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Abstract

The composition of tree species occurring in a forest is important and can be affected by

global change drivers such as climate change. To inform assessment and projection of

global change impacts at broad extents, we used hierarchical cluster analysis and over

120,000 recent forest inventory plots to empirically define forest tree assemblages across

the U.S., and identified the indicator and dominant species associated with each. Cluster

typologies in two levels of a hierarchy of forest assemblages, with 29 and 147 groups

respectively, were supported by diagnostic criteria. Groups in these two levels of the hierar-

chy were labeled based on the top indicator species in each, and ranged widely in size. For

example, in the 29-cluster typology, the sugar maple-red maple assemblage contained the

largest number of plots (30,068), while the butternut-sweet birch and sourwood-scarlet oak

assemblages were both smallest (6 plots each). We provide a case-study demonstration of

the utility of the typology for informing forest climate change impact assessment. For five

assemblages in the 29-cluster typology, we used existing projections of changes in impor-

tance value (IV) for the dominant species under one low and one high climate change sce-

nario to assess impacts to the assemblages. Results ranged widely for each scenario by the

end of the century, with each showing an average decrease in IV for dominant species in

some assemblages, including the balsam fir-quaking aspen assemblage, and an average

increase for others, like the green ash-American elm assemblage. Future work should

assess adaptive capacity of these forest assemblages and investigate local population- and

community-level dynamics in places where dominant species may be impacted. This typol-

ogy will be ideal for monitoring, assessing, and projecting changes to forest communities

within the emerging framework of macrosystems ecology, which emphasizes hierarchies

and broad extents.
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Introduction

The mix of tree species occurring in a forest community affects the ecological attributes and

ecosystem services provided by forests, including biodiversity, forest stand structure, wildlife

habitat, biogeochemical cycles, and water quality [1,2]. Thus, integrated assessments of forest

ecosystem vulnerability, and strategies for managing or mitigating that vulnerability, require

knowledge of how tree species are assembled into forest communities. On one hand, changing

environmental and climate conditions have led to widespread reassembly of forest tree com-

munities over time [3–5]. Evidence of past tree species assemblages from charcoal and pollen

records indicates that at a broad scale, distributions of tree species respond individualistically

to climate and environmental conditions [6,7]. Similarly, recent changes in forest species dis-

tributions are also evident, with uphill, downhill, northward and southward range shifts, as

well as range expansions and contractions all documented [8–10]. Because the ranges of forest

tree species are subjected to individualistic shifts over space and time, any characterization of

tree species assemblages must be flexible to accommodate those shifts.

On the other hand, knowing the individual spatial distributions of tree species’ ranges is

not enough to characterize forest communities even at broad extents, nor to recognize the

vulnerabilities of those communities to potential future changes. Several recent studies have

shown that simply overlaying individual species ranges often does not produce accurate

community-level measures such as relative abundance or biomass [11,12]. In part, this is

because community-level attributes depend not just on which species occur in the commu-

nity, but also on the interactions among those species. Species interactions vary with the rela-

tive occurrence of those species–that is, the dominance (or conversely, the evenness) of

species [13,14]. The relative occurrence or dominance of species in an ecosystem not only

influences community-level attributes and species interactions, but also can be influenced by

environmental change [15,16]. For example, changing climate is likely to affect the domi-

nance structure in a community before a change in species richness is observed [13]. There-

fore, a characterization of tree species assemblages that is based on recent information about

the relative occurrence of species within communities will be ideal for detecting and moni-

toring changes in those communities as species respond jointly and individualistically to cli-

mate and environmental changes.

In addition to detection and monitoring of changes as they occur, a characterization of for-

est tree communities can also be a useful basis for looking forward to potential future changes.

Community-level projection models and vulnerability assessments are two techniques for

investigating future changes to forest communities under global change scenarios, and both

rely on baseline knowledge about which communities exist in the contemporary time period.

Community-level models that aim to project potential future changes in forest communities

are promising because of their ability to incorporate not only environmental suitability for

individual species, but also information on species interactions and other community- and

population-level processes [17–19]. In a vulnerability assessment, potential impacts from

global changes are evaluated against a community’s ability to adapt to potential global changes

[20]. Impacts are a function of exposure, or the degree to which a community is likely to expe-

rience changes in a global change driver, and sensitivity, or the degree to which a community

is likely to be affected by those changes [20]. Thus, in vulnerability assessment, the aim is not

to predict precisely how a community might change in the future, as in community models,

but rather to show which communities are likely to experience consequential impacts and

inform future research and management efforts. Potential vulnerability of species to future

global change has often been assessed [20–23], and community-level vulnerability assessment

is becoming popular [24–26].
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We developed a hierarchical typology of forest communities that can be used as the basis

for monitoring and detecting change, as well as investigating potential future changes to forest

communities. Our primary goals in this study were to identify existing empirical assemblages

of tree species supported by recent forest inventory data from across the continental United

States, determine which species were statistically important to those assemblages, and calculate

measures of species dominance. Specifically, we sought to cluster observations from forest

inventory data into a typology of tree species assemblages that can each be defined statistically

by indicator species, then examine the major characteristics of those assemblages. To identify

tree species assemblages, we used hierarchical clustering of tree species importance values

from U.S. Department of Agriculture Forest Service Forest Inventory and Analysis (FIA) data.

Once those assemblages were defined, indicator species analysis [27] was used to determine

which species are statistically representative of each assemblage because of their high impor-

tance values relative to other species in the assemblage. We calculated measures of dominance

for species to provide insights about the potential ecological roles of those species in existing

forest tree communities [28]. Importance values and dominance measures can translate pro-

jected changes in the relative occurrence of individual species into consequential change for

assemblages.

