins showed consistent expression direc-
tion with their corresponding mRNAs, indicating that
these proteins were modulated at the transcriptional level
(Figures 7C and S14C). While the remaining prognos-
tic proteins exhibited inconsistent expression direction
with their corresponding mRNAs, indicating that these
proteins were regulated at the posttranscriptional level
(Figures 7C and S14C). Of note, 14 genes, including 3-
hydroxyacyl-CoA dehydratase 2 (HACD2), RNA binding
motif protein 3 (RBM3), mitochondrial ribosomal protein
L14 (MRPL14), PEST proteolytic signal containing nuclear
protein (PCNP), X-prolyl aminopeptidase 3 (XPNPEP3),
TBC1 domain family member 5 (TBC1D5), bromodomain
PHD finger transcription factor (BPTF), centrosomal pro-
tein 170B (CEP170B), protein tyrosine phosphatase non-
receptor type 13 (PTPN13), N-alpha-acetyltransferase 50,
NatE catalytic subunit (NAA50), small nuclear ribonucle-
oprotein polypeptide F (SNRPF), nucleoporin 43 (NUP43),
fibrillarin (FBL), and coiled-coil-helix-coiled-coil-helix
domain containing 2 (CHCHD2), were significantly upreg-
ulated at both protein and mRNA levels (Figure 7C). The
mRNA transcription of these genes was assessed in ESCC
mice induced by 4-NQO. The result showed that three of
them, including RBM3, BPTF, and FBL, were significantly
increased in esophageal tissues of ESCCmice as relative to
that of controlmice (Figure 7D), demonstrating that upreg-
ulation of these three genes in ESCC was conserved in dis-
tinct species. Next, we selected five of the most upregu-
lated proteins in ESCC tumors, including HACD2, RBM3,
MRPL14, PCNP, and XPNPEP3, together with BPTF and
FBL for further investigation.

3.6 Validation and functional assays
highlighting FBL as a new unfavorable
prognostic biomarker

Subsequently, we enrolled an ESCC patient cohort 2
(n = 41, Table S3) and performed Western blot assays to
validate the expression of the above seven proteins with
prognostic potential in ESCC tissues. The results showed
that FBL, XPNPEP3, and BPTFwere remarkably increased
in ESCC tumors as relative to paired NATs (Figure 8A).
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F IGURE 6 Essential pathways of ESCC identified by the integrative analysis of proteomic and phosphoproteomic data. (A–D)
Heatmaps showing DEPs between ESCC tumors and NATs in the enriched pathways, including spliceosome (KEGG), processing of capped
intron-containing pre-mRNA (REACTOME), formation and maturation of mRNA transcript (REACTOME), and mRNA splicing
(REACTOME). Balloon plots on the right reveal differential phosphosites of proteins in the matched heatmaps on the left
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By contrast, PCNP was not altered, while RBM3, MRPL14,
and HACD2 were not detected in human ESCC tumors
(Figure S15A). These results manifested the inconsistency
between somemRNAs and their protein products, and fur-
ther highlighted the active posttranscriptional modulation
in ESCC. Furthermore, a previously reported gene expres-
sion dataset GSE23400,28 which contained 53 pairs of
ESCC tumor tissues and matched NAT tissues of patients,
was enrolled for re-analysis. The result verified that FBL
transcription was dramatically elevated in ESCC tumors
(Figure S15B).
We then explored the impact of FBL, BPTF, and XPN-

