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Abstract

Kiwi are rare and strictly protected birds of iconic status in New Zealand. Yet, perhaps due to their unusual, nocturnal
lifestyle, surprisingly little is known about their behaviour or physiology. In the present study, we exploited known
correlations between morphology and physiology in the avian inner ear and brainstem to predict the frequency range of
best hearing in the North Island brown kiwi. The mechanosensitive hair bundles of the sensory hair cells in the basilar papilla
showed the typical change from tall bundles with few stereovilli to short bundles with many stereovilli along the apical-to-
basal tonotopic axis. In contrast to most birds, however, the change was considerably less in the basal half of the
epithelium. Dendritic lengths in the brainstem nucleus laminaris also showed the typical change along the tonotopic axis.
However, as in the basilar papilla, the change was much less pronounced in the presumed high-frequency regions.
Together, these morphological data suggest a fovea-like overrepresentation of a narrow high-frequency band in kiwi. Based
on known correlations of hair-cell microanatomy and physiological responses in other birds, a specific prediction for the
frequency representation along the basilar papilla of the kiwi was derived. The predicted overrepresentation of
approximately 4-6 kHz matches potentially salient frequency bands of kiwi vocalisations and may thus be an adaptation to a
nocturnal lifestyle in which auditory communication plays a dominant role.
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Introduction

Most birds rely heavily on their sense of hearing for

communication in territorial, social and sexual contexts and for

the detection of alarm signals. In a small number of species, such

as barn owls (Tyto alba), hearing has been specialised for passive

sound localisation of prey [1]. The auditory sensory epithelium of

birds is the basilar papilla. Unlike the homologous mammalian

organ of Corti, which is coiled and has the sensory hair cells

organised in discrete rows, the avian basilar papilla is elongated

but only mildly curved, with hair cells arranged in a complex

mosaic (reviewed in [2,3]). Hair cell morphology is an important

determinant of frequency sensitivity in the avian basilar papilla

and shows gradients both along its width and length. These

morphological gradients underlie the basilar papilla’s tonotopic

organisation, with high frequencies being mapped basally and low

frequencies apically. In particular, the morphology of the

mechanosensitive hair bundles atop the cells, comprised of a

group of actin-stiffened stereovilli (or stereocilia), appears to

determine the basic frequency response. In all birds examined to

date, systematic changes in both height and number of stereovilli

along the basilar papilla have been observed [2,4,5,6,7,8,9,

10,11,12]. In those species where the tonotopic frequency

representation is also known [13,14,15], it is mirrored quite

accurately by those changes in hair-bundle morphology [12]. The

most striking case is the barn owl, where hair-bundle morphology

stays nearly constant in the basal half of its basilar papilla,

correlated with a foveal overrepresentation of the highest

frequency band between 5 and 10 kHz [7,13]. In the present

study, we exploited the known correlations between morphology

and physiology in the avian basilar papilla to predict the frequency

representation in the New Zealand kiwi.

In the central auditory system, the encoding of intensity and

temporal information requires morphological specialisations of

neuronal circuits to accurately process sound stimuli. For example,

neural morphology is critical for sound localisation, a task with

direct behavioural relevance for many species [16,17,18,19,20,

21,22]. In birds, the brainstem nucleus laminaris (NL) is part of a

well-characterised neural circuit for determining interaural time

differences (reviewed, e.g., in [23]). The length of NL dendritic

tufts varies along a rostromedial to caudolateral axis. Neurons in

NL with longer dendrites found in more caudolateral regions are

tuned to lower best frequencies and those with short dendrites are

found in more rostromedial regions and tuned to higher best

frequencies [22,24,25,26,27,28]. In chicken and emu, where NL

dendritic lengths have been carefully examined, a smooth and

linear increase in dendritic length from rostromedial to caudo-

lateral is seen [22,24,25]. In the chicken, this mirrors the known
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physiological tonotopic gradient [29]. In the emu, a similar

correlation holds, on the assumption that the tonotopic represen-

tation of the basilar papilla persists in the NL [22]. Again, the barn

owl provides an interesting exception. Instead of being bitufted,

NL cells in the barn owl have numerous short dendrites distributed

around the soma [28,30,31]. This derived organisation of NL is

thought to have arisen in association with the barn owl’s

particularly acute high frequency hearing (up to 10 kHz), its

sensitivity across a wide range of frequencies and its enhanced

ability to encode auditory temporal cues for precise sound

localisation [1,32,33,34,35].