The empirical typology of assemblages and the characteristics of their species composition

provide an important starting point for monitoring community changes as they occur, and

assessing the potential impacts of global change drivers. While the primary aim of this paper is

to present the empirical typology of species assemblages, a secondary aim is demonstrate its

utility. To that end, we used the typology to explore one case-study example of how to assess

the potential impacts of future climate changes on the species assemblages within a vulnerabil-

ity framework. For the case study, we overlaid the clusters we defined in the eastern U.S. with

climate envelope model results for individual species from Iverson et al. [29]. This case study

thus used the empirical assemblages as a way to translate species-specific climate change

impacts to potential climate change impacts on forest communities. In this example, we aimed

not to predict the specific mix of species that may exist in the future, but rather to identify the

places where projected species-level impacts of climate change may be ecologically consequen-

tial for empirical forest communities by the end of the 21st century–in other words, where cli-

mate change impacts to these communities are more likely.

Methods

Forest inventory data

Forest plot observations from across the continental U.S. were extracted from the FIA database

(FIADB version 6.0.1) [30]. The FIA program uses a sample-based statistical design to quantify

forest conditions across the United States, and is the primary source for information about the

status and trends of U.S. forest resources [31]. The FIA program applies a nationally-consistent

sampling design of all forest and other land uses, with one permanent plot established for

every 2428 ha of land [32]. FIA plots are 0.067 ha in size and consist of three 7.2-m fixed-radius

subplots spaced 36.6 m apart in a triangular arrangement and one subplot of the same size in

the center [30]. Data collected for forested plots by field crews include the basal area and spe-

cies of every tree stem in each plot. Each FIA plot is also labeled with a forest type and forest

type group via a decision tree algorithm [33]. To protect sensitive plot information, especially

on privately owned lands, the publicly available FIA database contains FIA location informa-

tion that has been altered slightly from the true location. We used actual plot locations to do

spatial analysis (described below), but show altered locations in all figures here. To make sure

we included the full set of plots for each state, we selected the set of plots that was used to
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produce the most recent population estimates. For most states, the most recent estimates were

completed in 2013, but the most recent estimates for some states were completed in 2012, and

the most recent estimate for one state (Tennessee) was completed in 2009. At each plot, we

extracted the species identity and basal area of each tree greater than 2.54 cm (1 inch) diameter

at breast height.

All data manipulation, and spatial and statistical analysis was done in R version 3.3.0 [34].

To avoid skewing clusters toward the most rare species, we eliminated species from the FIA

data that occurred in fewer than 250 plots (0.2% of plots) [35]. We also combined some species

that were varieties or were labeled with generic names, following the logic of Potter and Har-

grove [36]. In some cases, as in the case of hickory species, we eliminated records with generic

labels because the generic labels represented a small proportion of all records for the genus in

the database. In other cases, as for hawthorn species, we combined all records into a generic

record, because those species are difficult to identify in the field, and the generic label repre-

sented a large proportion of the records for all species in the genus. We excluded plots that

were labeled with nonnative forest types and excluded records of nonnative species. We also

excluded plots that were labeled as "nonstocked" because those indicate plots with few or no

trees.

Initial inspections of the data indicated that a large number of plots (> 17,000 plots,

or> 13% of the total) contained Douglas-fir (Pseudotsuga menziesii), and most of those would

be grouped into a single cluster. Most authorities currently recognize two varieties of Douglas-

fir: coast Douglas-fir (Pseudotsuga menziesii var. menziesii) and Rocky Mountain or interior

Douglas-fir (P. menziesii var. glauca) but those are not distinguished in the FIA database.

Therefore, Douglas-fir in plots occurring in California or in the western portion of the species’

range west of the Cascade mountains in Washington and Oregon was labeled as coast Doug-

las-fir and all others were labeled as Rocky Mountain Douglas-fir, after Giunta et al. [37].

After filtering, the result was a data set of abundance and basal area for each of 176 species

(see S1 Table in supplementary material for full list of species) in 127 622 plots. We calculated

importance values (IV) by species and plot. The relative IV for a species is defined as the aver-

age of each species’ relative basal area and abundance in each plot, multiplied by 100. We used

the IVs as the basis for clustering.

Clustering of tree species assemblages

Multivariate statistical methods including clustering for classifying species assemblages are

well developed in vegetation ecology [38–40]. Hierarchical clustering was the desired method

here because species assemblages are often thought of as nested with various levels in a hierar-

chy. Hierarchical clustering requires a distance or dissimilarity matrix, but the size of a dis-

tance matrix for our full data set would exceed the memory limit for many contributed

packages in R (for example, the vegan package has a limit of 2 GB). Therefore, we used the

method of cluster seeding to reduce the number of rows in the species matrix prior to hierar-

chical clustering [41]. This method involves an initial step of k-means clustering, which does

not require creation of a distance matrix. In the k-means clustering, a relatively large number

of clusters (k) is specified in order to create cluster “seeds” that are then input to hierarchical

clustering. The initial k-means clustering with a large k finds groups of plots that have identical

or nearly identical information. This method was appropriate for our data because the FIA

database contains many plots with identical or nearly identical species importance values, as is

the case for plots that only have a single species present. For the initial k-means clustering, we

used k = 20 000 clusters, and set the number of starts to 5 and the maximum iterations to 100.

The results from the k-means cluster seeding were: (1) a 20 000-row x 178-column matrix in
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which the values were the average IV by species for each of the k-means clusters, and (2) a vec-

tor of length 127 622 indicating membership in each of the 20 000 clusters for each of the forest

inventory plots.

The two results from k-means cluster seeding were used as inputs into hierarchical cluster-

ing. As our association matrix d, we calculated Bray-Curtis dissimilarity based on the k-means

cluster matrix using the vegdist function in the vegan package in R [42]. For clustering, we

used the hclust function in the R stats package [34], and specified the number of observations

(cluster size) in each of the 20 000 k-means clusters, indicating that d is a dissimilarity matrix

between existing clusters. Several hierarchical clustering linkage methods were explored.

Visual inspection of the resulting dendrograms favored the ’average’ linkage method, which

defines clusters based on average distances among plots in pairs of clusters.

We determined the optimum number of clusters using indicator species analysis [27]

because we desired empirical tree assemblages that were each identifiable based on one or

more characteristic species. Indicator species are those with high specificity and fidelity to a

given cluster, and are thus the most prominent members of the cluster [39]. We used the plot

data set containing importance values to perform indicator species analysis for each level of

the hierarchy from 2 to 200 clusters. For each of those levels, the hierarchical cluster dendro-

gram was cut and resulting cluster memberships were assigned back to the 127 622 plots, then

indicator species analysis was run. The result of each iteration of indicator species analysis was

an indicator value and p-value for each species in the data set.

