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Abstract: Prostate Cancer (PCa) is the second most commonly diagnosed cancer in men worldwide.
Although increased expression of prostate-specific antigen (PSA) is an effective indicator for the
recurrence of PCa, its intended use as a screening marker for PCa is of considerable controversy.
Recent research efforts in the field of PCa biomarkers have focused on the identification of tissue
and fluid-based biomarkers that would be better able to stratify those individuals diagnosed with
PCa who (i) might best receive no treatment (active surveillance of the disease); (ii) would benefit
from existing treatments; or (iii) those who are likely to succumb to disease recurrence and/or have
aggressive disease. The growing demand for better prostate cancer biomarkers has coincided with
the development of improved discovery and evaluation technologies for multiplexed measurement
of proteins in bio-fluids and tissues. This review aims to (i) provide an overview of these technologies
as well as describe some of the candidate PCa protein biomarkers that have been discovered using
them; (ii) address some of the general limitations in the clinical evaluation and validation of protein
biomarkers; and (iii) make recommendations for strategies that could be adopted to improve the
successful development of protein biomarkers to deliver improvements in personalized PCa patient
decision making.
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1. Introduction

Most men will develop prostate cancer (PCa) if they live long enough [1]. Indeed,
population-adjusted figures show that PCa is the fifth most common cause of cancer-related death for
males worldwide [2,3]. PCa is a disease of the elderly, as the likelihood of developing it is associated
closely with advancing age [4–7]. In the last 20 years, a man’s lifetime risk of being diagnosed with
PCa has increased considerably, and this is attributed largely to the introduction of PSA screening
in the early 1990s [8,9]. On the other hand, the number of men dying from PCa has decreased over
the same 20 year period as the disease can now be treated more effectively through a wide range
of treatment options and at an earlier stage [10]. When a man is diagnosed with PCa, his concerns
are likely to include; (i) will I survive? (ii) how will I be treated? and (iii) what effect will treatment
have on my lifestyle? From a clinical perspective, the main questions following a diagnosis of PCa
are; do the prognostic data provide clear guidance of which treatment option(s) may be best for the
individual patient? and, how does this align with the patient's individual circumstances, i.e., lifestyle,

Diagnostics 2016, 6, 27; doi:10.3390/diagnostics6030027 www.mdpi.com/journal/diagnostics

http://www.mdpi.com/journal/diagnostics
http://www.mdpi.com
http://www.mdpi.com/journal/diagnostics


Diagnostics 2016, 6, 27 2 of 43

perception of risk, life aspirations and numerous other factors which are weighted differently for each
man [11]. It is increasingly apparent that most men die with PCa and not because of it and for many
men the disease is over-treated which is associated with adverse side effects that can be worse than the
symptoms of the disease itself.

The key areas of importance in current PCa biomarker research are therefore to (i) achieve
‘improved’ diagnosis of PCa to identify those with life-threatening disease; (ii) identify additional
biomarkers to guide the choice the treatment options most likely to be effective and (iii) establish
biomarkers to identify disease recurrence/resistance to treatment as early as possible.

In this review, we discuss some of the main features of PCa that contribute to the difficulties in
diagnosing and treating the disease which in turn create challenges in identifying biomarkers of clinical
utility. Here, we provide a comprehensive overview of the application of proteomics to the discovery
and development of protein biomarkers and their translation to clinical tests that may address the
significant unmet needs in PCa diagnosis and treatment.

2. Prostate Cancer

Anatomically, the human prostate is made up of three morphologically distinct regions:
the peripheral, transition and the central zones [12]. Different prostatic diseases may appear in
each of these zones. Thus, benign prostatic hyperplasia (BPH) is a non-malignant growth, which
commonly occurs in aging men and is generally found in the transition zone. PCa on the other hand is
a malignant growth that arises primarily in the peripheral zone where it arises from the epithelial cells
of the prostate gland and is therefore described as an adenocarcinoma [4,13–15]. Well-differentiated,
low-grade tumors contain glandular structures containing tumor cells that express known PCa markers
such as androgen receptor (AR) and PSA, while poorly differentiated PCa tumors are lacking in
glandular structures and differentiated cells. As with many cancers, the cellular heterogeneity found in
PCa represents a fundamental challenge to treatment and diagnosis. It is widely accepted that, through
genetic mutation or otherwise, prostate tumors contain subpopulations of cells that are resistant
to therapeutic intervention and give rise to cells of metastatic potential [16]. Notably, it has been
demonstrated that between patients and even within the same patient there are substantial differences
in the genotype and phenotype of metastatic PCa cells [16,17] and that the genetic heterogeneity of
metastases can be traced to the primary carcinoma. Deep molecular profiling has also uncovered a
substantial degree of heterogeneity and the existence of diverse cancer clones within an individual’s
primary tumor [18]. It is evident therefore that PCa may develop from multiple clones which give rise
to a single PCa mass [19]. Although significant effort has gone into identifying the common genetic
aberrations that contribute to the mutational landscape of PCa, deriving any therapeutic benefit from
this information is impeded by the high levels of intra-tumoral heterogeneity as well as the long
natural history from diagnosis to metastases or lethality [20,21]. So, although not associated with a
high mortality rate, PCa is a complex malignancy that still needs to be understood more thoroughly at
a molecular level to improve on current diagnostic and treatment strategies.

2.1. PSA Screening and Prostate Cancer Diagnosis

The goal of an ideal cancer screening approach is to identify individuals within a population
who have cancer and, where possible, to select those for whom it is appropriate to intervene
therapeutically [1]. Since it was first described as a prostate specific protein and a potential marker for
PCa, the level of PSA (prostate specific antigen) protein in blood has become the most commonly used
molecular marker for screening, diagnosis and management of PCa and indeed is the most widely used
screening marker for any cancer [22]. PSA is a 30–33 kDa protein that is secreted into the seminal fluid
by luminal epithelial cells of the ducts and acini in the prostate. PSA is limited from release into the
circulation (blood) by the normal basement membrane of prostatic ducts and acini as well as prostatic
stroma. Although associated with PCa, increased PSA levels can also be caused by benign events such
as prostatitis and BPH (Figure 1) [23]. Furthermore, the level of PSA in blood, although correlated
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with long-term clinical outcomes at a population level, does not allow distinction between benign and
aggressive PCa in individuals. Elevated levels of PSA generally lead to a subsequent digital rectal
exam and tissue biopsy to confirm the diagnosis (and stage) of PCa. Notably, the prediction of disease
outcome based on PSA levels alone is highly uncertain [24,25] and the value of PSA screening is almost
obsolete for rapidly progressing cancers, which are in a pre-clinical state for a much shorter period of
time, and are usually undetectable at an early stage [25]. Moreover, the relationship between PSA and
chances of a positive biopsy diagnosis is also unclear. In a retrospective study using data from five
European and three US cohorts of men, it was found that the association between PSA and positive
biopsy was widely varied in terms of both the probability of PCa at a given PSA value and the shape
of the risk curve, which is used to provide prediction between low grade (Gleason < 7) and high grade
PCa [26]. Screening for PSA is sufficiently sensitive to detect many low-risk cancers and as such has
also been associated with a large increase in the number of men over-diagnosed and over-treated for
PCa [1,27]. Indeed, a study has shown that the extent of over-diagnosis associated with PSA screening
is estimated to be as high as 25%–50% [28] (Figure 1). Not surprisingly, appropriate implementation of
PSA screening is a highly debated subject. Although it is now recognized to have many limitations,
the use of PSA has contributed to a paradigm for the value of protein biomarkers in detecting disease.
The main weakness of the PSA assay is in its specificity, which researchers believe can be improved by
the incorporation of additional protein biomarkers to create a multiplexed protein panel [10,29].
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Figure 1. PSA screening and over diagnosis: The info graphic indicates the proportion of patients for
which a true diagnosis versus of prostate cancer is achieved as result of PSA screening (a); A common
reason for misdiagnosis is that a similar trajectory of PSA increase is often observed in men who
have benign prostatic hyperplasia (BPH) (b). Figure adapted from Lin, K et al. and Roobol, M., et al.
(2012) [30,31].

2.2. Disease Stratification and Curative Treatment Strategies

There are numerous treatment options available for men diagnosed with PCa, dependent on the
severity of disease. The main indication of disease risk is determined by the Gleason score which is
based on the glandular architecture of various areas of the tumor specimen (biopsy sample), observed
at low magnification [20]. The Gleason grading system uses five basic grades (based on observed
tumor growth patterns) which are used to generate a histologic score ranging from 2 to 10, by adding
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the primary grade pattern to the secondary grade pattern [32]. Although this grading system has been
used since the 1970s, it is now accepted that the original assignment of cancer stage based on Gleason
score is not appropriate for accurate staging of PCa tumors. This is largely due to the ambiguity
surrounding a Gleason score of 7. Many studies have shown that patient outcomes will vary based
on whether their Gleason score of 7 represents a tumor that is mostly Gleason 4 with some Gleason 3,
or vice versa [33–35]. A modified version of the Gleason scoring system has therefore been introduced
in which PCa tumors are graded as follows: grade group 1 (Gleason ď 6), grade group 2 (Gleason 3 + 4),
grade group 3 (Gleason 4 + 3), grade group 4 (Gleason 8) and grade group 5 (Gleason 9–10). This
revision of the Gleason scoring system has reportedly resulted in a more accurate grading system for
PCa patients and provides a much better prognosis for patients diagnosed with Gleason 6 PCa [36,37].

Levels of PSA and Gleason score can be combined to classify patients according to their level
of disease risk and thereby assist in determining the most appropriate treatment option [7,38].
Treatment options for early-stage PCa include observation/active surveillance, hormone therapy,
radical prostatectomy and radiotherapy (Table 1) [39]. Of these, radical prostatectomy and radiotherapy
are the two main first-line treatment options for organ confined PCa [10,39]. Approximately one third of
patients diagnosed with PCa undergo radical prostatectomy in the early stages of their disease [40,41].
Radical prostatectomy is an effective treatment option for patients with localized, low to intermediate
grade (Gleason score between 5 and 7) PCa and has been demonstrated to reduce the risk of death
from the disease. Radiotherapy is also used as a main treatment modality in men with PCa. It can
be included as an alternative to surgery although it is more often administered post-operatively,
either alone or in combination with hormone therapy (CHRT)—depending on the stage of disease
or the patient’s preference [42]. Hormone (androgen) ablation therapy is the primary treatment for
metastatic (non-localized) PCa [1,43]. The idea behind androgen ablation therapy is to reduce levels of
testosterone to castrate levels (<15 ng/dL), thus depriving the prostate cells of their most important
stimulant for growth, function and proliferation [44]. Until recently, indefinite administration of
mono- or combined androgen ablation therapy was the standard approach for treatment of advanced
or metastatic PCa [45]. In recent years, a wide variety of novel therapeutic options have become
available for advanced PCa [44–46]. Various combinations of established chemotherapy such as
Docetaxel and novel androgen axis targeted agents such as Enzalutamide and Abiraterone with
androgen ablation therapy or, indeed, the combination of hormone therapy with radiotherapy (CHRT)
have shown the most promise in terms of decreasing PCa-associated mortality [47]. However, despite
the reported efficacy of these treatments in management of PCa, they can take a considerable toll on a
man’s quality of life. For a disease with which a man can expect to live for a considerable number of
years, this is an important consideration when selecting an appropriate treatment option.