The auditory specialisation in the barn owl has likely evolved in

parallel with a shift to a nocturnal niche. Bird species that occupy a

nocturnal niche are extremely rare and some, such as the barn

owl, may have evolved specialisations to function at low light

levels. Thus, together with an auditory specialisation, barn owls

also have a well developed visual system, consisting of large eyes, a

specialised retina and large brain areas for processing visual

information [36,37,38,39,40,41,42,43]. The New Zealand kiwi

(Apteryx spp.) has also made a shift to a nocturnal niche, but also to

a ground-dwelling one. However, kiwi probably do not rely much

on vision to function in their nocturnal environment [44] and

therefore may be expected to rely on other sensory modalities,

namely olfactory, tactile and/or auditory. Indeed, there is some

evidence, both anatomical and behavioural, that the kiwi olfactory

and tactile systems are particularly well developed [44,45,46,47,

48,49,50], but the possibility of an auditory specialisation has not

been considered.

We have examined both the inner ear (basilar papilla) and

auditory brainstem (NL) in the kiwi and have found that their

auditory system shows specialisations associated with an overrep-

resentation of high frequency coding that originates in the cochlea

and is preserved in the auditory brainstem.

Results

The kiwi basilar papilla was approximately 4 mm long

(corrected for tissue shrinkage), which is representative for a bird

of its size [3]. It showed the typically avian, moderate curvature

and tapered width (Fig. 1). However, the papilla was unusually

slender, being only about 200 mm across at its widest point in the

apex, and narrowing to about 70 mm near the basal end (corrected

for tissue shrinkage). Correspondingly, the total hair-cell count was

moderate, at about 4000 (n = 1).

In kiwi, the number of stereovilli per hair-cell bundle changed

systematically along the length of the basilar papilla (Fig. 2). A total

of 237 hair cells from 3 basilar papillae were evaluated. Median

values were 69 stereovilli for hair bundles located near the apical

end and 241 for hair bundles near the basal end of the basilar

papilla. Hair cells in neural positions contained significantly more

stereovilli than both medial and abneural hair cells (Kruskal-Wallis

and subsequent Mann-Whitney U-tests, all p,0.01; Fig. 2).

The gradient in stereovillar height within a bundle was typical

of birds, with the tallest stereovilli generally facing toward the

abneural edge (Fig. 3A–D). The height of the tallest stereovilli in

kiwi hair cells ranged from ,6 mm at the apical end to ,3 mm at

the basal end of the papilla (Fig. 3). Measurements taken from one

SEM specimen (n = 28) were consistent with those from light-

microscopical sections (n = 26). Stereovillar height gradually

decreased from the apical end to approximately half way along

the papilla, after which it remained nearly constant (Fig. 3E).

Based on the height of the tallest stereovilli and the number of

stereovilli/bundle for neurally located hair cells, we derived an

estimated frequency map for the kiwi basilar papilla (Fig. 4A; see

Methods for details). The most striking feature of this prediction

was a pronounced overrepresentation of a narrow frequency band

over the basal third of the papilla. A more conventional

logarithmic increase in frequency was predicted along the apical

two-thirds of the basilar papilla. In terms of the specific best

frequencies represented, we estimated an upper limit of approx-

imately 6 kHz and a lower frequency limit at about 0.4 kHz. The

spatially overrepresented band was approximately 4 to 6 kHz.