Once this iterative analysis was run, the optimum number of clusters was selected based

first on the criterion that all clusters in a given level had at least one significant indicator spe-

cies each. Within the set of cluster typologies that met that criterion, we used several indices

based on the indicator species analysis to select optimal numbers of clusters. We sought levels

of the hierarchy that simultaneously maximized the sum of significant indicator values and the

total number of indicator species, and minimized the average of significant p-values [27,43].

In addition to diagnostic indices from indicator species analysis, we used silhouette widths

[44] to select optimal typologies within the set of typologies that had at least one indicator spe-

cies per cluster. Silhouette widths compare the similarity of samples within a cluster to samples

in another cluster. A high positive silhouette width indicates that a sample is more similar to

clusters within its assigned cluster and thus fits well into that cluster. A low or negative silhou-

ette width indicates greater similarity to another cluster, and therefore a poor fit. We therefore

sought to choose a typology that maximized the average width, in addition to the three indica-

tor species indices described above. We did not combine the indices quantitatively to select

optimal levels of the hierarchy, but rather inspected the values of each of the indices and

selected levels of the hierarchy that performed well across the indices. Indicator species analy-

sis and silhouette widths were done in R using contributed packages cluster [45] and labdsv

[46], respectively.

Within each cluster in the optimal typology, we also calculated a species dominance index

(SDI) [28]for every species [28]. Frieswyk et al. [28] defined the SDI for a given species as in a

community as:

SDI ¼
MC þMSSþ THC

3

where MC is the mean cover of the species across all plots and MSS is mean species suppres-

sion, defined as the average of the inverse of species richness in the plots in which the species

occurs. THC is the tendency toward high cover, calculated as the number of plots in which a

species meets two dominance criteria divided by the number of plots in which the species

occurs. The two dominance criteria are that a species must have greater than 25% cover as well
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as the most cover of any species in a plot. Here, we use relative IVs (defined above) in place of

cover measures. While other measurements or combinations of metrics could be used to mea-

sure dominance, we used the SDI as defined by Frieswyk et al. because it is based on three

main ways in which a species can be dominant; that is, a species can have high cover in a large

number of plots, can occur with few other species or can have high cover but only occur in a

small number of plots [28]. In addition, the index has been used as a measure of dominance in

other studies of community structure [28,47]. A cutoff value must be chosen for SDI to repre-

sent dominant species. We used a cutoff of species in 90th percentile of SDI values to represent

dominant species, as used by Frieswyk et al [28]. This choice does matter, and we also explored

alternative cutoffs of the 95th and 85th percentiles.

Case study: Potential climate change impact for tree species

assemblages in the Eastern U.S.

As one example of how the clusters and information on their community composition could

be used to assess the potential impacts of change drivers on forest communities, we used pro-

jections of climate change impacts on individual tree species from the USDA Forest Service’s

Climate Change Tree Atlas [29,48]. Tree Atlas data represent projected changes in IVs for indi-

vidual tree species from current (1961–1990) climate and future (2070–2099; hereafter,

“2100”) under a set of emissions scenarios and global climate models (GCMs). The projections

under the A1FI emissions scenario according to the Hadley GCM (hereafter “Hadley High”;

high emissions, relatively high projected change) and the B1 emissions scenario according to

the PCM GCM (hereafter “PCM Low”; low emissions, relatively mild projected change) were

used here. The spatial extent of the projected data covers the Eastern U.S. [29], and therefore

our case study is restricted to that extent.

We defined potential climate change impact for a given cluster in terms of the projected

amount of change in IV for all of the cluster’s dominant species that were previously identified,

using the same 90th percentile cutoff for SDI described above. For each plot location, we

extracted the modeled change in IV under each of the two emissions scenarios from the Tree

Atlas spatial projections for all dominant species in the cluster to which that plot was assigned.

As our measure of overall impacts to the tree species assemblage for each cluster, we calculated

the mean change in dominant species IV across all plots in a cluster, weighted by each domi-

nant species’ SDI value. To examine spatial patterns of impact within each cluster, we calcu-

lated the mean change in IV at each plot location across all dominant species in the assemblage

to which that plot was assigned.

When summarizing changes in IV across assemblages, it is important to note that the reli-

ability of Tree Atlas projections varies by species [29]. Here, we restricted our analysis to clus-

ters: (1) that contained at least 100 plots, (2) for which all dominant species were included in

the Tree Atlas projections, and (3) for which Tree Atlas projections for the majority of domi-

nant species had at least medium reliability.

Results

Clustering of tree species assemblages

Indicator species analysis of hierarchical clustering showed that cluster typologies with 2 to

147 clusters had at least one indicator species per cluster. Within that range, 147 clusters maxi-

mized the sum of significant indicator values, the total number of indicator values, and the

average silhouette width, while minimizing the average p-values (Fig 1). For k = 147, the sum

of significant indicator values was 101.1, the total number of indicator species was 173, the
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average of the p-values was 0.006, and the average silhouette width was 0.182. In addition, a

grouping of 29 tree species assemblages resulted in substantially larger values for the total

number of indicator values and the average silhouette widths compared to groupings with

slightly smaller or larger numbers of clusters; in other words, local maxima for those diagnostic

criteria. Average p-values showed a local minimum at 29 groupings also (Fig 1). For k = 29, the

sum of significant indicator values was 35.5, the total number of indicator species was 111, the

average of the p-values was 0.050, and the average silhouette width was 0.104. Thus, we further

investigated both the 29- and 147-cluster typologies (Fig 1).