Table 1. European Association of Urology Guidelines for Prostate Cancer Screening, Diagnosis
and Treatment.

Category Screening and Diagnosis

Epidemiology 214 cases per 1000 men

Risk Factors Increasing age, ethnic origin and heredity

Classifications
Union Internationale Contre le Cancer 2010 TNM

Gleason scoring recommended for grading

Prostate Cancer Screening

1. Routine screening not recommended for men ages 40–54 years

2. Recommended shared decision making for men aged 55–69 years

3. Routine screening interval of ě2 years in men who decide on screening

4. Routine screening not recommended for men ě70 years or with life
expectancy <10–15 years
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Table 1. Cont.

Category Screening and Diagnosis

Diagnosis and Staging

1. Abnormal DRE/elevated PSA (cut-off level for normal PSA not
yet determined)

2. Diagnosis depends on histopathologic confirmation

3. TRUS-guided systemic biopsy with ě10 systemic, laterally directed cores

4. One set of repeat biopsies recommended in cases with persistent indication
for prostate biopsy (abnormal DRE, elevated PSA, ASAP, multifocal PIN)

5. MRI to investigate anteriorly located PCa if biopsy negative and clinical
indications of PCa persist

Primary Local Treatment

Active Surveillance

1. >10 years life expectancy

2. Stage T1–T2

3. PSA ď 10 ng/mL

4. Biopsy Gleason score <6

5. ď2 positive biopsies

6. ď50% cancer per biopsy

Radical Prostatectomy

1. Patients with life expectancy >10 years

2. In patients with high-risk localised PCa, life expectancy >10 years,
offered in multimodality setting

3. In patients with high risk locally advanced with life expectancy >10,
may be offered in multimodality setting

Radiation therapy (low risk) Dose of 74–78 Gy

Radiation Therapy
(intermediate risk) EBRT dose of 76–78 Gy in combination with short-term (4–6 months) ADT

Radiation therapy
(high risk, localised) EBRT dose 76–78 Gy in combination with long-term (2–3 years) ADT

Transperineal brachytherapy
as monotherapy

1. Stage cT1c-T2a, NOMO 1

2. Gleason score ď7 on at least 12 random biopsies

3. Initial PSA ď10 ng/mL

3. ď50% biopsy cores involved with cancer

4. A prostate volume of <50 mL

5. A good International Prostate Symptom Score (ď17)

6. No previous transurethral resection of the prostate

DRE = digital rectal exam; PSA = prostate specific antigen; TRUS = transrectal ultrasound; ASAP = atypical
small acinar proliferation in the prostate; PIN = prostatic intraepithelial neoplasia; MRI = molecular resonance
imaging; ADT = androgen deprivation therapy; EBRT: external beam radiation therapy; 1 PCa tumor staging
described in supplementary data Table S1.

2.3. Impact of Curative Treatment on Patient Lifestyle

The main function of the prostate is to secrete an alkaline fluid containing protein which aids
in motility, nourishment and protection for the sperm [6]. Despite this function, the prostate is not
necessarily required for fertility and removal of the prostate has therefore been broadly considered
as a relatively safe treatment option for men diagnosed with PCa. This view is supported by the
low mortality rate of less than 0.3% for men with intermediate to high-risk PCa who are treated by
radical prostatectomy. Indeed, some clinicians have advocated radical prostatectomy for low-risk
patients with localized disease [48]. In reality, however, the procedure is associated with significant
side effects that can and often do impact negatively on a man’s quality of life. These common side
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effects include; impotence, orgasmic dysfunction, incontinence, pulmonary emobolism, rectal injury,
urethral strictures and the need for transfusion [49]. More than 50% of men are at risk for ejaculatory
dysfunction, which has been cited as the primary concern of men receiving treatment for PCa [50].
Treatment of PCa is further complicated by a number of patient-specific compounding factors and
co-morbidities that are associated with increased age. These include complications arising from
cardiovascular disease and diabetes mellitus. In the past, radical prostatectomy, although a relatively
straightforward procedure, would not have been considered for men aged ě70 years who would have
been presumed to have a life expectancy of less than 10 years. Currently, with increased life expectancy
and the advent of minimally invasive surgical techniques, this is often no longer the case. However,
the outcomes for older men who undergo radical prostatectomy are not as promising as compared
to younger patients (<60 years old) [51,52]. Unfortunately, the risk to a man’s sexual function is also
prevalent as a consequence of androgen deprivation therapy (ADT) [53]. Additional side effects to
ADT include; decreased libido, osteoporosis, vasomotor flushing, fatigue, anaemia, diabetes mellitus,
metabolic syndrome and altered body composition [54]. Again, a patient’s age has been shown to
correlate significantly with the degree by which a patient will be affected by these side effects [54].
As well as age, other confounding factors in relation to sexually related side effects include the patient’s
level of pretreatment function and drive, his degree of functional impairment and his sexual partner.
Therefore, due to the chronic nature of PCa and the long period of time before the cancer evolves from
a premalignant lesion to a clinically relevant cancer, treatment should be focused on the quality of life
and sexual health of the patient as well as survival [50,51,54].

2.4. Impact of Curative Treatment on Patient Lifestyle

Active surveillance (AS) has become an alternative to curative therapy for patients that are deemed
unlikely to develop biologically or clinically significant PCa [55]. The idea behind implementing AS
is to prevent the overtreatment of patients with radical prostatectomy and/or hormone deprivation
therapy. Ideally, patients who present with low-risk PCa would instead be monitored closely over time,
without treatment. With a blood-based protein biomarker assay, any signs of more aggressive disease
would be detected at a sufficiently early stage for curative treatment, thereby allowing the majority of
patients to retain their current quality of life until treatment is absolutely necessary [56]. In 2006, the
Prostate Cancer Research International Active Surveillance (PRIAS) study was initiated to assess the
utility of AS in counteracting overtreatment in PCa. In their most recent report, in which 2492 ‘low risk’
PCa patients were followed for approximately 1.6 years, they suggest that AS is a feasible strategy to
reduce overtreatment, although their follow-up was too short to draw definitive conclusions about the
safety of AS [57]. A worldwide consensus for the appropriate criteria and protocols for AS has yet to
be established. Only two organizations—the South East Scotland Cancer Network (SCAN) and Cancer
Care Ontario (CCO)—have published guidelines that are specifically focused on AS, as opposed to
most others that only offer information on AS as an alternative management option [58,59]. To address
this lack of consensus, the Movember Global Action Plan 3 (GAP3) Active Surveillance project was
initiated in August 2014. This 30-month initiative will allow creation of the largest centralized PCa AS
database to date and will compromise the majority of the world’s AS patient data. The GAP3 project is
being implemented across 19 institutions across 14 countries in five Movember regions (Australasia,
Europe, UK, Canada, USA) as well as being open to other eligible centers. The overall aim is to provide
and manage a worldwide platform with information and guidelines on AS as an accepted treatment
option for PCa and to also reduce the number of men switching to active therapy within 1 year of
starting the AS protocol [56,60]. To complement this, another of the Movember Global Action Plans
(GAP1) is focused on the identification and validation of protein biomarkers that can more accurately
distinguish between low-risk and aggressive forms of PCa and are measurable in blood, urine and
tissue. The GAP1 project is, again, an international effort involving 50 principal investigators across
14 countries, with collaborators employing a number of the proteomic techniques that will be described
in this review.
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2.5. Clinical Need for Additional PCa Biomarkers

Although the majority of men diagnosed with localized PCa have indolent disease that will likely
not be threatening to their expected lifespan, approximately 15%–25% of men who undergo curative
treatment for localized disease will suffer cancer recurrence [15,38,61]. Moreover, 80%–90% of patients
who receive androgen ablation therapy develop castration-resistant tumors within 12–33 months,
for which there is no cure [43,62]. The earliest indication of PCa recurrence (treatment failure) is termed
‘biochemical recurrence’ and is diagnosed following two successive PSA measurements 2 ng above
the nadir—the nadir value being the baseline PSA measurement for a patient immediately following
radical prostatectomy [23,29,63]. However, not all patients with detectable PSA post-surgery will
manifest clinical progression and some patients may suffer cancer recurrence without a pre-emptive
increase in serum PSA [29]. This has been reflected in numerous studies, including a recent publication
by Ehdaie et al which demonstrated significant variability in longitudinal measurements of PSA in
individual PCa patients [8]. Despite much research into the area, few studies have been able to clearly
identify parameters that can be used to more reliably predict local recurrence and thereby identify
those patients who are more likely to benefit from treatment [64].

Using blood-based biomarkers to guide a biologically individualized approach to treatment
would be much more ideal for both patients and clinicians and could improve treatment outcomes and
survival rates by up to 10% [65]. Initially this was addressed by attempting to identify and measure
additional iso-forms of PSA. Free PSA (fPSA) is the small amount of PSA that is not bound to serum
proteins and the percentage of fPSA has been used to stratify the risk of PCa in men with total PSA
levels of 4–10 ng/mL and a negative digital rectal exam (DRE). A meta-analysis has shown that the use
of %fPSA improves the diagnostic performance among men with total PSA in the range of 2–10 ng/mL,
compared with total PSA alone [66]. However, fPSA is unstable at 4 ˝C or room temperature and can
produce conflicting results in men with BPH and prostatitis [67]. Both PSA velocity (PSAV) and PSA
doubling time (PSADT) have been used to measure the change in PSA per year and specific value
increases in PSA, respectively. These measurements are also considered to increase the specificity of
PSA [67]. An isoform of proenzyme PSA called [-2] proenzyme PSA (p2PSA) has also been advocated
as a target that can enhance the specificity of PSA-based screening [68]. In a prospective, population
based study of 769 biopsied men aged <65, it was shown that p2PSA combined with the Prostate
Health Index (PHI) score has a superior diagnostic performance for detection of PCa when serum PSA
is in the range of 1.6–8.0 ng/mL [69]. In another model proposed by Grönberg et al., it was shown that
a combination of plasma protein biomarkers (PSA, fPSA, hexokinase 2 (hK2), microeminoprotein beta
(MSMB), macrophage inhibitory cytokine 1 (MIC1)), genetic polymorphisms and clinical variables
(age, family history, previous prostate biopsy and prostate exam) performed significantly better than
PSA alone for detection of cancers with a Gleason score of at least 7. Indeed it was proposed that this
model—the STHLM3 model—could lead to reduced PCa mortality with substantially fewer biopsies
and reduced over diagnosis [70]. These studies have highlighted the weaknesses of PSA as a single
biomarker and further corroborate the need to identify multiple blood-based proteins that would be
able to stratify PCa patients at critical stages throughout the disease.

In summary, appropriate management of PCa is made extremely difficult to the inherent
heterogeneity of the disease and the weaknesses of PSA, which is still relied on quite heavily to
monitor progression of PCa. Current treatment options for PCa, although effective, are associated with
significant side effects and can have a detrimental effect on the quality of life for PCa patients. Although
active surveillance is being increasingly advocated for the management of PCa, both patients and
physicians are uncomfortable with forgoing immediate treatment. Ultimately, this is because existing
PCa treatment decision tools do not specifically address issues relevant to low-risk PCa [71]. To this
end, protein biomarkers that could accurately identify those patients at high risk for aggressive PCa,
could prevent the over-treatment of those with low-risk disease, thereby preserving their quality of life.
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3. Newly Emerging Tests for Prostate Cancer

3.1. Tissue Based Prostate Cancer Biomarkers

It is widely agreed that better understanding of PCa biology using tissue-based biomarkers might
help clinicians to make more personalized treatment decisions [72]. To this end, the prognostic value
of the protein Ki-67 has been well documented. This tissue-based marker has been shown to be a
significant determinant of distant metastasis and PCa-related death [73–75]. In addition, phosphatase
and tensin homologue (PTEN) loss has also been found to add prognostic value to Gleason score,
PSA and Ki-67 tissue staining [76]. It has been shown that PTEN loss is routinely observed in prostate
tumors with high Gleason grade, although it is recommended that it would only be of real use as a
biomarker if combined with a panel of additional markers. Indeed, no CE-IVD level standardized
assays exist for either PTEN or ki-67 currently [77].