The distribution of dendritic lengths throughout NL was

obtained from measurements of both dorsal and ventral dendritic

neuropils at regular intervals along NL (Fig. 5A). As dorsal and

ventral neuropils did not differ significantly in length (Wilcoxon

paired-sample test, p = 0.47, n = 136), the average value was used

for each evaluated cell. Dendritic length ranged from ,30–

180 mm (Fig. 5B). The largest proportion of cells had dendritic

lengths between 50–60 mm with nearly half of all dendrites being

between 50-70 mm long (Fig. 5B). There appeared to be two peaks

in the number of cells with given dendritic lengths, with the major

peak at shorter dendritic lengths (,50–60 mm) and the other,

much smaller peak, at longer values. Topographically, the most

interesting feature of the dendritic length in NL was that it

remained relatively constant within the rostromedial half of NL

(Fig. 5C, D). Here, dendritic length showed little or no changes

along either the mediolateral or rostrocaudal axes.

Discussion

In both the inner ear and brain of the kiwi there was a

conspicuous overrepresentation of features known to be correlated

with the processing of higher frequencies. In the kiwi basilar

papilla, stereovillar height did not map in a simple linear manner

against longitudinal position as it does in most birds (reviewed in

[3]). Instead, stereovillar height remained largely unchanged in the

basal half. This pattern is similar to that seen in the barn owl, but

is not typical of any other bird, including kiwis’ closest relatives,

the emu and rhea [8,12]. Functionally, this unusual feature led to

the prediction of an overrepresentation of a narrow band of

frequencies – an auditory fovea - comprising the upper end of the

kiwi’s range. The underlying assumption that frequency tuning is

reasonably predicted by micromechanical parameters was verified

by comparisons with independently derived frequency maps for

three other bird species (Fig. 4). While micromechanical tuning is

known to be supplemented by electrical tuning (variations in the

hair cells’ ion-channel properties) in birds, both mechanisms are

likely to be closely matched in frequency and the known papillar

frequency maps on which our estimate for the kiwi is based would

naturally be the combined result of both tuning mechanisms.

Furthermore, electrical tuning is probably of only marginal

significance in the upper hearing range of birds (reviewed in

[3,51]). Our prediction for the kiwi’s frequency representation,

especially the unusual higher-frequency fovea, should thus be

robust against distortion due to contributions by electrical

frequency tuning.

Similar to the basilar papilla, NL in the auditory brainstem

suggested an overrepresentation of the upper hearing range in the

kiwi. In contrast to what is found in chicken and emu [22,24,25],

the dendritic gradient in the kiwi NL did not show a simple linear

pattern in the rostromedial-caudolateral direction. Instead,

dendritic length decreased along the putative frequency axis in

more caudolateral regions, but remained relatively constant

towards the rostromedial, high-frequency end of the nucleus.

Among birds, such a foveal frequency representation has to date

only been found in barn owls. Very similar to the kiwi, the barn

owl shows a lack of morphological gradients within the basal half

Kiwi Auditory Fovea
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of the basilar papilla and numerous short dendrites in the

rostromedial regions of its NL [7,31,52]. In the owl, these features

correlate with a massive overrepresentation of responses to high

frequencies between 5 and 10 kHz in the same regions [7,13]

which is thought to reflect the behavioural importance of that

frequency band for precise sound localisation of prey [32].

The predicted frequency representation in the kiwi is clearly

unusual and is thus likely to be an adaptation to the nocturnal and

ground dwelling ecological niche that kiwi have come to occupy.

Kiwi are known to call at night and their most common

vocalisation, the whistle call, has been physically characterised

[53,54]. While male and female calls differ significantly, both

contain prominent high-frequency components in the 2-6 kHz

range (Fig. 6). It has not been rigorously tested whether kiwi are

able to identify individual vocalisations; however, apparent

duetting behaviour has been observed between established pairs

[54,55] suggesting that they can. The rich harmonic structure and

frequency modulations of the call of the male and formant

structure in the call of the female, in particular, provide potential

cues for individual recognition within the frequency band that we

predict to be overrepresented in kiwi hearing.