The largest clusters in the 29-cluster typology corresponded to over 20 groups in the nested

147-cluster typology, while the membership of plots in twelve clusters remained unchanged in

both levels of the hierarchy (Table 1, S2 Table and S1 Fig in supplementary material). Sizes of

clusters varied widely within both typologies. Groups in the 29-cluster typology contained

between 6 and 30 068 plots (< 0.01% and 23.6% of all plots, respectively; Table 1), while groups

in the 147-cluster typology included between 4 and 12 796 plots (< 0.01% and 10.0% of all

plots; S2 Table).

Groups in the 29-cluster typology had between one and twelve indicator species, and

between one and seventeen dominant species each (Table 1, see S3 Table for a comparison of

results from the two alternative cutoff values for dominant species), while groups in the

Fig 1. Diagnostic indices used to select groupings in the hierarchical clustering. Dashed vertical lines correspond to selected typologies

of 29 (left) and 147 (right) cluster.

https://doi.org/10.1371/journal.pone.0184062.g001
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Table 1. Significant indicator species, dominant species, and average characteristics of the 29 broad assemblages, in order corresponding to Fig

2. Species in bold have the highest indicator values and are the ones by which we refer to each assemblage.

Indicator species Ind.

Val.

p-

value

Num.

plots

Num. specific

assemblages

Median richness

(species/plot)

Mean basal

area (m2/ha)

Mean abundance

(trees/plot)

Dominant species SDI

slash pine 0.72 0.001 2934 4 2 21.40 25.98 slash pine 0.58

longleaf pine 0.31 0.001 longleaf pine 0.32

pondcypress 0.13 0.006 pondcypress 0.22

turkey oak 0.08 0.02 turkey oak 0.13

sweetbay* 0.06 0.043

balsam fir 0.41 0.001 12613 11 4 27.16 35.27 quaking aspen 0.32

quaking aspen 0.32 0.001 red pine 0.24

paper birch* 0.27 0.001 northern white

cedar

0.18

black spruce 0.19 0.001 balsam fir 0.17

northern white

cedar

0.19 0.002 black spruce 0.16

white spruce 0.15 0.004 jack pine 0.16

black ash 0.15 0.005 tamarack (native) 0.13

red spruce 0.14 0.005 black ash 0.12

tamarack (native) 0.14 0.008 Jeffrey pine* 0.11

red pine 0.12 0.009 red spruce 0.10

yellow birch* 0.09 0.017

jack pine 0.07 0.041

common

persimmon

0.98 0.001 83 1 2 9.17 7.08 common

persimmon

0.71

black cherry* 0.11

butternut 1.00 0.001 6 1 2 11.99 4.50 butternut 0.81

sweet birch* 0.11 0.011

sourwood 0.98 0.001 6 1 3 14.17 8.83 sourwood 0.74

scarlet oak* 0.28 0.001

Virginia pine* 0.10 0.007

sugar maple 0.27 0.001 30068 24 7 29.29 27.62 sugar maple 0.17

red maple 0.23 0.001 red maple 0.17

American beech* 0.20 0.001 eastern white pine 0.12

white oak 0.18 0.001 white oak 0.12

northern red oak* 0.22 0.002 chestnut oak 0.11

yellow poplar 0.13 0.004 yellow poplar 0.11

eastern hemlock 0.11 0.007 eastern hemlock 0.11

chestnut oak 0.12 0.009 Virginia pine* 0.10

eastern white pine 0.08 0.02

black oak* 0.09 0.021

pignut hickory* 0.08 0.021

mockernut hickory* 0.06 0.048

loblolly pine 0.48 0.001 25575 21 6 28.57 29.67 loblolly pine 0.40

sweetgum 0.20 0.001 water tupelo* 0.15

water oak* 0.13 0.003 pond pine* 0.14

shortleaf pine 0.12 0.009 sweetgum 0.13

post oak 0.11 0.016 post oak 0.12

southern red oak* 0.10 0.017 eastern redcedar 0.12

eastern redcedar 0.08 0.026 baldcypress* 0.12

(Continued )
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Table 1. (Continued)

Indicator species Ind.

Val.

p-

value

Num.

plots

Num. specific

assemblages

Median richness

(species/plot)

Mean basal

area (m2/ha)

Mean abundance

(trees/plot)

Dominant species SDI

blackgum* 0.06 0.032 shortleaf pine 0.10

winged elm* 0.07 0.034 swamp tupelo* 0.10

American holly* 0.06 0.039 loblolly bay* 0.10

hawthorn spp. 0.97 0.001 88 1 2 9.06 11.10 hawthorn spp. 0.65

American plum 0.03 0.05 eastern

hophornbeam*
0.18

black willow* 0.18

blackgum* 0.17

American elm* 0.13

shagbark hickory* 0.13

American plum 0.12

serviceberry spp.* 0.12

black willow 0.92 0.001 343 1 3 29.43 15.37 black willow 0.65

green ash* 0.13

eastern redbud* 0.11

green ash 0.14 0.005 9303 32 5 23.36 17.53 silver maple 0.19

American elm 0.12 0.005 northern pin oak* 0.19

black walnut 0.13 0.007 green ash 0.17

hackberry 0.13 0.009 eastern

cottonwood*
0.16

bur oak 0.09 0.011 bur oak 0.16

slippery elm* 0.07 0.031 black locust 0.15

bitternut hickory* 0.07 0.036 boxelder 0.13

boxelder 0.07 0.042 sugarberry 0.12

black locust 0.07 0.046 Osage orange* 0.12

American sycamore 0.06 0.047 American elm 0.11

silver maple* 0.05 0.05 hackberry 0.11

American sycamore 0.11

shagbark hickory* 0.11

pecan* 0.10

pin oak* 0.10

black walnut 0.10

overcup oak* 0.10

velvet mesquite 1.00 0.001 269 1 1 6.43 7.58 velvet mesquite 0.97

redberry juniper* 0.10

chittamwood 0.98 0.001 18 1 1 4.47 4.67 chittamwood 0.90

honey mesquite 0.78 0.001 3761 3 1 6.15 8.40 honey mesquite 0.81

Pinchot juniper 0.12 0.003 Pinchot juniper 0.34

redberry juniper 0.05 0.035 redberry juniper 0.32

oneseed juniper* 0.17

cedar elm 0.97 0.001 149 1 3 15.48 15.70 cedar elm 0.64

willow oak* 0.20

water oak* 0.15

Osage orange* 0.15

eastern redcedar* 0.11

live oak 0.52 0.001 1790 4 2 16.80 18.57 Ashe juniper 0.53

Ashe juniper 0.52 0.001 live oak 0.43

(Continued )

Empirical typology of tree species assemblages

PLOS ONE | https://doi.org/10.1371/journal.pone.0184062 September 6, 2017 9 / 24

https://doi.org/10.1371/journal.pone.0184062


Table 1. (Continued)

Indicator species Ind.