With a view to establishing an assay based on a panel of PCa-specific markers, a number of tests
have emerged which claim to better predict PCa occurrence based on the observed expression of
multiple genes/proteins. One example is the Decipher test offered by Genome Dx Biosciences. This is
a 22-marker genomic classifier containing a large number of non-coding RNA sequences that was
both developed and verified in FFPE tumor tissue specimens. This test uses whole-transcriptome
microarray assay for analysis of gene activity in FFPE PCa specimens [78]. The expression of these
gene markers is used to calculate the probability of clinical metastasis within 5 years after radical
prostatectomy, and within 3 years of biochemical recurrence [79]. The test can also offer risk assessment
to help tailor treatment options for patients diagnosed with localized prostate cancer on biopsy. It has
been reported that the Decipher test is superior in predicting early clinical metastasis when compared
to previously described individual gene markers, multi-gene signatures and other clinicopathologic
variables [80]. Additionally, in a clinical utility study conducted by Badani et al., it was found that the
information provided by this test does influence the judgment of urologists in selecting an appropriate
secondary therapy in both adjuvant and salvage settings [78].

A similar test—the OncotypeDX offered by Genomic Health Inc. (Redwood City, CA, USA)—also
measures a 17-gene signature as an independent predictor of adverse pathology in PCa. The signature
is comprised of 5 reference genes (for normalization) and 12 cancer genes which represent biological
pathways with a known role in PCa progression; the androgen pathway, cellular organization pathway,
proliferation pathway and stromal response pathway [81]. This test was developed in a bid to address
the impact of tumor sampling in predicting aggressive PCa, i.e., by overcoming the inherent genetic
variations between regions of individual tumors and the limited tumor material acquired by needle
biopsy [82]. The RT-PCR-based assay has been clinically validated to predict the risk of high grade
and/or non-organ confined PCa at radical prostatectomy using biopsy samples containing as little as
1 mm of tumor tissue [79,81].

Recently, a test based on the expression of cell cycle progression genes in primary tumor samples
has shown great promise in accurately stratifying patients with localized PCa according to disease
aggressiveness. The ‘Prolaris’ test, which is offered by Myriad Genetics Inc. (Salt Lake City, UT, USA),
is a genomic test for predicting PCa aggressiveness in conjunction with clinical parameters such as
Gleason Score and PSA [79]. This RNA expression-based assay directly measures tumor cell growth
characteristics. The test combines the gene expression levels of 31 cell cycle progression (CPP) genes
and 15 house-keeping genes to give a CPP score [83]. The CPP signature was originally validated
in both a retrospective cohort (336 patients) from the US who had undergone radical prostatectomy
and a UK cohort of 337 patients with clinically localized PCa diagnosed by transurethral resection
(TRUP) [84]. In a univariate analysis it was found that the CPP score alone could accurately predict
biochemical recurrence. In a multivariate analysis, where CPP was combined with additional clinical
parameters for PCa diagnosis, it was found that CPP and PSA were the most significant predictors of
recurrence and provided much more prognostic information than any other variable in both cohorts.
This assay has since been validated in numerous cohorts representing disparate patient populations
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using both tumor biopsy samples and paraffin sections [85–88]. Currently, it is envisaged that this test
will be most applicable in helping to identify low-risk patients who can be safely managed with active
surveillance [38]. Results of a meta-analysis of five studies were presented at AUA 2016 and show
the test to be a significant predictor of oncologic outcomes in patient with low risk disease defined by
Gleason Score <7 [89]. Further validation of the Prolaris assay is underway in larger, community-based
cohorts with more results anticipated for later in 2016.

Metamark offer the ‘ProMark’ assay, which is a protein based prognostic test for predicting PCa
aggressiveness—particularly for patients with Gleason grade 7 disease [79]. This assay was originally
designed to measure 12 protein markers in patient biopsy specimens [72]. The signature has since been
refined to eight protein markers which are predictive of PCa aggressiveness and measured using a
multiplexed in situ imaging system [90]. The test has been shown to reproducibly provide simultaneous
quantification of protein levels and functional activities using tissue specimens [91]. The intended
use of this test is to supplement current biopsy-based PCa risk assessment methods in cases where a
clinical decision regarding active surveillance versus active treatment is not straightforward. PCa is a
highly heterogeneous and multifocal disease and so, the eight biomarkers which comprise the ProMark
assay have been specifically selected and evaluated to predict pathology outcome whether they are
measured in low or high grade tumor specimens from the same patient. As such, the ProMark test can
perform accurately and with high sensitivity, even in tissue samples with variable amounts of tumor
versus benign components. Indeed, the ProMark assay has been validated in an independent blinded
study and shown to complement current risk stratification systems [92].

Although the tests described here show a great deal of utility in stratifying patients for appropriate
PCa treatment, they are all dependent on the availability of tumor tissue samples. Therefore, these tests
are faced with one of the main limitations for development of routinely used and robust clinical assays,
namely that biopsy-based analysis is generally associated with at least a 20% error rate due to (a) the
tissue sampling error associated the limited amount of sample acquired during biopsy; (b) the tissue
heterogeneity of the disease and; (c) the complex procedures implemented to preserve tissue samples.
Furthermore, there is little to no overlap in the genes/proteins analyzed in the different tests and,
perhaps not surprisingly, their overall utility remains unknown. To overcome many of these limitations,
it would be highly desirable to have a clinical test based on gene/protein measurement in a patient
biofluid which is less limited in sample access, obtained less invasively, easier to sample repeatedly
and can be processed for storage and analysis in a more standardized and less complex manner.

3.2. Fluid Based Prostate Cancer Biomarkers

There has been a significant investment in the discovery of gene and protein biomarkers and
the development of biofluid based assays for improved diagnosis and treatment of PCa patients.
Gene-based assays have, to date, made much more progress than proteomic-based assays. As an
example, the expression of a gene called DD3PCA3, which codes for a protein called Prostate Cancer
Antigen 3 (PCA3), has been shown to correlate with malignant PCa. Indeed, it has been demonstrated
that PCA3 is not at all expressed in normal prostate tissue and expressed at very low levels in BPH
specimens [93]. Moreover, the expression of PCA3 can be measured in urine. The Progensa assay
compares the concentration of PCA3 mRNA levels to PSA mRNA levels to produce a urinary PCA3
score [94] and it has been found that urinary PCA3 scores (PCA3-mRNA/PSA-mRNA) are consistently
superior to serum PSA levels for diagnosis of PCa. Unlike PSA, PCA3 expression remains constant
during prostatic hyperplasia and prostatitis, thereby making it more sensitive than PSA for PCa
detection and it has therefore been suggested that the PCA3 score be used as an exclusion tool [95,96].
The main downside to this test, however, is that it can only be performed using the first 20–30 mL of
urine voided after a digital rectal exam (DRE) so it only provides valid results in approximately 80% of
cases [95]. The measurement of PCA3 has also been combined with another well-known biomarker
of PCa—the TMPRSS2:ERG gene fusion as part of the Mi-Prostate Score [97]. Both the PCA3 and
TMPRSS2:ERG biomarkers can be detected in patient’s urine after DRE which provides a basis for
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a non-invasive, easy to use clinical test. This validated test, which is offered by the University of
Michigan MLabs incorporates blood PSA levels with urinary levels of PCA3 and TMPRSS2:ERG to
allow for stratification of PCa while avoiding unnecessary biopsies [79,97,98].

A newly available urine test from the same team who developed the PCA3 test and offered by
MDx Health is SelectMDx, which measures expression of HOXC6 and DLX1 genes in urine using
KLK3 (PSA) used as an internal reference. This test was designed following a study by Leyton et al.,
which identified 39 PCa biomarkers from gene expression profiling data. Quantitative PCR analysis
on both tissue and urine samples led to the identification of 8 urinary biomarkers for PCa which was
subsequently refined to a 3-gene panel—HOXC6, TDRD1 and DLX1. This urinary 3-gene panel showed
higher accuracy in detecting aggressive (Gleason > 7) PCa compared to the Progensa PCA3 assay [99].
Subsequently, two prospective multicenter studies were conducted to validate the gene panel based
on whole urine and develop a model combining molecular profiling with traditional clinical risk
factors. The risk score derived from combining the two most promising gene markers—HOXC6 and
DLX1—with PSAD, DRE and PSA was found give the most accurate detection of high grade PCa on
biopsy and was also successfully validated in an independent patient cohort [100].

PCA3 has also been incorporated into a new test called the ExoDx Prostate Intelliscore, which is
offered by ExosomeDx. This test measures PCA3 along with two other exosomal RNAs which are
known to be expressed in men with high grade PCa. Using a proprietary algorithm integrating the
hree genes with standard of care measurements the test can predict whether patients presenting for
initial biopsy are have aggressive disease with an AUC of 0.73 (95% CI = 0.68–0.77) [101]. The ExoDx
Prostate test aims to reduce the number of unnecessary biopsies and will be available in the US this
year as a Clinical Laboratory Improvement Amendments (CLIA)-based clinical laboratory-developed
test (LDT).

Another urine test called Prostarix (Metabolon Inc. Durham, NC, USA) uses metabolomics
technology to measure levels of four amino acids associated with PCa. Using liquid chromatography
and mass spectrometry coupled with a logistic regression algorithm to generate a score, the test claims
to aid the assessment of cancer detection and can be used to distinguish between benign prostate,
clinically localized PCa and metastatic disease [102].

The recent successes in clinical research on serum-based biomarkers for PCa detection remain
confined to the kallikrein field [103]. A four prostate-specific kallikrein panel has shown great promise
as a serum-based test for PCa. The 4Kscore is a combined measurement of total PSA, fPSA, intact PSA
and human kallikrein-related peptide 2 (hK2). It has been observed in multiple studies that the serum
4Kscore assay accurately predicts the risk of biopsy-detectable high-grade PCa in men who have not
undergone a prostate biopsy [104]. Indeed, one study showed it to be more predictive of PCa than
PCA3, and it was therefore recommended for use alongside PCA3 for detection of PCa in pre-screened
men [105]. The 4Kscore is now commercially available in the US as a CLIA-approved LDT. Unlike
PSA, however, the 4kscore is not (currently) FDA approved although it appears to have some clinical
utility [94].

The PCa tests described here are summarized in Table 2. Although these tests are certainly
promising, due to their novelty longitudinal studies addressing their clinical benefit when implemented
outside of tightly controlled studies are warranted [106]. Ultimately, to integrate a new marker into
clinical decision making, it must prove to be superior to the standard measures currently in use [107].
Another challenge to overcome with regards to the urine and serum-based tests is the dilution effect
of measuring secreted genes/protein in bodily fluids based on which tumor/tissue regions they
originate from. In this respect, the choice of technology with which to measure markers of interest
will be a key consideration for the successful development and clinical implementation of fluid-based
PCa biomarkers.
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Table 2. Newly Emerging Tests for Prostate Cancer 1.