While conspecific vocalisations may be the most obvious match

to the kiwi’s suggested hearing specialisation, other auditory

functions should not be disregarded. The New Zealand native

forest houses earthworms and many large nocturnal insects,

including beetle larvae (Coleoptera) and cicada nymphs (Hemip-

tera) that kiwi are known to feed on [56,57,58] and that are likely

to produce rustling sounds in the leaf litter akin to those of mice

that are hunted by owls [59]. Some of these nocturnal insects also

produce communication calls [60] that could be used by kiwi to

locate them. Thus, kiwi may be using hearing to detect prey in a

similar way to the barn owl.

Figure 1. Overview of the kiwi basilar papilla. A: Surface view of the basilar papilla obtained from scanning electron microscopy. The tiny white
dots represent individual hair-cell bundles. B: Cross section of the kiwi cochlea approximately half way along the basilar papilla. Key structures are
labelled.
doi:10.1371/journal.pone.0023771.g001
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It is clear from findings in this study that the auditory system of

kiwi has evolved in a manner quite unlike that of most other birds

and shares many similarities with that of the barn owl, another

avian auditory specialist. The driving force behind their auditory

specialisations is likely to be the nocturnal lifestyle that both species

have adopted and which is rare among birds. Indeed, functioning

in this niche requires very different sensory strategies compared to

those used by diurnal birds. Thus, the findings in this study of the

auditory system, although unexpected, accurately reflect the kind

of sensory challenges that are faced by kiwi when functioning in

their natural environment.

Materials and Methods

The data reported here are derived from 4 North Island brown

kiwi specimens (Apteryx mantelli; one adult and 3 juveniles, the

juveniles ranging in age from 1 week to 3 months). Experiments

were carried out under research permits from the New Zealand

Department of Conservation # NO-16732-FAU, NO-16732-

RES, NO-18095-DOA. All specimens were provided to us dead

by conservation authorities and wildlife veterinarians and thus no

further ethics approvals were required to undertake this research.

Three of the birds were provided freshly dead and were

immediately fixed by transcardial perfusion using 4% paraformal-

dehyde (PFA) in 0.1 M phosphate buffer. One juvenile individual

was euthanased by a veterinarian, its head removed, transported

under cooling and immersion-fixed in 4% PFA within 2 hours of

death. All tissue was stored in 4% PFA until processed further.

Kiwi are precocial birds and hatch fully developed and

equipped to survive independently in their environment. We

therefore assume that the morphology of the ear in juvenile kiwi is

Figure 2. Number of stereovilli in mechanosensory hair-cell
bundles increased nearly linearly along the basilar papilla. A, B:
Two examples of SEM micrographs of hair bundles located at 10% from
the apical end, neurally (A) and at 90%, abneurally (B). C: Boxplot of
stereovillar numbers as a function of papillar position. For each
longitudinal position, 3 different values are shown for hair cells located
at the neural edge, near the midline and at the abneural edge,
respectively.
doi:10.1371/journal.pone.0023771.g002

Figure 3. Height of the mechanosensory hair-cell bundles was
nearly constant along the basal half of the basilar papilla. A, C:
SEM micrographs of individual hair bundles from an apical location (A;
10% from the apical end) and a basal location (C; 80% from apex). Note
that in C, the view is directly perpendicular to the tallest row of
stereovilli, which obscures the shorter rows. B, D: Two examples of
histological sections of individual hair cells from an apical location (B;
20% from the apical end) and a basal location (D; 90% from apex). E:
Height of the tallest stereovilli in individual, neurally located hair cells,
as a function of longitudinal papillar position. Different symbols show
measurements from an SEM specimen (corrected for 25% shrinkage)
and a series of light-microscopical sections, respectively.
doi:10.1371/journal.pone.0023771.g003

Kiwi Auditory Fovea
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in most respects adult-like and the data reported here reflect the

mature condition. This is supported by studies in the emu, a close

relative of the kiwi, which found that the morphology of the basilar

papilla in hatchlings showed only small differences to that in adults

[12]. As for the dendrite lengths in NL, all previous studies were

carried out in hatchlings (e.g., [22,24]) and it is unknown whether

dendritic lengths are adult-like at this age. However, for this study

we were only interested in the length gradients and we do not

predict best frequency based on dendritic length. Therefore, we

are assuming that the age of the kiwi should not influence the

length gradients.