Val.

p-

value

Num.

plots

Num. specific

assemblages

Median richness

(species/plot)

Mean basal

area (m2/ha)

Mean abundance

(trees/plot)

Dominant species SDI

Texas persimmon 0.10 0.022 cabbage palmetto 0.29

cabbage palmetto 0.10 0.03 Texas persimmon 0.11

California live oak 0.85 0.001 224 2 1 21.72 13.46 California live oak 0.73

California laurel 0.29 0.001 California laurel 0.32

blue oak* 0.13

red alder* 0.12

blue oak 0.68 0.001 585 3 1 15.26 12.60 blue oak 0.65

interior live oak 0.35 0.001 interior live oak 0.38

California foothill

pine

0.23 0.001 Pacific dogwood* 0.33

California foothill

pine

0.20

singleleaf pinyon* 0.14

Gambel oak 0.92 0.001 769 1 2 15.31 26.65 Gambel oak 0.82

alligator juniper 0.79 0.001 736 2 3 18.05 18.09 alligator juniper 0.41

Arizona white oak 0.52 0.001 Arizona white oak 0.31

Emory oak 0.36 0.001 Emory oak 0.21

ponderosa pine* 0.14

Utah juniper 0.59 0.001 7789 3 2 19.44 17.70 Utah juniper 0.49

two needle pinyon 0.36 0.001 oneseed juniper 0.35

oneseed juniper 0.22 0.002 singleleaf pinyon 0.29

singleleaf pinyon 0.20 0.001 two needle pinyon 0.28

black cottonwood 0.99 0.001 44 1 1 36.11 8.61 black cottonwood 0.86

bigleaf maple 0.07 0.038 bigleaf maple 0.20

western juniper 0.73 0.001 1168 2 1 15.20 13.94 western juniper 0.69

curlleaf mountain

mahogany

0.31 0.001 curlleaf mountain

mahogany

0.39

ponderosa pine* 0.17

lodgepole pine 0.50 0.001 6069 4 2 27.71 34.54 lodgepole pine 0.46

subalpine fir 0.48 0.001 subalpine fir 0.31

Engelmann spruce 0.47 0.001 Engelmann spruce 0.26

whitebark pine 0.13 0.005 whitebark pine 0.14

Rocky Mountain

Douglas-fir

0.45 0.001 11585 7 2 25.30 22.89 ponderosa pine 0.46

ponderosa pine 0.30 0.001 Rocky Mountain

Douglas-fir

0.36

grand fir 0.19 0.002 grand fir 0.20

western larch* 0.12 0.005 Rocky Mountain

juniper*
0.17

western redcedar* 0.14

chokecherry 0.99 0.001 13 1 3 13.86 11.23 chokecherry 0.75

Pacific dogwood* 0.06 0.02

Oregon white oak 0.97 0.001 213 1 2 20.54 20.92 Oregon white oak 0.74

ponderosa pine* 0.10

canyon live oak 0.71 0.001 409 2 3 28.29 28.21 canyon live oak 0.57

California black

oak

0.42 0.001 California black oak 0.36

mountain hemlock 0.74 0.001 919 2 3 50.49 41.00 Pacific silver fir 0.42

Pacific silver fir 0.64 0.001 mountain hemlock 0.41

(Continued )
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147-cluster typology had between one and three indicator species each (S2 Table). The 90th

percentile value of SDI, which was used to determine whether species were designated as

“dominant” in the 29-cluster typology was 0.096. The alternative 85th and 95th percentile values

were 0.060 and 0.168, respectively. The range of indicator values that were significant for each

group, especially in the 29-cluster typology, demonstrates that the specificity and fidelity of

indicator species varied across those groups (Table 1). With fewer indicator and dominant spe-

cies per cluster, the 147-cluster grouping represents specific tree species assemblages that are

each represented by a small number of species (hereafter, “specific assemblages”), while the

29-cluster grouping represents generally broader assemblages (hereafter, “broad assem-

blages”), although as stated above, some groups did not vary between the two typologies.

Because of the large number of specific assemblages identified, we focus on results and sum-

maries for the broad assemblages, and examine specific assemblages that correspond to some

of them. Hereafter, we refer to broad and specific assemblages that have more than one indica-

tor species using the common names of the two most significant indicator species, and refer to

those with a single indicator species using the name of that species (Table 1).

The broad assemblages were grouped in the dendrogram generally by their geographic

extents, with assemblages at the top of the dendrogram occurring largely in the eastern U.S.,

those in the middle occurring in the central U.S. and Texas, and those at the bottom in the

western U.S. (Fig 2). In other words, the rightmost splits in the dendrogram differentiated

assemblages occurring in the eastern versus the central versus the western U.S. (Fig 2). Some

were distributed over wide ranges of longitude (e.g. the balsam fir-quaking aspen assemblage),

latitude (e.g. the western juniper-curlleaf mountain mahogany assemblage), or both (e.g. the

sugar maple-red maple and green ash-American elm assemblages; Fig 3). Most broad assem-

blages tended to be distributed in either the eastern or the western U.S. only, though there

were exceptions, including the balsam fir-quaking aspen assemblage (Fig 3).

The broad assemblages varied in their community characteristics. We next summarize

some of the major characteristics for a few example assemblages, including the significant indi-

cator species, relative size in terms of number of plots, as well as average plot-level species rich-

ness, basal area and tree abundance (Table 1). First, the balsam fir-quaking aspen assemblage

is an example that represented widespread a widely-distributed community with high plot-

level tree species richness on average, and a large number of indicator species. The assemblage

was distributed on plots in the Northeast and upper Midwest, as well as where quaking aspen

Table 1. (Continued)

Indicator species Ind.