Assay Marker Description Assay Type Biomaterial FDA Approved

Tissue-Based

Oncotype DX 17 genes RT-PCR
Fixed paraffin
embedded needle
core biopsy

No

Prolaris 46 genes RNA expression
Formalin-fixed
paraffin embedded
needle core biopsy

No

ProMark 8 proteins Immunofluorescent
imaging

Formalin-fixed
paraffin embedded
needle core biopsy

No

Decipher 22 coding and
non-coding RNAs

Whole-transcriptome
microarray

Formalin-fixed
paraffin embedded
needle core biopsy

No

Confirm MDx 3 genes
Quantitative
methylation-specific
PCR

Prostate needle
core biopsy No

PCMT mtDNA deletions Quantitative PCR
(specific for mtDNA)

Prostate needle
core biopsy No

Fluid-Based

phi PSA, fPSA, p2PSA Multi-analyte
Immunoassay Serum No

4K score total PSA, fPSA, intact
PSA, hK2

Multi-analyte
Immunoassay Plasma No

Progensa (PCA3) PSA and PCA3 mRNA in vitro RNA
TMA assay

Post-DRE first
void urine

Only when repeat
biopsy considered

SelectMDx HOXC6, DLX1, KLK3
Reverse
Transcription
PCR (RT-PCR)

Post-DRE first
void urine No

MiPS
PSA,PCA3 and
TMPRSS2:ERG
mRNAs

in vitro RNA
TMA and
Hybrid Protection
Assay (HPA)

Post-DRE first
void urine No

Prostarix
4 amino acids:
sarcosine, alanine,
glycine and glutamate

Liquid
chromatography and
mass spectrometry

Post-DRE urine No

ExoDx Prostate
(IntelliScore)

Exosomal RNA (ERG,
PCA3, SPDEF) RT-PCR Urine No

1 Table adapted from Falzarano et al. [94].

4. Proteomics to Answer Key Questions in Prostate Cancer

The term proteomics was introduced as an analogy to that of ‘genomics’ [108]. While genomics
involves the study of the genes that code for a protein, proteomics is focused on studying the proteins
themselves—thus providing a clearer reflection on cellular activity [109]. Proteomic-based experiments
can be used to characterize any alterations in protein expression during disease progression [110,111].
The emerging field of proteomics has had a tangible impact on biomarker discovery in PCa (Figure 2).
A useful cancer protein biomarker would be a protein measurable in body fluids or tissues that could
reflect the presence of cancer and provide information on the cancer’s stage, aggressiveness and
how well the patient is responding to therapy [112]. For such a biomarker to be clinically applicable,
however, it must also meet the following criteria: (i) the protein must be easy to measure at a reasonable
cost; (ii) elevated levels of the protein must provide information that would not be available without
that protein and (iii) the information obtained from measurement of the protein can be used to guide
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clinical decision making [113,114]. Due to the complex nature of cancer, uniformity is non-existent
among each histologic cancer type and within each individual tumor. As such, examination of
combinations of potential protein biomarkers as panels is believed to provide greater promise for
improved PCa diagnosis and monitoring [115]. This trend is reflected in the most recent publications
related to PCa associated biomarker discovery (Table 3).

According to Rifai et al., the process of identifying new protein biomarkers is conducted in four
main stages, beginning with an initial discovery phase and ending with a final evaluation phase [116].
This process requires technologies that will allow for fast and consistent identification of proteins
spanning the expansive dynamic range of the disease proteome [111]. For the initial discovery phase,
those proteins, which appear to be changing as result of disease activity, can be identified in any
biological sample; however, there are advantages and disadvantages associated with biomarker
discovery in the various biological samples used (Table 4).Diagnostics 2016, 6, 27 12 of 41 
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Figure 2. PubMed Search Results for Proteomics and Prostate Cancer: A PubMed search was conducted
in March 2016 with the search terms “Prostate Cancer” AND “Proteomics”. The total number of ‘hits’
was 533, with dramatic increases observed for the years 2003 and 2013.

Table 3. Selected Publications Related to Prostate Cancer and Proteomics research over the last
ten years.

Reference Title Marker(s)

Webber, JP et al.
Oncotarget 2016 [117]

Prostate stromal cell proteomics analysis
discriminates normal from tumour reactive
stromal phenotypes

Proteins including TAGLN,
VDAC1, VDAC2, ALDH1A1

Adeola, HA et al.
Oncotarget 2016 [118]

Novel potential serological prostate cancer
biomarkers using CT100+ cancer antigen microarray
platform in a multi-cultural South African cohort.

41 antigen biomarkers including
GAGE1, ROPN1, SPANXA1,
PRKCZ, MAGEB1, p53, S15A,
S46A, FGFR2, COL6A1, CALM1

Li, Q et al. Int. J. Oncol.
2016 [119]

Quantitative proteomic study of human prostate
cancer cells with different metastatic potentials SETDB1

Ino, Y et al. Proteomics
2016 [120]

Phosphoproteome analysis demonstrates the
potential role of THRAP3 phosphorylation in
androgen-independent prostate cancer cell growth.

THRAP3

Kazuno, S et al. Cancer
Med. 2016 [121]

Glycosylation status of serum immunoglobulin G in
patients with prostate diseases Glycosylation changes in IgG
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Table 3. Cont.

Reference Title Marker(s)

Stone, L. Nat. Rev. Urol.
2016 [122]

Prostate cancer: Proteomics provides a
prognostic marker. -

Davalieva, K et al.
Prostate 2015 [123]

Proteomics analysis of malignant and benign
prostate tissue by 2D DIGE/MS reveals new insights
into proteins involved in prostate cancer

9 proteins (CSNK1A1, ARID5B,
LYPLA1, PSMB6, RABEP1,
TALDO1, UBE2N, PPP1CB,
and SERPINB1)

Arner, P et al. PLoS
ONE 2015 [124]

Circulating carnosine dipeptidase 1 associates
with weight loss and poor prognosis in
gastrointestinal cancer

CNDP1

Shipitsin, M et al. Br. J.
Cancer 2014 [90]

Identification of proteomic biomarkers predicting
prostate cancer aggressiveness and lethality despite
biopsy-sampling error

12 proteins (ACTN1, CUL2,
DERL1, FUS, HSPA9, PDSS2,
PLAG1, pS6, SMAD2, SMAD4,
VDAC1, YBX1)

Bergamini, S et al.
Proteome Sci. 2014 [125]

Inflammation: an important parameter in the search
of prostate cancer biomarkers.

9 Proteins (F2, C4B, C3, AZGP1,
HPX, SERPINC1, SERPINF1,
HP, SAA1)

Pallua, JD et al. J.
Proteomics 2013 [126]

MALDI-MS tissue imaging identification of
biliverdin reductase B overexpression in
prostate cancer

BLVRB

Leymarie, N et al. Mol.
Cell Proteom. 2013 [127]

Interlaboratory study on differential analysis of
protein glycosylation by mass spectrometry:
the ABRF glycoprotein research multi-institutional
study 2012

Glycoforms of PSA

Jiang, FN et al. PLoS
ONE 2013 [128]

An integrative proteomics and interaction
network-based classifier for prostate cancer diagnosis

3 proteins
(PTEN, SFPQ, HDAC1)

Han, ZD et al. Med.
Oncol. 2012 [129]

Identification of novel serological tumor markers for
human prostate cancer using integrative
transcriptome and proteome analysis

IMPDH2

Endoh, K et al.
Prostate 2012 [130]

Identification of phosphorylated proteins involved in
the oncogenesis of prostate cancer via
Pin1-proteomic analysis

TFG

Cheng, HL et al.
Proteom. Clin. Appl.
2011 [131]

Urinary CD14 as a potential biomarker for benign
prostatic hyperplasia—discovery by combining
MALDI-TOF-based biostatistics and
ESI-MS/MS-based stable-isotope labeling

CD14

Alaiya, AA et al. Int. J.
Oncol. 2011 [132]

Proteomics-based signature for human benign
prostate hyperplasia and prostate adenocarcinoma

15 proteins (TPM1, PHB, KRT8,
TUBB2, DES, Glycerol 3
phosphate, P4HB, EHHADH,
HSPA5, KRT18, SERPINA1,
CKB, HSPA8, ATP5B, ANXA4

True, LD et al. Mod.
Pathol. 2010 [133]

CD90/THY1 is overexpressed in prostate
cancer-associated fibroblasts and could serve as a
cancer biomarker

CD90/THY1

Valmu, L et al. Methods
Mol. Biol. 2010 [134]

Proteomic analysis of pancreatic secretory trypsin
inhibitor/tumor-associated trypsin inhibitor from
urine of patients with pancreatitis or prostate cancer

PSTI

Thoenes, L et al. J.
Proteom. 2010 [135]

In vivo chemoresistance of prostate cancer in
metronomic cyclophosphamide therapy 3 proteins (TXN, CTSB, ANXA3)

Van der Deen, M et al. J.
Cell Biochem. 2010 [136]

The cancer-related Runx2 protein enhances cell
growth and responses to androgen and TGF-beta in
prostate cancer cells

Runx2

Sardana, G et al. J
Proteome Res. 2008 [137]

Proteomic analysis of conditioned media from the
PC3, LNCaP, and 22Rv1 prostate cancer cell lines:
discovery and validation of candidate prostate
cancer biomarkers

4 proteins (FST, CXCL16,
PTX3, SPON2)
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Table 3. Cont.

Reference Title Marker(s)

Saito, S et al. Int. J.
Cancer 2008 [138]

Haptoglobin-beta chain defined by monoclonal
antibody RM2 as a novel serum marker for
prostate cancer

RM2

Ummanni, R et al.
Cancer Lett. 2008 [139]

Prohibitin identified by proteomic analysis of
prostate biopsies distinguishes hyperplasia
and cancer

PHB

Huang, D et al. Cancer
Epidemiol. Biomark. Prev.
2007 [140]

Quantitative fluorescence imaging analysis for cancer
biomarker discovery: application to beta-catenin in
archived prostate specimens

CTNNB1

Ruan, W et al. Mol. Cell
Proteom. 2006 [141]

Identification of clinically significant tumor antigens
by selecting phage antibody library on tumor cells in
situ using laser capture microdissection

ALCAM, MEMD, CD166

Johansson, B et al.
Prostate 2006 [142]

Proteomic comparison of prostate cancer cell lines
LNCaP-FGC and LNCaP-r reveals heatshock protein
60 as a marker for prostate malignancy

HSP60

Lam YW et al.
Proteomics 2005 [143]

Mass profiling-directed isolation and identification of
a stage-specific serologic protein biomarker of
advanced prostate cancer

PF4

Table 4. Considerations for Sample Selection for Biomarker Discovery 1.