Light microscopy of the basilar papilla
Cochleae were dissected free of bone and postfixed in 1% OsO4

in PBS. One kiwi cochlea obtained from the 1-week old chick of

unknown sex was then dehydrated in a graded series of ethanol

concentrations and embedded in epoxy resin (‘‘Durcupan’’ by

Sigma-Aldrich, NSW 2154, Australia) via ascending concentrations

in propylene oxide. The resin was prepared as a soft variant for

semi-thin sectioning (components A/M : B : C : D at 24.5 : 17.8 : 1 :

3.8 parts by weight). The specimen was completely and serially cut

into 5 mm-thick cross sections and stained with toluidine blue. The

angle of sectioning was adjusted in areas of pronounced papilla

Figure 4. Prediction of basilar-papilla frequency map derived from hair-bundle morphology. A–C: Known frequency representations
along the basilar papilla of the emu (A), chicken (B) and barn owl (C) compared to the variation in morphological factor (see Methods). Frequency
maps were plotted using the equations of [14,63] and an improved polynomial fit to the data of [13]; they are shown in black, referring to the right
ordinates. Stereovillar height and number for neurally-located hair cells were taken from [7,11,12,64,65] and the morphological factor derived from
those is shown in gray, referring to the left ordinates. Note that the morphological factor correlates well with the species-specific shape of the
frequency maps. D: Morphological factor and a prediction for the frequency distribution in the kiwi. The prediction is based on a linear regression of
frequency as a function of morphological factor for the pooled data from emu (circles), chicken (triangles) and barn owl (diamonds), shown in the
inset.
doi:10.1371/journal.pone.0023771.g004
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curvature to maintain a section plane orthogonal to the long axis of

the basilar papilla throughout. At 10%-intervals along the basilar

papilla, three neighbouring sections were selected for detailed

analysis. The sections were digitised using a Nikon Digital Sight

cooled colour camera attached to a Leica DMR upright microscope

and an oil immersion 100x objective (objective N.A. = 1.4;

condenser N.A. = 0.9). The height of the tallest stereovilli was

measured from the neural-most hair cell from each image using

ImageJ (http://rsbweb.nih.gov/ij/).

Scanning electron microscopy (SEM) of the basilar papilla
Three kiwi cochleae (one adult male, one juvenile female and

one juvenile male; juveniles were between 2–3 months old) were

used for SEM. Cochleae were dissected free of bone and lightly

stained with Janus Green to visualise the tectorial membrane. The

tegmentum vasculosum, tectorial membrane, lagenar otolith and

overhanging parts of the lagena were then carefully dissected away

with fine forceps. Specimens were postfixed in 1% OsO4 in

phosphate-buffered saline (PBS), dehydrated, critical-point dried

in carbon dioxide (Baltec CPD 030), mounted on stubs and

sputter-coated with a thin layer of gold. Specimens were viewed

using a Philips XL30S FEG (University of Auckland, New

Zealand) or a Zeiss ULTRA plus (University of Sydney, Australia)

scanning electron microscope at 5 and 20 kV acceleration voltage,

respectively. The entire basilar papilla was first documented as a

series of photographs while tilting the SEM stage to maintain a

perpendicular view of the papilla’s surface. These provided a

virtually flattened photomontage of the entire structure (final print

Figure 5. Dendritic length of neurones was nearly constant in the rostromedial half of nucleus laminaris. A: Image of a section of
nucleus laminaris (NL) showing the dorsal and ventral dendritic neuropil as indicated by the arrows. B: Percentage of each dendritic length in NL,
classified into 10 mm bins: C, D: Three-dimensional plots of dendritic length as a function of both rostrocaudal and mediolateral position within NL. In
D, median dendritic lengths for all cells located in a 10610 mm square (n = 1 to 5) are plotted as a flat topographical map and colours represent
dendritic lengths as shown in the legend. Note that the orange fringe (suggesting short dendrites) around caudal positions is an artefact of the
plotting procedure. Note the regular decrease of dendritic length in the caudal half of the nucleus and short dendrites of nearly constant length
throughout the rostromedial half.
doi:10.1371/journal.pone.0023771.g005