Val.

p-

value

Num.

plots

Num. specific

assemblages

Median richness

(species/plot)

Mean basal

area (m2/ha)

Mean abundance

(trees/plot)

Dominant species SDI

noble fir 0.17 0.001 noble fir 0.19

western white pine* 0.06 0.046 Pacific yew* 0.11

coast Douglas-fir 0.54 0.001 10093 9 3 49.83 34.59 coast Douglas-fir 0.45

western hemlock 0.23 0.001 white fir 0.22

white fir 0.15 0.005 redwood* 0.20

red alder 0.10 0.013 California red fir* 0.18

incense cedar* 0.08 0.021 Jeffrey pine* 0.18

western redcedar* 0.07 0.032 western hemlock 0.17

tanoak 0.07 0.039 tanoak 0.13

giant chinkapin* 0.04 0.04 red alder 0.10

*This species is either an indicator for the corresponding assemblage but is not dominant, or is dominant but not an indicator.

https://doi.org/10.1371/journal.pone.0184062.t001
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occurs in the West (Fig 4a). In addition to balsam fir and quaking aspen, there were ten other

significant indicator species for the assemblage (Table 1). Most of the indicator species are also

dominant, except for paper birch and yellow birch. The broad assemblage corresponded to

eleven specific assemblages having 14 indicator species altogether. The quaking aspen assem-

blage was the dominant specific assemblage in the western portion (Fig 4a), while in New

England, a mix of specific assemblages occurred, but the balsam fir assemblage was most com-

mon there (Fig 4b). A mix of specific assemblages also occurred in the upper Midwest (Fig 4c).

Like the balsam fir-quaking aspen assemblage, the green ash-American elm, loblolly pine-

sweetgum, and sugar maple-red maple assemblages were also widespread with a large number

of significant indicator species. Each of these assemblages had higher average plot-level tree

richness than the balsam fir-quaking aspen assemblage, but lower plot-level average tree

abundances.

Second, the coast Douglas-fir-western hemlock assemblage was an example of an assem-

blage with lower average plot-level species richness, but high plot-level basal areas and tree

abundances. The substantially higher indicator value for coast Douglas-fir (i.e., approximately

Fig 2. Dendrogram from hierarchical clustering of tree species importance values. The 29 broad assemblages are shown. See S1 Fig for

dendrogram cut at 147 specific assemblages.

https://doi.org/10.1371/journal.pone.0184062.g002
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two times larger or more) compared with the other significant indicator species suggests that

the assemblage was characterized best by coast Douglas-fir. The species also has a higher SDI

value compared with other dominant species in the assemblage, showing that it is dominant

most often. The assemblage included plots in coastal portions of California, Washington and

Oregon, as well as in the forests of the Sierra Nevada mountains, and where white fir occurs to

the east (Fig 5a). In addition to coast Douglas-fir and western hemlock, six other species were

indicators of the broad assemblage (Table 1). Nine specific assemblages corresponded to this

broad assemblage (Fig 5a). Most plots, especially in Oregon, Washington and Northern Cali-

fornia, belonged to the assemblage with coast Douglas-fir as the single indicator species. The

assemblage with giant chinkapin, redwood, and tanoak as indicator species occurred in coastal

California, while the two assemblages with Jeffrey pine and white fir as indicators were present

in the Sierra Nevada Mountains.

Several other assemblages had some similar characteristics to the coast Douglas-fir-western

hemlock assemblage, including lodgepole pine-subalpine fir and mountain hemlock-Pacific

silver fir. In contrast to the coast Douglas-fir-western hemlock assemblage, the lodgepole pine-

subalpine fir assemblage had moderate basal area, and high indicator values for three tree spe-

cies instead of just one.

Fig 3. Locations of FIA plots in the 29 broad assemblages. The sixteen assemblages containing more than 500 plots are shown. When

read left to right along each row from top to bottom, the order of the assemblages corresponds to their order from top to bottom in the

dendrogram (Fig 2).

https://doi.org/10.1371/journal.pone.0184062.g003
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Fig 4. Forest inventory plots in the balsam fir-quaking aspen broad assemblage. Symbol colors represent

each plot’s membership in a specific assemblage. (A) all plots; (B) plots in New England; (C) plots in the western

Great Lakes region.

https://doi.org/10.1371/journal.pone.0184062.g004
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Fig 5. Forest inventory plots symbolized according to their membership in specific assemblages. (A) plots in the

coast Douglas-fir-Western hemlock broad assemblage; (B) plots in the slash pine-longleaf pine broad assemblage.

https://doi.org/10.1371/journal.pone.0184062.g005
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The third example, the slash pine-longleaf pine broad assemblage, was most characterized

by a single indicator species (slash pine) that had a higher indicator value than the other indi-

cator species, but the assemblage had relatively low average plot-level tree species richness, and

moderate average plot-level basal area and tree abundance. That assemblage occurred on plots

in the southeastern U.S. from eastern Texas to North Carolina. In addition to slash pine and

longleaf pine, pondcypress, turkey oak, and sweetbay were indicator species of the broad

assemblage, and the four indicator species were also the dominant species. Four specific

assemblages corresponded to the broad assemblage, with the slash pine assemblage being the

largest and dominating throughout, except in North and South Carolina, where the longleaf

pine assemblage was present (Fig 5b).

Case study: Assessment of potential climate change impacts across

assemblages

The criteria we used for exclusion of broad assemblages from the climate change impact

assessment resulted in five of the 29 retained: balsam fir-quaking aspen, green ash-American

elm, loblolly pine-sweetgum, slash pine-longleaf pine, and sugar maple-red maple (Table 2).