PEP3 on the malignancy of ESCC cells. Two human
ESCC cell lines KYSE150 and Eca109 were employed to
delete FBL, BPTF, and XPNPEP3 individually by using
two distinct guide RNAs for each gene. In vitro stud-
ies revealed that FBL abrogation dramatically downregu-
lated the expression of a cell proliferation marker PCNA
and remarkably restrained ESCC cell growth (Figure 8B).
Moreover, FBL ablation in ESCC cells elicited G1 phase
arrest and restrained the expression of cyclin D1 key for
G1/S transition, whereas its abrogation did not influence
cell apoptosis (Figure S15C–E). In addition, FBL dele-
tion in KYSE150 cells remarkably repressed the activity
of PI3K/AKT signaling, as demonstrated by the down-
regulation of phosphorylated AKT at Thr308 and Ser473,
respectively (Figure S15F). The role of PI3K/AKT signal-
ing in promoting G1/S transition has been previously well
established.47 Indeed, suppression of PI3K/AKT signal-
ing by using a PI3K inhibitor LY294002 caused increased
G1 phase arrest in KYSE150 cells (Figure S15G,H). In
vivo studies revealed that FBL deletion markedly impaired
the neoplastic growth of KYSE150 xenograft tumors (Fig-
ure 8C,D). However, ablation of BPTF or XPNPEP3 did not
influence ESCC cell propagation (Figure S15I,J). Together,
these results demonstrated that FBL, but not BPTF and
XPNPEP3, was essential for ESCC cell growth via acti-
vation of PI3K/AKT signaling and promotion of G1/S
transition.

Finally, we enrolled an ESCC patient cohort 3 (n = 100,
Table S4) to conduct an IHC staining assay study of FBL,
and results confirmed its upregulated expression in ESCC
tumors relative to NATs, as well as its usefulness as a prog-
nostic biomarker (Figure 8E). Of importance, high FBL
expression predicted inferior overall survival and relapse-
free survival of patients with ESCC (Figure 8F). Notably,
analysis of the TCGARNA-seq data showed that high tran-
scription ofFBLwas not associatedwith dismal overall sur-
vival of patients with ESCC (n = 78, Figure S15K), indicat-
ing no relevance between FBL mRNA and ESCC patient
prognosis. Collectively, these findings demonstrated that
high expression of FBL at protein level in tumor tissueswas
indicative of poor prognosis of ESCC patients.

3.7 Recapitulation of key molecular
events participating in ESCC development

Asmentioned above, FBLwas crucial for ESCC cell growth
in vitro and in vivo. FBL is a nucleolar methyltransferase
that mainly functions in site-specific methylation of rRNA
and histone H2A, thus promoting ribosome assembly and
early embryonic development.48,49 Hence, its increased
presence in tumors indicated that epigenetic modulation
and mRNA translation in ribosomes may be involved in
ESCC development. Second, as an important posttran-
scriptional process, AS was active in ESCC tumors (Fig-
ure 3F). Moreover, pathways related to RNA transcrip-
tion, processing, andmetabolismwere stimulated in ESCC
tumors (Figure 6). Additionally, UPS, a key pathway for
proteolysis, was stimulated in ESCC tumors (Figures 3A,E
and S9). Together, these results indicated that posttran-
scriptional and posttranslational regulation participated in
ESCC development. Finally, a series of metabolites and
metabolic pathways were upregulated in ESCC tumors
(Figure 4D,E), implying that activated metabolism was
required for sustaining the malignancy of ESCC. In sum-
mary, we inferred that molecular events in epigenetic,

F IGURE 7 Discovery of protein markers with prognostic value. (A) Total of 66 DEPs with positive correlation to HRs of disease relapse
and death were identified. For these prognostic proteins, their 95% confidential intervals of HRs of relapse or death are illustrated. HRs >1
correspond to an increased risk of death/relapse compared with the lower abundance of proteins, while HRs <1 correspond to a reduced risk
of death/relapse compared with the lower abundance of proteins. (B) KEGG pathway analysis showing that 118 proteins with prognostic
potential are enriched in pathways (p < .05), including phagosome, complement and coagulation cascades, p53 signaling pathway, and
fructose and mannose metabolism. Each node represents a pathway, with node size reflecting pathway enrichment significance. (C)
Expression direction (tumor/NAT) between 66 proteins with prognostic potential and their corresponding mRNAs. Twenty-three of these
proteins that are out of the dashed quadrilateral reveal consistent expression direction with their corresponding mRNAs, whereas the
remaining proteins that are highlighted by the dashed quadrilateral display inconsistent expression direction with their corresponding
mRNAs. (D) For the 14 genes with increased expression at both mRNA and protein levels in human ESCC tumors shown in (C), their mRNA
transcription was analyzed in esophageal tissues of ESCC and control mice. Three of these genes are significantly upregulated in esophageal
tissues of ESCC mice. *p < .05, ***p < .001, two-tailed Student’s t-test
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F IGURE 8 Validation and functional assays of prognostic protein markers. (A) Validation of the expression of FBL, XPNPEP3, and
BPTF between ESCC tumors and NATs using a patient cohort 2 (n = 41). Western blot and quantitative results displayed an increase in
expression of these proteins in ESCC tumors (T) relative to NATs (N). Representative Western blot images are shown. p-Values were
computed using the Wilcoxon rank-sum test. (B) Knockdown of FBL in ESCC cells KYSE150 and Eca109 and the consequential impact on
PCNA expression and cell growth in vitro. (C) FBL ablation curtailed the growth of KYSE150 xenograft tumors (n = 10 for each group).
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posttranscriptional, posttranslational, and metabolic lay-
ers cooperated closely to promote ESCC development and
progression (Figure 9).