Kiwi Auditory Fovea

PLoS ONE | www.plosone.org 6 August 2011 | Volume 6 | Issue 8 | e23771



magnification of 8006) that was used to determine standard

positions at regular 10%-intervals along the papilla. Hair-bundle

morphology was then evaluated at these positions at higher

magnification. For stereovillar counts, the specimen was tilted for a

view perpendicular to the papilla’s surface and 9 hair cells were

evaluated at each papillar position, three each from the very

neural edge, the approximate midline and the very abneural edge.

For measurements of stereovillar height, the tilt was adjusted

orthogonal to the bundle’s tall axis. Due to the limitations of SEM

stage movement, stereovillar heights could only be obtained for a

restricted sample of hair cells in one specimen, all of which were

situated near the neural edge of the basilar papilla. Calibration

specimens with known grid spacing were used to verify correct

calibration of SEM images. SEM measurements were corrected

for 25% shrinkage [61].

Derivation of an estimate for the basilar papilla’s
tonotopic map

Stereovillar height (h) and number (n) are two major

determinants of a hair cell bundle’s micromechanical frequency

response. A morphological factor, n/h2, was therefore defined

which reflects the input of those two parameters into calculations

of passive resonance frequency (e.g., [62]). The variation in this

morphological factor along the basilar papilla predicted well the

shape of the independently known frequency representations in

the emu, chicken and barn owl (Fig. 4A–C). When plotting known

characteristic frequency for those 3 species as a function of the

morphological factor, the relationship was well fitted by a linear

regression through the origin (inset in Fig. 4D):

frequency (kHz) = 0.1781 * morphological factor

This equation was then used to predict a frequency represen-

tation along the basilar papilla of the kiwi on the basis of

stereovillar height and number.

Measurements of dendritic lengths in brainstem sections
Dendritic measurements from kiwi NL were obtained from a

juvenile kiwi approximately 2–3 months of age. The brain was

cryoprotected in 30% sucrose in 0.01 M PBS and placed in a

solution of 15% gelatine with 30% sucrose at 40uC for one hour.

The brain was placed in a custom-made mould so that

independent fiduciary points could be made in the gelatine for

later alignment of tissue sections (see below). A PBS solution

containing 15% gelatine, 30% sucrose solution and black fabric

dye (to darken the gelatine solution) was then poured over the

brain. Once set, the gelatine block, including the brain, was

removed, trimmed and placed into 4% PFA overnight. The block

was sectioned on a sliding freezing microtome at 50 mm thickness

in the sagittal plane. Sections of NL were stained with cresyl violet

and imaged using a Nikon Eclipse 80i light microscope and

camera and a 20x objective (N.A. = 0.5). The dendritic neuropil

of NL could be visualised using dark field filters. For each image

the entire rostrocaudal extent of NL was measured along the

Figure 6. Spectrograms of typical male and female kiwi vocalisations. The entire calls are shown to the left and an enlargement of one
component of the calls with a power slice of the area indicated by the yellow line to the right. For details regarding recording and analysis methods
see [54]. Briefly, spectrograms and power spectra were produced with a Fast Fourier Transformation (FFT) size of 1,024 points using a Hamming
window and 50% overlap, which produced a frequency resolution of 56 Hz.
doi:10.1371/journal.pone.0023771.g006
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cellular chain, from the most caudal cell to the most rostral cell in

the image. For each cell, its distance from the most caudal cell was

determined, and the linear extent of its ventral and dorsal

dendritic neuropil was measured. Measurements were only

obtained from cells that were clearly positioned within the

monolayer part of NL. To reconstruct all cell positions along a

common rostrocaudal axis, the position of NL’s rostral pole

relative to the fiducial points was determined for each section. The

most rostral point over all sections was then defined as

rostrocaudal = zero and all other rostrocaudal positions

recalculated accordingly.
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