These five assemblages together contained 79 342 plots (94.3% of the 84 177 plots in the east-

ern U.S., and 62.2% of the 127 622 total plots). Average projected changes in IV for dominant

species within those broad assemblages ranged from a decrease for some broad assemblages to

an increase for others under each scenario (Table 2). Projections under the Hadley High sce-

nario spanned a larger range of values, including greater increases and greater decreases in

average IV projected for assemblages under Hadley High compared with PCM Low. The

broad assemblages also varied in the geographic patterns of their projected changes in IV (Fig

6 shows geographic results under the Hadley High scenario; results for PCM Low are in S2 Fig

in supplementary material).

The largest projected decrease in IV under both scenarios was for plots in the balsam fir-

quaking aspen assemblage (Table 2). The IV for dominant species in that assemblage was pro-

jected to decrease at almost every plot location, with only a small number of plots showing an

increase under Hadley High (Fig 6a). A smaller average decrease in IV was projected for the

sugar maple-red maple assemblage, which was distributed across the eastern U.S. (Table 2).

Throughout most of the extent of that assemblage, the average IV for dominant species was

projected to decrease, but increased IV was projected for some plots, particularly the most

northern and some southern plots (Fig 6b).

Small to moderate increases in IV on average were projected under both scenarios for the

loblolly pine-sweetgum, slash pine-longleaf pine, and green ash-American elm assemblages

(Table 2). For the loblolly pine-sweetgum assemblage, especially in the northern part of its dis-

tribution, a large proportion of plots were projected to see a substantial increase in IV for

Table 2. Potential climate change impacts to five broad assemblages under two climate change scenarios. Here, impact is defined as the average

change in importance value for dominant tree species projected across all plots in the assemblage by the end of the 21st century.

Broad assemblage Num. plots in east Prop. of plotsa PCM Low % change Hadley High % change

balsam fir-quaking aspen 11486 91% -45.4% -74.5%

sugar maple-red maple 30068 100% -13.0% -48.2%

loblolly pine-sweetgum 25574 100% 7.9% 1.6%

slash pine-longleaf pine 2933 100% 13.1% 3.3%

green ash-American elm 9281 100% 26.9% 19.3%

a The proportion of the total number of plots in the given assemblage that were included in climate change impact assessment.

https://doi.org/10.1371/journal.pone.0184062.t002
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Fig 6. Projected change in importance value for dominant species in five broad assemblages. Maps show projected changes

under the Hadley High scenario for plots in the (A) balsam fir-quaking aspen assemblage which had the largest projected decrease

in importance value on average, (B) sugar maple-red maple assemblage, (C) loblolly pine-sweetgum assemblage, (D) slash pine-

longleaf pine assemblage, and (E) green ash-American elm assemblage, which had the largest projected increase in importance

value on average.

https://doi.org/10.1371/journal.pone.0184062.g006
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dominant species (Fig 6c). For the slash pine-longleaf pine assemblage, small regions with pro-

jected increases or decreases in IV were present throughout the distribution (Fig 6d). For the

green ash-American elm assemblage, the dominant species were projected to experience mod-

erate to large increases in IV at the majority of plot locations, except for the middle portion of

the analysis extent, from Nebraska east to Michigan and Ohio (Fig 6e).

Discussion

A consistent look at how tree species group into forest communities is essential for monitor-

ing, assessing, and projecting future impacts to those communities from drivers such as cli-

mate change and land use change. We developed an empirical, hierarchical typology of tree

species assemblages using recent forest inventory data across the continental U.S. that can be

used as a baseline to assess future changes in species composition and to find places where for-

est communities may be most affected by these global change drivers. The typology identified

two levels of a hierarchy of forest communities, and identified 111 and 173 species as indica-

tors of those two levels, respectively.

Our empirical typology of forest inventory data for informing studies of global change

impacts revealed new insights into tree species assemblages over existing national forest com-

munity classification schemes that were developed for different purposes. While there are

some broad qualitative similarities with other classifications, there are important differences.

In particular, some of the most widespread groups in the empirical typology do not have exact

analogs in other classifications. For example, the balsam fir-quaking aspen assemblage, which

is wide-ranging and occurs in the eastern and western U.S., is broader than any class in the

newly-released U.S. National Vegetation Classification (USNVC) and has dominant and indi-

cator species that occur in five forest type groups used by the USDA Forest Service. Though

the assemblage shares most of its indicator species with both the Laurentian-Acadian Mesic

Hardwood-Conifer Forest and Laurentian-Acadian Pine—Hardwood Forest & Woodland

macrogroups in the USNVC [49,50], those macrogroups are limited to the eastern U.S., and

do not include the locations in the western U.S. where quaking aspen is found. Because the

USNVC was developed as a consistent standard to support conservation and management

[51], most macrogroups are characterized by a single ecoregion, limiting their correspondence

with wide-ranging assemblages in our typology. In addition, USDA Forest Service forest type

groups were initially developed to define timber resources [52], and many tend to group spe-

cies with a common genus that share a similar geographic range. More fully examining and

quantifying the relative correspondence among these classification schemes would shed light

on their differences and similarities, provide more insight into their relative strengths, and

inform recommendations about the best uses of each. Finally, because these classification

schemes were developed for different purposes, picking and choosing some classes from each

could also be useful for informing management and conservation in some cases, and further

work to explore that possibility is warrented.

The nested, hierarchical structure of the typology has potential for informing a wide range

of ecological assessments of forest change across the U.S. In particular, the emerging field of

macrosystems ecology focuses on understanding ecological processes and patterns at broad

extents, while emphasizing hierarchies, multiple scales, and cross-scale interactions [53–55].

This typology would thus inform a wide range of studies of forest communities in a macrosys-

tems framework. Specifically, the relationships between clusters in a single level of the hierar-

chy can be used to provide insights into observed patterns. For example, in the broad

assemblages of the 29-cluster typology, the sugar maple-red maple and loblolly pine-sweetgum

assemblages have similar species composition, as demonstrated by their branching toward the
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left of the dendrogram (Fig 2). An examination of the climate, soil, and other abiotic factors

that determine their spatial distribution would shed light on whether they also occur in rela-

tively similar environments on average. Conversely, branches for the two broad assemblages

that have varieties of Douglas-fir as indicator speices, Rocky Mountain Douglas-fir-ponderosa

pine and coast Douglas-fir-western hemlock, are relatively far apart on the dendrogram and

their corresponding assemblages in the 147-cluster typology have different sets of indicator

species. That suggests that in addition to their different geographic distributions, the two varie-

ties also tend to associate with different sets of species. While we focused on two levels of the

hierarchy here, any level of the hierarchy can be used, according to the goals of a given study,

or multiple levels of the hierarchy can be used simultaneously. Further analysis at multiple lev-

els of the hierarchy, using ancillary environmental predictor variables can shed more light on

the relationships among forest communities at multiple scales.