Tissue Body Fluids

Biopsy Needle
Biopsy Serum & Plasma Urine Prostatic Fluid and

Seminal Plasma

Advantages

Direct analysis of tumor
protein expression/activation

Non-invasive
collection Non-invasive collection Minimally invasive

collection

Diagnostic markers Fast and low-cost
sample preparation High volume

Rich in
prostate-derived
proteins

Prognostic markers Diagnostic markers Rich in prostate-derived
proteins

Fast and low-cost
sample preparation

Most useful for patient
stratification in terms of
response to therapy

Prognostic markers Fast and low-cost
sample preparation Diagnostic markers

- - Diagnostic markers Prognostic markers

- - Prognostic markers

Limitations

Invasive collection Low abundance of
potential biomarkers

Low abundance of
potential biomarkers

Low abundance of
potential biomarkers

Limited quantity Dynamic
concentration range

Dynamic concentration
range

Dynamic
concentration range

Must be snap-frozen within 30
minutes from collection

Intra and
inter-patient
variability in
composition

Intra and inter-patient
variability in
composition

Intra and
inter-patient
variability in
composition

Complicated sample
preparation - Variability in sample

collection -

1 Table adapted from Pin et al., 2013 [95].

5. Biological Sources for Biomarker Discovery in Prostate Cancer

5.1. Tissue

Tissue and cell culture models are appealing for biomarker discovery in that they can be directly
manipulated to investigate the expression and/or role of certain proteins, as direct result of drug
treatment or viral infection [144]. Furthermore, tissue and cell culturing allows for analysis of single
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cell populations (e.g., fibroblasts or macrophages) should they be of particular interest, as well as mixed
cell populations, similar to what would be found in the in vivo environment [145]. The main downside
to identifying protein biomarkers in this manner, of course, is that tissue and cells cultured outside of
the human body cannot provide accurate insight into disease progression in vivo. Aside from culturing
of tissue cells, proteomic experiments can also be performed on fresh tissue specimens. This method is
slightly more challenging as harvesting and processing tissue specimens must be performed as quickly
as possible to avoid any protein degradation [146]. To preserve their proteome integrity, tissue samples
can be snap frozen or fixed using formalin and embedded in paraffin wax. The latter is referred to as
formalin fixed paraffin embedded (FFPE) tissue, and this is the universal method for tissue preservation
and stabilization [147]. In the field of proteomics, patient tissue samples are most commonly used to
validate the expression of proteins of interest. However, in recent years numerous protocols have been
optimized for efficient protein extraction of FFPE material for subsequent proteomic analysis via both
antibody and mass spectrometry-based techniques [148,149]. Techniques for harvesting cells directly
from tissue samples have also evolved in the last number of years. For example, coupling Laser capture
microdissection (LCM) with proteomics allows for the analysis of proteins from specified regions
of interest within a tissue section. This approach has been successfully applied for the proteomic
characterization of regions of Gleason 3 and Gleason 4 PCa tumor tissue [150–152].

5.2. Blood

Blood circulates through the entire human body and contains proteins that are secreted by all
cells and tissues. Therefore, even though the most prominent molecular changes will occur at the site
of tumor formation and in surrounding tissue, such changes are likely to be reflected in the blood
also. Whole blood is made up of serum, plasma, red blood cells (RBCs), white blood cells (WBCs) and
clotting factors. Of these, serum and plasma are the fractions most often used for routine blood testing
in hospitals and clinics as they contain many proteins that are synthesized, secreted, shed or lost from
the cells and tissues throughout the body [153,154]. Serum and plasma are very similar in composition,
both containing components such as glucose, electrolytes, antibodies, antigens, hormones, proteins,
enzymes, nutrients and other small molecules. Serum is obtained from coagulated blood—fibrin
clots formed during coagulation along with blood cells and related coagulation factors are separated
from serum by centrifugation. Plasma, on the other hand, contains clotting factors and must be
treated with an anti-coagulant such as EDTA or heparin before the removal of blood cells [155]. Serum
and plasma represent readily accessible and clinically relevant samples for biomarker discovery and
validation [156–159]. However, there are certain caveats to be considered when working with serum
and plasma in the context of biomarker discovery. Sample processing and storage conditions must be
conducted under standard operating procedures to ensure reproducibility in the data obtained across
various laboratories [160]. This is an important factor that is often not considered. The main issue
with regards to serum/plasma proteomics, however, is the expansive dynamic range of the proteome,
which spans over 12 orders of magnitude [161]. In fact, the majority (95%) of serum or plasma proteins
are made up of a few high abundant proteins such as albumin, immunoglobulins, alpha-1-antitrypsin
and haptoglobins, etc., which can mask the presence of potentially significant low abundant proteins
(Figure 3) [156]. To overcome this, numerous fractionation, depletion and enrichment techniques
are often implemented to enhance the detectability of low abundant proteins. Although this is a
useful strategy for proteomics discovery, when it comes to validation of potential protein biomarkers,
the additional sample preparation techniques can introduce considerable variability, as well as adding
to the time and cost of running a blood-based diagnostic assay.

5.3. Urine

Urine is considered to be the ultrafiltrate of blood and is a popular biofluid for diagnostics and
biomarker discovery [162,163]. Urine is favored as a source for biomarkers for several reasons; (i) large
quantities of urine can be obtained non-invasively and trained personal are not required to obtain
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a sample; (ii) urine contains proteins and peptides of low molecular weight that can be analyzed
without excessive sample preparation and (iii) urine is a highly stable body fluid. It is stored for
hours in the bladder and therefore any proteolytic degradation is essentially complete by the time
urine is voided [164]. Furthermore, with regards to PCa, fluids that are proximal to the prostate
are attractive sources of potential biomarkers as they are likely to contain secreted proteins that can
be used to assess the extent of disease [165,166]. Again, however, there are a number of caveats
with regards to using urine as a biological source for biomarker discovery; (i) as samples are not
collected by trained personnel, it is difficult to control for variability in sample collection; (ii) much
like plasma and serum, the protein composition of urine spans a wide concentration range (Figure 3)
and (iii) urine composition is greatly influenced by patient-related variances such as collection time,
diet, exercise and disease stage [164]. Despite these pitfalls, however, urine has been described as
the next frontier for biomarker development for PCa [167]. Indeed, proteomic studies of urine have
been successfully implemented for the discovery of novel biomarkers for diagnosis, surveillance and
monitoring of disease progression, as demonstrated by the success of the Progensa (PCA3) assay [96].
Many researchers have also successfully identified and measured additional potential PCa biomarkers
in urine. For example, in a study conducted by Jedinak et al. patient urine samples were used for
the identification and validation of urinary biomarkers that would distinguish between BPH and
localized PCa. Here, a panel of three urinary protein biomarkers, β2M, PGA3 and MUC3, were found
to effectively discriminate between BPH and localized Pca [168]. In a similar study conducted by
Davalieva et al., a panel of urinary proteins including; Annexin A3, Inter-alph-trypsin Inhibitor Heavy
Chain 4, CD90, Calgranulin/MRP-14, Semenogelin 1, Uromodulin and Engrailed-2 were found to
show significantly differentiated expression between patients with BPH and patients with localized
PCa [166]. Another protein, which is commonly associated with PCa, zinc alpha 2-glycoprotein (ZAG),
has also been successfully measured and evaluated in urine samples from PCa patients [169].
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5.4. Semen 

Seminal fluid is produced by male accessory sexual glands including the prostate, seminal 
vesicles, epididymis and Cowper’s gland. A multi composition of seminal fluid includes acid 
phosphatase, inositol, citric acid, calcium, magnesium, zinc, fructose, ascorbic acid, prostaglandins, 
L-carnitine and neutral alpha-glucosidase [171]. Moreover, seminal fluid contains high amounts of 
proteins and amino acids, ranging from 35 to 55 g/L, and is therefore is theoretically a good sample 
source for protein identification. For proteomics-based discovery experiments, an essential step in 
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Figure 3. Dynamic range of protein concentrations in biological fluids: Figure 3 gives a breakdown
of the concentration of proteins found in blood (A) and urine (B) samples. Notably, blood proteins,
which are considered to be significant to biomarker discovery studies, make up less than 10% of the
total concentration of blood proteins [167,170].

5.4. Semen

Seminal fluid is produced by male accessory sexual glands including the prostate, seminal vesicles,
epididymis and Cowper’s gland. A multi composition of seminal fluid includes acid phosphatase,
inositol, citric acid, calcium, magnesium, zinc, fructose, ascorbic acid, prostaglandins, L-carnitine
and neutral alpha-glucosidase [171]. Moreover, seminal fluid contains high amounts of proteins and
amino acids, ranging from 35 to 55 g/L, and is therefore is theoretically a good sample source for
protein identification. For proteomics-based discovery experiments, an essential step in semen sample
preparation is the purification of seminal fluid from sperm cells and any other semen containing cells.
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This can be achieved through density gradient centrifugation using commercially available kits such
as PureSperm or Percoll. Alternatively, a method known as ‘swim-up’ has also been described [172].
Semen is considered a relevant biological source for investigations based on fertility and diseases such
as PCa [173,174]. For example, to assess male fertility semen is often used to determine spermatozoa
morphology, motility and concentration [175]. A systematic assessment of pre-analytical seminal
plasma stability and it’s suitability for the development of PCa biomarkers was recently undertaken by
Neuhaus et al [176]. Preliminary data from this study indicated that there was minimal post-sampling
degradation, which is in contrast to what is often observed for blood serum or plasma. Moreover, with
their relatively modest cohorts, Neuhaus et al. discovered a seminal biomarker signature that would
distinguish patients with a post-surgery Gleason score of 7 as having either indolent or advanced PCa.
The sensitivity and specificity observed for these markers was actually better than when the same
markers were measured in urine [177]. Although these results are promising, access to seminal fluid
is complicated by low patient compliance, social behavioral norms and ejaculatory dysfunction in
the aged population—particularly in men with PCa. As with blood and urine, semen also contains
a large proportion of high abundant proteins that can mask the lower abundant proteins and make
them more difficult to detect through proteomic analysis. Furthermore, semen composition varies
within individuals, between individuals and within a single ejaculate. Therefore, proteomics-based
studies of seminal fluid can be challenging [178]. Expressed prostatic secretions (EPS) are considered a
more accessible source for studies relating to PCa. EPS is collected just prior to prostatectomy from
vigorous digital rectal massage, which forces prostatic fluids into the urethra for collection from the
penis. One of the main advantages of this fluid as a biomarker source is that it provides clinical
information that would have led to the decision to perform a prostatectomy in the first place. Also,
prostate-specific proteins, such as PSA, are present in large amounts and therefore easily detectable
by mass spectrometry [179]. This said it is unlikely that semen-based investigations will lead to the
identification of novel biomarkers or that semen would be used for routine clinical screening tests.

In summary, there are multiple biologically relevant sources for the identification of clinically
significant PCa biomarkers. The selection of an appropriate sample material for which to base initial
discovery experiment will be influenced by the associated advantages and limitations which are
outlined in the text and summarized in Table 4. The most clinically useful biomarkers are likely to
be those that are measurable in blood or urine and so, use of these biofluids in biomarker related
studies is probably the most desirable option. However, this will require the optimization of analytical
techniques so as to overcome the main caveats associated with use of these samples—namely the
dynamic concentration range of its protein composition, the low abundance of potentially significant
protein biomarkers and the inter and intra-patient variability in composition (Table 4).