3.8 Tumor antigens and drug
annotation of potential cancer drivers and
key kinases

Identification of new tumor antigens including CT anti-
gens would afford more opportunities for vaccine develop-
ment for cancer immunotherapy.50 By using the proteomic
data, four known CT antigens, MAGE family member B2
(MAGEB2),MAGE familymember A4 (MAGEA4),MAGE
familymember A8 (MAGEA8), and sperm-associated anti-
gen 9 (SPAG9), were found to be significantly increased in
ESCC tumors with FC range from 1.84 to 223.50 as com-
pared with NATs (adjusted p < .05, FDR q < .05) (Fig-
ure 10A).
In addition, identification of altered potential can-

cer drivers and kinases would improve our understand-
ing of cancer biology and give rise to new therapeutic
targets.21,51,52 We used our proteomic data to conduct the
investigation. By comparison of our data to a list of poten-
tial cancer drivers described previously,21 we identified
32 potential drivers with more than four-fold increase in
ESCC tissues (adjusted p < .05, FDR q < .05) (Figure 10B).
Furthermore, by data comparison to a kinase list from
PhosphoSitePlus and NetworKIN,22 we found 29 known
kinases with more than a four-fold increase in ESCC tis-
sues (adjusted p < .05, FDR q < .05) (Figure 10C). Sub-
sequently, two drug databases, DrugBank23 and PKIDB,24
were used for drug annotation for these potential cancer
drivers and kinases elevated in ESCC. The results revealed
that 21.88% (7/32) of cancer drivers and 86.21% (25/29)
of kinases possessed targeted inhibitors (Figure 10B,C).
These inhibitors could be tested as new therapeutics for
ESCC.

4 DISCUSSION

Previous omics studies of ESCC mainly focused on elu-
cidating the genomic aberrations of this malignancy.3–9

Notably, by conducting a comprehensive genomic analy-
sis of 158 ESCC cases, Song et al. identified several new
mutated genes as novel oncogenes of ESCC and also
found a series of new genemutations that were potentially
involved in the activity regulation of histones and several
essential signaling pathways.53 However, molecular per-
turbations in ESCC at posttranscriptional and posttransla-
tional levels were not distinguished in these studies.
The current study provides a comprehensive character-

ization of the molecular systems of ESCC at the transcrip-
tomic, proteomic, phosphoproteomic, and metabolomic
levels. We demonstrated that expression patterns of genes,
gene isoforms, proteins, phosphosites, and metabolites
were all overtly altered in ESCC tumors relative to NATs.
The conservation of modified expression patterns of genes,
gene isoforms, andmetabolites was verified in carcinogen-
induced ESCCmice. Of importance, integrative analysis of
transcriptomic and proteomic data revealed a remarkable
discrepancy between mRNAs and the corresponding pro-
teins in ESCC tumors, hence identifying high activities of
ESCC tumors in posttranscriptional and posttranslational
processes, including RNA transcription, RNA AS, RNA
decay, protein translation, and proteolysis. It is reported
that posttranscriptional processes, such as RNA AS, RNA
stability, and RNA decay, play a vital role in tumorigenesis
and tumor progression.37,54 For example, increasedmRNA
stability of SEMA4D regulated by HuR promotes cell pro-
liferation and migration of ESCC cells.55 In the current
study, we found that a panel of 480 genes with high expres-
sion both at RNA and protein levels, together with a series
of differential proteins discovered by proteomic profil-
ing, were potentially involved inmodulating posttranscrip-
tional and posttranslational processes of ESCC. Notably,
among these proteins, those with extremely high expres-
sion in ESCC tumors included SRSF10, SF3A2, CSTF2,
RIF1, LSM6, MRPL21, and UBE2A. SRSF10, a well-known
splicing factor, mediates AS of interleukin 1 receptor acces-
sory protein (IL1RAP) and promotes tumorigenesis in the
cervix.56 SF3A2 and CSTF2 are RNA-binding proteins.21
SF3A2 stimulates inclusion of exon 14 of the histone
methyltransferase enhancer of zeste 2 polycomb repres-
sive complex 2 subunit (EZH2) and has pro-proliferative
activity in renal cancer.57 CSTF2 induces 3′-UTR shorten-
ing of Rac family small GTPase 1 (RAC1) to exacerbate