The case-study assessment of potential climate change impacts for five broad assemblages

demonstrates one method by which the empirical typology can be used for assessments of

future change at broad extents. Those results point to the overall tree communities, as well as

the locations within those communities, where dominant tree species may be most affected by

climate change, and thus where follow-up studies and monitoring could be beneficial. The

assessment indicates varying levels of overall impact to forest communities, and varying geo-

graphic patterns of those impacts, underscoring the idea that the impacts from climate change

are likely to vary with composition of species and the responses of those species to climate

change. The balsam fir-quaking aspen assemblage had the largest decrease in importance value

(IV) for its dominant species overall, and a decrease in IV across nearly all plot locations in the

study area. Indeed, recent research by Zolkos et al. [56] provides evidence across emissions

scenarios and species distribution model sources that the largest losses of habitat for all eastern

U.S. tree species may be three of the dominant species of this assemblage: balsam fir, quaking

aspen, and red spruce. While some dominant species in the balsam fir-quaking aspen assem-

blage such as jack pine may have increased habitat IV in some places, projected decreases in

IVs are large for most species across the assemblage’s extent [48]. In contrast, dominant species

in the green ash-American elm assemblage, which is relatively evenly distributed across the

eastern U.S., were projected to experience moderate increases in IV on average. Part of the rea-

son for this increase may be that the assemblage is characterized by several dominant species

with relatively low current IVs on average, and thus there is room for increases in importance

for those species as climate changes.

The case-study assessment of potential climate change impacts for five broad empirical tree

assemblages identified the assemblages and places for which climate change impacts are more

likely by the end of the 21st century. A critical next step for analysis would be to further exam-

ine the detailed population- and community-level processes in places where one or more

assemblages have dominant species that are projected to experience substantial decreases in

IV. An example of such analysis that already exists is the modeling done by Brandt et al. [26]

for sugar maple in the Central Hardwoods region. Our assessment shows the sugar maple-red

maple assemblage may experience decreases in IV in that region. Results from Brandt et al.

[26] showed future establishment probabilities for sugar maple close to 0 and substantial pro-

jected declines in basal area and trees per acre by the end of the century.

In addition, the climate change impact assessment tells only part of the story about vulnera-

bility to climate change, and should be interpreted in light of adaptive capacity. In some cases,

a tree community’s dominant species may have high potential climate change impact in terms

of sensitivity and exposure to climate change, but may also have high adaptive capacity, reduc-

ing their vulnerability. For example, there is evidence that occurrences of red maple have

increased since the mid-20th century across the east due to fire suppression and associated
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increasingly mesophytic conditions, and may not be as dependent on climate conditions to

persist [2,26,57]. Thus the sugar maple-red maple assemblage may be becoming more com-

mon on the landscape, and may be less vulnerable to climate change than our assessment of

changes in IV indicates. On the other hand, some dominant species may have low adaptive

capacity because they are subject to other threats. For example, while the green ash-American

elm assemblage was projected to experience increases in IV for dominant species overall,

green ash is susceptible to emerald ash borer and American elm is susceptible to Dutch elm

disease. Thus, the capacity of the assemblage to adapt to changing climate may be low, contrib-

uting to increased climate change vulnerability. Additional future threats that compromise

adaptive capacity will come from urbanization, which is less dependent on the occurrence of a

single species or species assemblage, and is likely to be high in the Northeast and in the Pied-

mont region of the Southeast [58,59].

As our case study demonstrates, because the underlying data contain all information about

the species composition within each plot, and therefore within each cluster, the empirical

typology of forest tree communities we identified can be used for a variety of assessment and

monitoring purposes. The case study illustrates that metrics related to species dominance can

inform an assessment of future climate change impacts to forest communities under the

assumption that if dominant species are likely to experience substantial changes in suitable cli-

mate, the relative effects on the structure and function of the forest community will be high. A

similar framework could be used to assess which communities and locations may be likely to

experience impacts from pests or diseases using data such as the USDA Forest Service National

Insect and Disease Risk Maps (https://www.fs.fed.us/foresthealth/technology/nidrm.shtml).

The empirical typology and associated data can also be the basis for projections of future

change to forest communities. For example, community-level models that incorporate infor-

mation on species co-occurrences to predict changes in the distributions of those co-occur-

rences have become popular recently as a way to examine potential future changes to forest

communities [11,12,60,61]. Such models are currently in development and need improvement

[62,63], but the empirical typology we developed, along with information about the relative

occurrence of species within each cluster, would be well-suited for modeling in a community

model framework. In fact, recent evidence shows that community models benefit from infor-

mation about species dominance as a proxy for species interactions [16].

While the empirical typology of forest tree communities we identified can be used for a

variety of monitoring and assessment purposes, a caveat in the analysis is worth noting. By

excluding the rarest species in the inventory data, our clusters represent tree communities that

are relatively common on the landscape. Because our analysis spanned the continental U.S.,

we necessarily sacrificed detail in local forest communities. The USNVC does include studies

based on local plot data, especially at lower levels of the classification hierarchy, and comple-

mentary studies could also use FIA data across a smaller extent to delineate locally-specific

communities.

Conclusion

If evidence from past and recent responses to climate and land use change are any indication,

future responses of tree communities to global change drivers are likely. Future changes to

land use and climate will not only affect each tree species individually, but will have concomi-

tant effects on forest communities as a whole. By identifying a hierarchy of forest tree commu-

nities and their associated indicator and dominant species, this work provides critical

information that can be used to monitor changes and assess which communities and which

locations might be most threatened by future change at a variety of extents.
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