6. Proteomic Technology for Biomarker Discovery and Validation

6.1. Biomarker Discovery

6.1.1. Gel-Based

Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) is one of the core technologies
used in proteomics and was once considered the ‘state-of-the-art’ method for protein separation and
expression profiling [180]. 2D-PAGE has been used since the 1970s and involves the separation of
proteins according to their isoelectric point (on the y-axis) and their molecular weight (x-axis) by
sodium dodecyl sulfate (SDS) electrophoresis. With this technique more than 1000 proteins can be
detected and quantified [181]. However, accurate quantitative comparison between different gels,
has been greatly impaired by gel-to-gel variation which led to inherently poor reproducibility in
comparative proteomics [182,183]. To overcome this issue difference gel electrophoresis (DIGE) was
developed with the premise that, by using labels that provide different fluorescence wavelengths
for detection, multiple different samples can be combined and co-separated on the same gel [182].
Moreover, the technique also includes an internal standard within each gel to overcome the problem of
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integral variation [129]. In DIGE, samples are labeled with fluorescent CyDyes™ (Cy2, Cy3 and Cy5)
prior to electrophoresis. The samples are then mixed before isoelectric focusing (IEF) and resolved
simultaneously on the same gel [183]. For DIGE to be successful, the dyes must meet a certain set
of criteria: (i) each set of matched dyes must react with the same amino acid residues; (ii) they
must not change the charge of the target amino acid; (iii) they must be of similar molecular weight
and (iv) they must have distinct fluorescent characteristics [184]. 2D-DIGE is now recognized as
an accurate method to determine and quantify human protein expression [128]. With the advent of
mass spectrometry for proteomics research, 2D-DIGE is generally coupled with down-stream mass
spectrometry to identify protein spots, which show differential expression between the samples being
analyzed. This is achieved by using gel imaging software to apply statistical analysis for detection of
significant changes in protein expression between samples. Protein spots of interest are then simply
excised from the gel and tryptically digested for MS analysis. This has become a widely used technique
in research directed towards the identification of PCa biomarkers in patient samples [123,185,186].
In a study by Jiang et al., three proteins out of 60 were found to be differentially expressed between
PCa and adjacent benign tissues using 2DE-DIGE (PTEN, SFPQ and HDAC1) were evaluated by
both ELISA and immunohistochemistry and shown to have a significant association with PCa [128].
This technology has also successfully been applied for analysis of patient biofluids. In one study by
Ummanni et al. analysis of urine samples from two age-matched groups of patients with histologically
characterized diagnosis of PCa and BPH, led to the identification of 23 potential PCa biomarkers [139].
In another study by this group, 2DE-DIGE was applied to investigate serum autoantibody signatures
for use as PCa specific biomarkers. Briefly, PCa proteins were resolved by 2DE-DIGE and transferred
onto PVDE membranes that were incubated in pooled serum from either PCa or ‘healthy’ individuals.
This resulted in the identification of 18 differentially expressed antigens. Two of these—PRDX6 and
ANXA11—were able to discriminate between PCa and control patients with a sensitivity of 90% for
PCa patients and 100% for healthy controls. The authors hypothesize that these serum autoantibodies
could be used, in conjunction with established clinical tests, to aid diagnosis of PCa [187]. In another
serum-based study Byrne et al. conducted a pilot 2DE-DIGE analyses on affinity-depleted serum
in a bid to identify significant changes in lower abundant serum proteins. This study confirmed
PCa-associated changes in the expression for PEDF and ZAG, not only in the original sample set, but
also in an independent series of serum and tissue samples [186]. Although, as these studies have shown,
2DE-DIGE enables the separation of thousands of proteins, protein isoforms and protein modifications,
the technology is unable to detect the presence of very large or small proteins, membrane-associated
proteins, hydrophobic proteins and very basic or very acidic proteins—thus limiting the proteomic
coverage of most biological samples [182,185].

6.1.2. Mass Spectrometry-Based

Despite the technical advancements described thus far, mass spectrometry-based proteomic
techniques remain at the forefront for the discovery and validation of blood-based biomarkers due
to their ability to profile the complex proteomes of biological samples in an unbiased manner [188].
A mass spectrometer is made up of an ion source, a mass analyzer to measure the mass-to-charge
ratio (m/z) of the ionized analytes, and a detector that registers the number of ions at each m/z
value [189,190]. Over the last number of years, mass spectrometry has emerged as an invaluable
technology for the quantification of thousands of proteins as well as their modifications, localization,
turnover and interaction partners [191]. Shotgun or ‘bottom-up’ approaches are most commonly
used in proteomics analysis. This approach involves proteolytic digestion of complex samples and
analysis of the resulting peptide mixtures using liquid chromatography-tandem mass spectrometry
(LC-MS/MS) in a data dependent acquisition mode [192]. Typically, peptides are separated based on
their hydrophobicity and then electrosprayed into the mass spectrometer where they are sequenced by
tandem mass spectrometry [193]. For the purposes of biomarker discovery, ‘hybrid’ instruments are
widely used due to their unparalleled analytical specificity. Hybrid mass spectrometers typically refer
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to high-resolution instruments that are coupled to a front-end component that enables fragmentation of
peptides (Q-ToF, Triple-TOF, Q-Orbitrap). These analyzers can now fragment several thousand peptides
per hour [189]. Indeed it has been reported that over 70% of known proteins have been identified
through mass spectrometry-based discovery experiments, with emphasis now shifting towards ‘deeper’
proteomic discovery experiments to detect the remaining 30%–35% of proteins [194]. To this end,
one of the afore-mentioned hybrid instruments, the Triple-TOF, has enabled a new peptide detection
strategy called ‘sequential windowed acquisition of all theoretical ions’ (SWATH), which attempts
to analyze the fragmentation products of all ions generated during an analysis [195]. The premise
of this technology is to combine the strength of regular shotgun proteomics with the reproducibility
of MRM signaling to detect and quantify large numbers of analytes [196]. SWATH continuously
fragments all peptides within stepped m/z windows. In a standard acquisition, 32 precursor windows
of 25 Da in width are sequentially selected in the first quadrupole. In the second quadrupole,
transmitted ions are fragmented and product ions are subsequently detected in the Time of Flight (ToF)
mass analyzer. The resulting transition ions are matched to a spectral library for identification and
quantification of proteins/peptides [197,198]. The SWATH method relies heavily on peptide spectral
libraries, which must be established in advance through standard shotgun methods. The ability to
simultaneously perform a large number of MRM-type assays makes this approach very promising
for label-free quantification of panels of PCa biomarkers using minimal sample material [197–199].
SWATH technology has been applied for the identification and quantification of glycopeptides in
tissue samples taken from PCa patients. The resulting dataset led to the identification of regulated
proteins and pathways that have the potential to discriminate between patients with aggressive
and non-aggressive PCa [200]. The technology has also been successfully applied in blood, with
quantification of 342 plasma proteins across 232 plasma samples in a longitudinal study [201]. As this
technology continuous to develop, it is anticipated that there will soon be MS spectral libraries to
represent peptides covering the entirety of the human proteome that is currently available. It is
therefore expected that, because of the unique ability to monitor all detectable protein species in a
sample, with constant sensitivity and reproducibility across large sample cohorts, SWATH will become
a more common feature in clinical research [202].

6.2. Biomarker Evaluation

6.2.1. Antibody-Based

In the past, clinical evaluation of novel disease biomarkers has relied primarily on immunoassays
due to their proposed specificity for the target analyte, sensitivity and high throughput [203]. For a long
time, Enzyme Linked Immunoabsorbant Assay (ELISA) was the gold standard for protein detection
in patient serum samples, having first been reported for use in verification studies in the 1970s. In a
typical double antibody sandwich ELISA, an antibody attached to the bottom of a well provides both
antigen capture and immune specificity while another antibody linked to an enzyme provides the
detection and amplification factors for protein detection [204]. As multiplexed protein measurement
has become of increasing interest—due to the lack of specificity observed for individual markers—the
ELISA technique has been modified to allow for multiplexed measurement of protein biomarkers in
a 96-well plate format. However, multiplexed ELISAs are expensive and time consuming, require
large sample volumes with complicated dilution steps and only cover a narrow dynamic range of
protein concentration. Many studies aimed towards the evaluation of potential PCa biomarkers
have availed of this technique, however, a wide variety of variable factors are known to affect the
performance characteristics of an ELISA. These include; the antibodies used, the temperature, the pH
and the antibody incubation time to name but a few, which may be why none of these biomarkers
have been brought forward for clinical evaluation [191,203]. Of course, the most significant limitation
to this technique is that antibodies do not yet exist for all proteins in the human proteome, which
thereby rules ELISA out as a strategy for evaluating many novel protein biomarkers [205]. Protein
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microarrays can also be used for protein profiling in serum samples. With this technique, thousands of
proteins are printed and immobilized onto a glass slide which allows for the simultaneous analysis
of serum proteins in a high throughput fashion [206]. This technique is not so extensively used as
a means of evaluating PCa biomarkers, although one group did report its application for studying
the expression of a HERV-KGAG protein in relation to the clinical progression of PCa. Here it was
shown that there was an increased frequency of autoantibodies for HERV-KGAG protein in patients
with advanced PCa, making it one of the first reported retroviral cancer antigens in humans [207].
However, as described in the case of ELISAs, reliance on the availability of antibodies and the associated
costs are considered to be significant limitations with regards to these microarray-based techniques.
As the considerable interest in the development of highly specific and high throughput techniques
for biomarker evaluation increases, moving away from traditional antibody-based techniques and
branching out into nanotechnology offers a broad spectrum of highly innovative methods to meet the
associated requirements for satisfactory biomarker evaluation [206].

6.2.2. Nanotechnology-Based

The development of electrochemical immunosensors has shown great promise for the detection
of proteins in clinical applications [208]. Electrochemical immunosensors can provide real time
monitoring of biomarkers based on potentiometry and offer simple instrumentation, high sensitivity,
fast response time, miniaturization, low cost and point of care applications [209]. To enhance
the performance of this immunosensory technology—in which an enzyme is labeled with an
antigen—nanomaterials such as gold nanoparticles, carbon nanotubes, silicon nanowires and quantum
dots can be used for sensor probes [208]. Quantum dots (QDs) are semiconductor nanocrystals that
exhibit unique electrochemiluminescent properties. QDs are applicable for the labeling of peptides,
proteins or oligonucleotides and make a desirable alternative to traditionally used organic dyes [210].
This technology has previously been applied for the simultaneous detection of PCa markers in a set
of patient serum samples. In this study it was confirmed that the QD-based multiplexed suspension
microarray was able to accurately detect either low or high free and total PSA concentrations in
clinical serum samples [209]. Carbon nanotubes (CNTs) are made up of thin cylindrical graphite
sheets that are optimal for signal amplification due to their fast electron-transfer capabilities and
surface area-to-weight ratio. Target analytes are bound to the functionalized CNTs leading to changes
in electrical conductance of the device. Proteins or peptides are thereby detected as result of the
detectable alteration in electrical conductance caused by the binding of the target analyte [156,210].
CNTs have been successfully utilized in the detection of both PSA and osteopontin (OPN) [211,212].
In the latter study OPN, which is currently under investigation as a potential biomarker for prognosis
and diagnosis of PCa, was successfully measured using highly sensitive electrical immunosensors
based on single-walled CNTs. With this label-free technique, highly linear and reproducible results
were observed for OPN detection over a wide range of OPN concentrations (1 pg/mL–1 mg/mL) in
human serum [212]. Another promising PCa biomarker that has also been shown to be selectively
detectable through nanotechnology-based technology is matrix metalloproteinase-2 (MMP-2). Using a
silicon nanowire-based sensor, MMP-2 was measured in human serum at concentrations ranging
from 1 pM to 100 nM [213]. Nanotechnology can also be applied for enrichment of particular
proteins or peptides of interest prior to downstream mass spectrometry analysis. As an example,
Fredolini et al. demonstrated a novel nanoparticle-based biomarker capture technique to amplify,
fractionate and enrich low molecular weight proteins for more sensitive mass spectrometry-based
biomarker discovery [188]. Briefly, the core-shell hydrogel nanoparticles described here are capable of
complete (in-solution) sequestration of the peptidome while simultaneously performing size sieving
enrichments and dramatic concentration of low molecular weight analytes, in one straightforward step.
This workflow has already been applied for the identification of PCa-specific candidate biomarkers,
revealing a list of novel low molecular weight proteins with potential significance in PCa progression.
However, these will warrant further verification and evaluation [188].
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6.2.3. Aptamer-Based