(D) Images and weight of KYSE150 xenograft tumors with or without FBL deletion (n = 10 for each group). (E) Left panel, IHC staining image
showing FBL expression between ESCC (T) and NAT (N) tissues from patient cohort 3 (n = 100). Samples in the microtissue array that are not
orderly arranged are marked with stars for ESCC tissues or hashes for NATs. Middle panel, representative images of ESCC tissues with weak,
moderate, or strong FBL staining. The percentage of tumor tissues of each staining intensity is revealed. Paired normal tissues are displayed.
Right panel, quantification of IHC staining. p-Value was obtained from the Wilcoxon rank-sum test. (F) Overall survival and relapse-free
survival curves of ESCC patients of cohort 3 (n = 100) stratified by low and high FBL expressions from IHC staining. Error bars represent
mean ± SEM. *p < .05, **p < .01, ***p < .001, two-tailed Student’s t-test
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F IGURE 9 Amodel depicting molecular events during ESCC development identified by the multilayer study. Altered molecular events
of epigenetic modulation, posttranscriptional and posttranslational regulation, and metabolic reprogramming, which were potentially
involved in ESCC development and progression, are depicted

cellular malignancy in urothelial carcinoma.58 RIF1 mod-
ulates replication timing regulation and activates expres-
sion of human telomerase reverse transcriptase to expe-
dite epithelial ovarian cancer growth.59 LSM6 andMRPL21
are RNA-binding proteins.21 LSM6 participates in reduc-
ing E-cadherin expression, thus promoting cell migra-
tion in breast cancer.60 MRPL21 is highly expressed in
several cancers and could be used as a biomarker for
cancer prediction.61 UBE2A, an E2 ubiquitin-conjugating
enzyme, involved in DNA damage repair by catalyzing the
ubiquitination of different target proteins, promotes cell
cycle progression and tumorigenesis.62 Due to the well-
established tumorigenic roles of these proteins, it is rea-
sonable to hypothesize that active posttranscriptional and
posttranslational regulation is potential oncogenic driver
of ESCC.
To the best of our knowledge, the present study is

the first to integrate proteomic, phosphoproteomic, and
metabolomic data to thoroughly portray the perturbations
of signaling and metabolic pathways in ESCC. Analyses
of proteomic and phosphoproteomic data revealed that
pathways involved in RNAmetabolism, transcription, and
translation were enhanced at both protein and phospho-
rylation levels, thus underscoring posttranscriptional pro-
cesses as possible etiological determinants of ESCC. There
is increasing, consistent evidence to corroborate the impor-
tance of this biological process in ESCC development
and progression.63,64 Future investigations are necessary to

complete our understanding of the biological mechanisms
that determine ESCC malignancy. Additionally, our pro-
teomic andmetabolomic data revealed an enhanced amino
acid metabolism in ESCC tumors, indicating an addic-
tion of ESCC cells to amino acids. Indeed, previous stud-
ies have found that a series of amino acids were remark-
ably upregulated in ESCC tumors.65,66 Intriguingly, we
observed that several metabolites were positively linked to
an ESCC stemness marker ALDH1, indicating a close rela-
tionship betweenmetabolismandESCC stemness. Further
work is required to ascertain the biological functions and
translational potential of these abnormal metabolic path-
ways and metabolites in ESCC.
An essential finding of this study is the identification