Despite the advances in the technologies described above in terms of sensitivity, fast response
time, miniaturization, low cost and point of care applications, the availability of antibodies for target
proteins still provides a significant limitation. As such, immunosensors based on aptamer interactions
are becoming a more favorable approach for sensitive detection of low molecular weight analytes of
interest. Aptamers are DNA or RNA molecules with tridimensional conformation that gives them
high affinity for specified biomolecules of interest [214]. In contrast to antibodies, aptamers can
be easily modified, are smaller in size, cheaper to produce and can be generated against a wide
variety of different target molecules [215]. Most aptamers are directly selected against the target
analyte and are considered to be more sensitive than an antibody for the same analyte. In fact,
problems of capture-reagent cross reactivity and non-specific adsorption to surfaces are greatly reduced
with aptamer-based platforms [216]. As such, diagnostic/discovery approaches based on aptamers
offer a robust and reliable system for detecting target(s) of interest in direct, indirect and sandwich
concepts [214,217]. Aptamer technology has been successfully applied for the detection of PSA in
both PCa cells biopsies and human serum. With aptamer-based technology, PSA is detectable at levels
as low as fg/mL with high specificity [218]. A modification of this platform is the SOMAscan assay,
which uses slow off-rate modified aptamers (SOMAmers). These are single stranded DNA aptamers
that contain pyrimidine residues carrying hydrophobic entities at their 51 position. The affinity of
SOMAmers is considerably higher than that of simple RNA or DNA aptamers [219]. Moreover, the
platform is highly automated and scalable to allow for high sample throughput [220]. This technology
is therefore considered an ideal platform for protein biomarker discovery and evaluation as it has the
capacity to detect in excess of 1125 proteins in a single analysis using minimal amounts (<100 µL) of
serum [220,221]. In a study by Mehan et al., the SOMAmer platform was used to quantify 1033 proteins
simultaneously with sub-pM limits of detection and inter-assay CV of <5% in human serum samples.
This analysis resulted in a 7-marker signature for detection of lung cancer in current and former
smokers with an AUC of 0.85 for all and 0.93 for squamous cell carcinoma [222]. This study therefore
indicates the potential benefits of applying this technology for PCa-related biomarker research.

6.2.4. Mass Spectrometry-Based

For the purposes of verifying the role of identified proteins as potential biomarkers, a targeted
proteomic approach provides excellent sensitivity for the detection of potential biomarkers in biological
samples [223]. Ultimately, targeted studies are intended to complement discovery-based analysis
and facilitate evaluation of protein biomarker expression in biological samples. Selected reaction
monitoring (SRM)—otherwise known as multiple reaction monitoring (MRM)—is used for this
purpose and enables high throughput, cost-effective assay development for quantification of selected
proteins of interest. Essentially, targeted MRM assays can be considered the mass spectrometry
equivalent to a western blot or ELISA, only in the case of MRM proteins are identified through the
detection of specified combinations of precursor and product ion m/z’s of preselected proteotypic
peptides—thereby eliminating the need for antibodies [224]. MRM infers the ability to quantify
hundreds of proteins simultaneously at a low limit of detection with high accuracy. Moreover,
MRM-triple quadrupole mass spectrometers also have a wide dynamic range which makes them ideal
for analysis of protein expression in serum or plasma digests—the biological fluid of choice for a
clinical test [223,225]. With the growing clinical consensus that panels of multiple biomarkers are more
likely to achieve adequate clinical specificity and sensitivity for disease diagnosis the development
of targeted, high throughput, multiplexed MRM assays is considered to have the greatest potential
to bridge the gap between generating panels of biomarker candidates and evaluating their clinical
utility in patients [226,227]. Huttenhain et al. recently developed a repository of MRM assays for
over 1000 previously identified cancer-associated biomarkers. This study also demonstrated the
applicability of MRM assays for reproducible and accurate quantification of biomarker candidates
across a large number of patient samples [227]. There are many studies that attest to the effectiveness
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of combining LC-MS/MS-based discovery with MRM-based multiplexed verification of protein
expression in clinical samples [158,228]. The main challenge associated with absolute quantification
of proteins of interest using MRM, however, is the requirement for suitable internal standards or
heavy labeled peptides which, ideally would have to be synthesized to correspond to each target
proteotypic peptide in an MRM-based assay [226]. Although this adds considerably to the cost, the
incorporation of stable isotope labeled (SIS) peptides into biological samples does allow for more
robust identification and measurement of greater numbers of low abundant protein biomarkers in
serum and urine samples [163,229,230].

As detailed throughout this section, proteomic technology has greatly evolved in the last number
of years and so accurate measurement of panels of serum and urine proteins is now a feasible and
routinely used approach for clinical research. Mass spectrometry has emerged as the forerunner in
biomarker discovery and recent advancements have made it possible to identify and quantify the
expression of thousands of proteins in biological samples. Validation strategies are moving away from
the previous antibody-based gold standard of ELISA with the emergence of nano-technologies and
aptamer-based technologies making it possible to measure low abundant proteins in serum and urine
samples (Figure 4). However, with regards to PCa and, indeed, most other cancers, targeted mass
spectrometry methods have again been at the forefront of biomarker verification and validation studies.
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7. Clinical Evaluation of Prostate Cancer Biomarkers

7.1. Evaluation of Emerging Prostate Cancer Biomarkers

The use and implementation of high throughput, sensitive and robust proteomic technologies,
as described throughout this review, for biomarker research enable a more personalized approach for
disease detection and treatment [112]. Indeed, the advances made in proteomics technology over the
last number years has led to the identification of over 200 protein biomarkers to date [112,231–237].
However, while some of these may have been evaluated in biological samples from additional patient
cohorts, none have yet been formally validated for use as a clinical assay. This is not overly surprising
when one considers that the FDA has only clinically approved little over 24 biomarkers for any cancer,
and almost none of them are actually used in standard clinical practice [238]. Even PSA, which is
the most widely used blood-based biomarker for any disease, took more than ten years to transition
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from a potential biomarker candidate to a clinically-used test for PCa detection [239]. Some would
argue that this is due, in part, to the fact that scientists working in the field of biomarker discovery
actually have limited knowledge of the analytical, diagnostic and regulatory requirements required
for a biomarker to qualify for use as part of a clinical assay [240]. Clinical evaluation of a disease
biomarker is a time-consuming, arduous and expensive process. In 2001, following establishment
of the ‘four phase’ guideline for clinical trial, the NCI EDRN identified five phases of biomarker
development for the early detection of cancer (Figure 5). Phase one represents the initial discovery
phase, where molecular discrepancies between tumor and non-tumor lead to the identification of a
potential biomarker. In phase two, biomarker expression is evaluated in relatively small or moderately
sized cohorts. Phase three is defined as the ‘retrospective longitudinal evaluation’ of biomarkers,
while phases four and five involve prospective evaluation of potential biomarkers as a screening
test. The impact of a biomarker/panel of biomarkers in the general population, in terms of both
mortality and cost, is also assessed in these latter stages. As phases four and five involve healthy
individuals at the beginning, they also take much more time to complete and require a large number
of participants [239,241]. Despite the widespread efforts being made worldwide to identify clinically
useful biomarkers for PCa, none have made it past the studies required for phase 5. So, although
proteomic technology has hugely advanced our abilities to generate vast amounts of biologically
relevant data from biological samples, emerging biomarkers repeatedly fail to overcome some of the
many bottlenecks associated with clinical evaluation.
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7.2. Overcoming Bottlenecks Associated with Clinical Evaluation of Prostate Cancer Biomarkers

A considerable investment of time and money will be required for a biomarker to make it through
all five phases of biomarker discovery and evaluation described by Pepe et al. [241]. Therefore,
careful planning at every stage of the process is essential. With regards to protein biomarkers,
standardization of pre-analytical steps is crucial for robustness and reproducibility of the final assay.
This has been highlighted in an investigation reported by Addona et al., in which a multi-laboratory
study was conducted to assess reproducibility, recovery, linear dynamic range and limits of detection
and quantification of multiplexed MRM-based assays conducted by NCI-CPTAC [242]. Aside from
assay robustness, another major pitfall that must be overcome is that of false discovery. One of the
main reasons that potential biomarkers fail to make it into use as a clinical assay is that many of them
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are deemed significant in an initial discovery cohort but are subsequently found to not be significant
in the proceeding evaluation studies. Appropriate statistical analysis of proteomic data—especially
the large amount that is generated by mass spectrometry-based and aptamer-based technology—is an
area where many biologists fall short. For example, Hernandez et al. have shown that the commonly
used approach of pre-filtering initial discovery data using ANOVA and correction methods such as
Bonferroni and FDR rarely improves the accuracy of biomarker selection [243]. Indeed, it is suggested
here that only when the data is not pre-filtered can the quality of a biomarker(s) be accurately judged
for predictive capacity. ANOVA filtering should in fact be performed on a separate cohort to that
which was used to assess the performance of the chosen biomarker or panel of biomarkers [243].
This author also suggests that the initial proteomic discovery experiments be performed on sufficiently
powered (at least 50) sample numbers to minimize the effects of over-fitting and improve the quality
of performance metrics [243]. It is fair to say that availability of sufficient sample numbers at this
stage and, more importantly, at the subsequent evaluation stages is a major limitation in biomarker
research. However, investing the time and money in a statistically powered study at this early stage
will ultimately avoid any wasted expense in continuing to evaluate a non-predictive biomarker and/or
biomarker panel.