of crucial proteins with prognostic potential for ESCC.
For 66 of them, which are negatively linked to patient
survival, their prognostic value is worthy of a validation
in future independent cohorts. It should be particularly
noted that this study yields a newly identified ESCC prog-
nostic marker, FBL, a nucleolar methyltransferase that
mainly functions in site-specific methylation of rRNA and
histone H2A, ribosome assembly, and early embryonic
development.48,49,67,68 FBL is involved in rDNA synthesis
during the interphase of the cell cycle, and is required for
normal nuclear morphology and cancer cell growth.49,68
To the best of our knowledge, there are no published stud-
ies reporting the role of FBL in ESCC. Here, we found that
FBL is highly expressed in ESCC tissues, negatively associ-
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F IGURE 10 Identification of tumor antigens and drug annotation of potential cancer drivers and key kinases in ESCC. (A) Four tumor
antigens with significant increases in ESCC tumors were identified by comparison of our proteomic data to a cancer/testis antigen list
downloaded from the CTDatabase. Red dots represent the median values of each group. p-Values were computed using the Wilcoxon
rank-sum test with Bonferroni correction. (B) A total of 32 potential cancer drivers with more than four-fold increase in ESCC tissues were
identified by comparison of our proteomic data to a list of potential cancer drivers provided by a previous study. (C) A total of 29 kinases with
more than four-fold increase in ESCC tissues were discovered by comparison of our proteomic data to a kinase list from databases,
PhosphoSitePlus and NetworKIN. Identified cancer drivers and key kinases were annotated with targeted drugs or inhibitors by searching the
databases, DrugBank and PKIDB. §Drugs or inhibitors approved by Food and Drug Administration for clinical trial. NA, not available

ated with patient prognosis, and vital for ESCC cell growth
via stimulation of PI3K/AKT signaling and promotion of
cell cycle progression, indicating that FBL is a potential
therapeutic target against ESCC. The underlying molecu-
lar mechanism of how FBL regulates PI3K/AKT signaling
requires further investigation.

Finally, therapeutic indications from this study should
be evaluated. First, molecular pathways involved in post-
transcriptional and posttranslational regulation are poten-
tial new therapeutic targets for ESCC treatment. For exam-
ple, seven of these pathway proteins identified by GO
and GSEA analyses, including SRSF10, SF3A2, CSTF2,
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RIF1, LSM6, MRPL21, and UBE2A, are extremely highly
expressed in ESCC and have well-established tumor-
promoting roles, thus supporting them as latent targets for
curative treatment of ESCC. In addition, UPS, a key path-
way involved in posttranslational regulation, is an appeal-
ing target for cancer therapy.69 Our proteomic data reveals
that many UPS enzymes are dramatically upregulated in
ESCC tumors, implying that inhibitors of UPSmay be use-
ful against ESCC. In line with this reasoning, a previous
study reported that a well-known proteasome inhibitor,
bortezomib was able to induce cell cycle arrest and cell
apoptosis, thus potentiating cytotoxicity of radiation ther-
apy for ESCC.70 Second, those prognosis-associated path-
ways enriched by KEGG analysis could be exploited as
therapeutic targets for ESCC. For instance, one of the
inhibited pathways, the p53 signaling pathway, drives the
oncogenesis of ESCC as previously reported.25 Third, due
to four CT antigenswith an overt increase in ESCC tumors,
it may be possible to develop vaccines to specifically elimi-
nate ESCC cells. Finally, based on the drug annotation for
potential cancer drivers and key kinases identified by our
proteomic data, we can test the efficacy of these inhibitors
in preclinical ESCC models as well as clinical trials in
the future and develop new attractive therapeutics for the
treatment of ESCC.

5 CONCLUSIONS

By using a multi-omics approach, we deciphered new
molecular events involved in ESCC development and pro-
gression, including aberrantmethyltransferase expression,
hyperactive posttranscriptional and posttranslational reg-
ulation, and reshaped metabolism. These findings have
deepened our understanding of ESCC pathobiology and
provided new prognostic biomarkers for risk stratification
of ESCC patients. Furthermore, these findings unveiled
new therapeutic targets and strategies for ESCC.
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