The third phase described by Pepe et al. for the clinical evaluation of protein biomarkers
involves retrospective longitudinal evaluation of potential biomarkers [241]. A significant limitation
at this stage of the process is access to high-quality longitudinal samples from a patient cohort.
The importance of longitudinal evaluation, however, cannot be ignored, especially in PCa, which is a
highly heterogeneous disease with a prolonged time course [244]. The value of longitudinal evaluation
of patient cohorts has been highlighted in a number of studies related to PCa [201,245]. For example,
in 2009, Christensen et al. investigated longitudinal cytokine expression in PCa patients undergoing
intensity-modulated radiotherapy (IMRT) over the course of a year. Although this study alluded to a
relationship between IMRT toxicity and cytokine expression, future studies would be warranted to
determine the time course for serum cytokine changes after radiation exposure in a larger cohort [246].
A more recent study availed of a unique cohort of patients who are participating in a non-interventional
clinical trial and being treated with CHRT. Samples from patients who had failed treatment with CHRT
over the course of the trial (approximately 7 years) and time-matched controls (non-failures) from
the same cohort were used to identify potential biomarkers of treatment failure at both baseline
and time of failure. Identified biomarkers, as well as PSA, were then evaluated longitudinally in
the failure and control patients in samples that had been collected throughout their participation
in the trial (Figure 6) [247]. This study highlighted the need to consider the inherent inter-patient
variability associated with PCa when seeking to evaluate the utility of potential PCa biomarkers.
Access to high quality longitudinal patient samples, collected under clinical trial governance, can offer
much more accurate insight into the potential predictive and/or prognostic capacity of biomarkers
of interest, in individual patients. As such, in order to achieve meaningful translational advances in
PCa biomarker development, researchers much shift their focus towards well-designed, collaborative
efforts to ensure that verification and subsequent validation studies are suitably powered and are not
at risk for false discoveries [248].
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7.3. Potential for Routine Use of MS Technologies for Clinical Diagnostics in PCa

As outlined previously in this review, the standard approach for biomarker development involves
the identification of a crude list of biomarker candidates obtained from either a representative set
of clinical samples or model cell system using comparative profiling techniques such as 2D DIGE
or LC-MS/MS. The next step is to verify the crude list of biomarkers in individual clinical samples
of blood or tissue. Traditionally, this would have been done by antibody-based techniques such as
Western blot or ELISA but, as outlined in previous sections, MS-based approaches such as MRM are
now considered a much more favorable option for this process. Among its benefits, MRM is a high
throughput technique that can measure up to 50 proteins with an injection of 1–2 µg peptide from
less than 20 µL blood [249]. Indeed, with the advent of scheduled MRM, over 100 target proteins
can now be targeted in a single assay [250]. There are of course a number of obstacles with regards
to the routine use of MRM for clinical validation of biomarkers and these are in regard to (i) high
throughout and reproducible sample preparation; (ii) selection of appropriate transitions for each
peptide (protein) target and (iii) the cost associated with the development of assays using stable
isotope peptides for internal standardization and quantification [251]. The first of these obstacles
can be addressed by implementation of robust standard operating procedures and automation of
sample preparation techniques. Indeed, a number of groups have investigated the robustness and
reproducibility of the entire MRM analysis workflow across multiple sites [250,252]. With regards
to the selection of appropriate transitions, there are a number of publicly available tools available
that can be used for the design of MRM assays. These include PASSEL, NIST peptide library and
SRM atlas. Finally, the development of mass differential tags for relative and absolute quantitation,
tandem mass tag and 18O labeling and dimethyl labeling circumvent the need to purchase stable
isotope internal standards, thus allowing for effective and inexpensive normalization and quantitation
of MRM data [251]. Moreover, workflow innovations such as SISCAPA which detect low abundance
proteins in blood [253] and software such as Skyline and MRM3 [254,255] render the development and
use of MRM assays easier to use for less trained individuals [256].

The future of mass spectrometry in the clinical setting has been a topical debate among expert
researchers in the field of clinical research in recent years. There is a shared opinion that, since mass
spectrometry technology is evolving rapidly with new innovations in workflow, software, hardware
and reagents, automated immunoassays will be replaced with MS assays in clinical laboratories [248].
Moreover, it is believed that this technology will provide added benefit to genomic tests that cannot
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provide information on clinically important protein isoforms [248]. These opinions are supported by a
number of commercially available MS-based diagnostic tests. One of the most established of these
is the LC-MS/MS measurement of 25-hydroxy metabolites of Vitamin D2 and Vitamin D3. Unlike
the previous automated immunoassay platforms that measured Vitamin D levels as a whole, this
MS-based assay ensures that both endogenous and exogenous Vitamin D metabolites are measured
equimolarly. This assay is now in routine diagnostic use and the automated LC-MS/MS system
allows up to 180 tests to be performed in a 24 h period [257,258]. A test has also been developed
to measure carbohydrate deficient transferrin, a biochemical marker for congenital disorders of
glycosylation. For this protein, the previous affinity chromatography IEF method has been replaced
by the development of an automated LC-MS/MS method capable of analyzing over 100 samples in
one day [259]. Mass spectrometry coupled to immunoaffinity separations can provide an efficient
means for simultaneous detection and quantification of protein variants and this has been applied
to establish an MS-based clinical assay for measurement of variants of cystatin C—a marker of
renal failure among other pathological conditions [260]. A similar assay has also been established
for measurement of beta-2-glycoprotein in plasma samples. As well as being an FDA approved
biomarker for active rheumatoid arthritis and kidney disease, this protein has also been heavily
associated with PCa progression [261]. A number of MS-based assays are also now offered for the
detection of insulin resistance and type-2 diabetes by measurement of retinol binding protein [262],
insulin-like growth factor I and II [263] and insulin [264,265]. An isotope dilution LC-MS/MS
method has also been developed for the detection of angiotensin in blood—an important protein
marker of hypertension [266]. Two commercially available MS-based have been developed for
improved management of lung cancer—Veristat and Express Lung. The Veristat assay is a MALDI-MS
algorithm based on 8 distinct m/z features and has been validated as a clinically useful serum
protein test [267–269]. The Express Lung tests is an MRM-based assay measuring five diagnostic
and six normalisation proteins and has also been validated as a proteomic classifier for identification
of benign lung nodules with a high negative predictive value [270]. Nuclea Biotechnologies also
offer LC-MS/MS-based tests to measure serum levels of c-peptide, proinsulin, apoplipoprotein A1
and Apolipoprotein B. Although the tests described here have not yet been FDA approved, they
are currently categorized as lab-developed tests LDTs and have been developed and characterized
under CLIA requirements. In addition to the reported success of these assays, the increasingly
significant role of mass spectrometry in the clinical diagnostics setting is reflected in the development
of consortia—notably the NCI CPTAC and the EDRN—which have placed a heavy emphasis on good
experimental design and the need to reduce false discovery (as discussed in Section 7.2) [195]. Overall,
the recent advancements in MS technology and the successful implementation of CLIA approved
MS assays for diagnosis of various other disease conditions, would indicate that routine MS-based
measurements of PCa biomarkers could indeed be translated to a clinical setting.

8. Conclusions

There is without doubt an on-going need to identify biomarkers for PCa that could be measured
as part of a non-invasive clinical assay and used to improve disease management and treatment of
PCa patients. The limitations of PSA and most other protein biomarkers identified to date have led
to the consensus that multiplexed measurements of multiple biomarkers—as part of a panel—in a
single assay would be of the greatest utility [271]. The lack of a technologies capable of verifying
or evaluating the large number of potential biomarkers that are identified in discovery experiments
was once considered the major bottleneck in the biomarker development pipeline [271]. However,
as highlighted in this review, the field of biomarker research is no longer limited by lack of methods for
large-scale, high-throughput, robust and reproducible biomarker identification and evaluation. Despite
these advances, the major investments made in these technologies (in academia and industry) have
been rewarded with limited return in terms of delivery of effective clinical tests. The failure of most
individual new biomarkers to make it to the clinic can, to some extent, be attributed to the fact that many
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fail to offer a greater clinical value and impact than existing tests, despite the latter’s known limitations.
The expectation that this situation will be remedied by the development of multiplexed tests has
to some extent driven the development of high-throughput, multiplexed proteomics technologies
suitable for the discovery and evaluation phases of biomarker assay development. One such mass
spectrometry-based technique—MRM—offers great potential due to its ability to provide robust,
sensitive, quantitative, specific and high-throughput measurement of panels of protein biomarkers
in complex biospecimens. Furthermore, MRM is already routinely used in a clinical setting and
various CLIA-approved MRM-based assays are now available as diagnostic tests [272]. In contrast to
immune-based technologies, mass spectrometry based tests also offer a potential greater return on
investment. This was highlighted by Anderson et al., who concluded that the cost of generating and
applying high quality MS-based (MRM) assays for approximately 50–100 good biomarker candidates
could be estimated at about $1.5 million (15–30 k/protein), in contrast to the $2.2 million required to
develop ELISA assays for six candidate biomarkers (>353 k/protein). These authors estimated the cost
of using an MS strategy to bring a selection of candidate biomarkers through the whole biomarker
development pipeline to be $4 million and suggest that it would take about 4 years [273].

We suggest that these technological advancements for multiplexed assays demand that more
consideration be given to very careful study design in all aspects of assay development to ensure that
they are sensitive, specific and precise while maintaining the robustness and reproducibility required
for clinical use, potentially across multiple sites. Candidate biomarker verification has become a
critical step in the biomarker development pipeline. It is evident that, ideally, only analytically verified
candidates should be brought forward for further development and the stringency of this selection
process should be aligned with the cost and effort required for clinical evaluation of the candidate
biomarkers. This approach is likely to reduce the often wasted time and cost in attempting to evaluate
biomarkers that are unlikely to be used as part of clinical assay [274]. Ultimately, access to large sample
numbers (including longitudinal samples), rigorous statistical analysis to avoid over-fitting of data and
an overall strategy focused on providing assays that fulfill compelling clinical needs will be required if
protein biomarker development is going to have an impact on improving the diagnosis and treatment
of PCa patients. Researchers must also give careful consideration as to where the true clinical need
for protein biomarkers lies for PCa. Highly sensitive detection of PCa is already achievable with PSA
and we have learned, after 30 years of usage, that such sensitivity has resulted in the over-treatment
of men with PCa—often with adverse effects on their quality of life. We propose that a test that is
much needed for PCa is one that would reduce the number of men diagnosed with the disease that are
treated unnecessarily. Therefore, biomarker research in PCa should be aimed more towards stratifying
patients with PCa for more appropriate and personalized management of the disease.
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Abbreviations

The following abbreviations are used in this manuscript:

BPH Benign Prostatic Hyperplasia
PCa Prostate Cancer
AR Androgen Receptor
PSA Prostate Specific Antigen
US United States
CE-IVD European Conformity—In Vitro Diagnostics
CHRT Combined hormone and radiation therapy
ADT Androgen deprivation therapy
AS Active surveillance
PRIAS Prostate cancer research international active surveillance
SCAN Scotland cancer research
CCO Cancer care Ontario
GAP Global action plan
fPSA free PSA
hK2 Hexokinase 2
MSMB microseminoprotein beta
MIC1 Macrophage inhibitor cytokine 1
DRE Digital rectal exam
PSAV PSA velocity
PSADT PSA doubling time
p2PSA [-2] proenzyme PSA
PHI Prostate health index
PTEN Phosphate and tensin homologue
FFPE Fresh frozen paraffin embedded
RT-PCR Real time polymerase chain reaction
CCP Cell cycle progression
TURP Transurethral resection of the prostate
PCA3 Prostate cancer antigen 3
CLIA Clinical laboratory improvement amendments
LCM Laser capture microdissection
RBC Red blood cells
WBC White blood cells
EPS Expressed prostatic secretion
2D-PAGE Two dimensional poly-acrylamide gel electrophoresis
DIGE Differential gel electrophoresis
SDS Sodium dodecyl sulfate
MS Mass spectrometry
LC-MS/MS Liquid chromatography tandem mass spectrometry
SWATH Sequential window acquisition of all theoretical ions
MRM Multiple reaction monitoring
ELISA Enzyme-linked
QD Quantum dot
CNT Carbon nanotube
SRM Selected reaction monitoring
NCI EDRN National Cancer Institute—The early detection research network
NCI CPTAC National Cancer Institute—Cancer clinical proteomics research
ANOVA Analysis of variance
FDR False discovery rate
IMRT Intensity modulated radiation therapy
IPSS International prostate symptom score
SISCAPA Stable isotope standard capture with anti-peptide antibodies
MALDI-MS Matrix assisted laser desorption/ionization mass spectrometry
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