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Abstract: Electrosprayed agar nanocapsules were developed using an acetic acid solution as solvent.
The role of solution properties (viscosity, surface tension, and conductivity) in the formation of agar
particles was assessed, together with the effect of both agar and acetic acid concentrations on the
size and morphology of the resulting particles. Agar solutions with a concentration below 10% w/v
were not suitable for electrospraying. Furthermore, the agar–acetic acid ratio was also critical for
the formation of agar nanostructures (with an optimum ratio of 1:2). A decrease in particle size was
also observed when decreasing agar concentration, with particle diameter values ranging between
50 and 400 nm. Moreover, the suitability of the electrosprayed agar nanocapsules as carriers for a
model bioactive compound, chlorophyllin sodium copper salt (CHL), was also evaluated. The release
profile of encapsulated CHL, with an estimated encapsulation efficiency of around 40%, was carried
out in food simulants with different hydrophilicity (10% v/v and 50% v/v ethanol). While the release
of the bioactive was negligible in the hydrophilic food simulant, an initial burst release followed by a
slower sustained release was observed when the capsules were immersed in 50% ethanol solution.
The results open up a broad range of possibilities that deserve further exploration related to the use
of these edible polysaccharide-based nanocapsules.

Keywords: agar; nanocapsules; electrospraying; chlorophyllin

1. Introduction

The incorporation of bioactive compounds to food products with the aim of extend-
ing their shelf-life or improving their nutritional quality is of high interest for the food
industry [1]. Antioxidants, antimicrobials, probiotics, pigments, and flavoring agents
are typically present in food products in small amounts, but are often highly active [2].
These active compounds are usually difficult to process and store, since they can impart
strange aromas, are prone to rapid degradation, and can interact with other compounds in
the food matrix, leading to a loss in the quality of functional assets. For example, phenolic
compounds that are used as natural antioxidants for their health benefits can decrease
their bioavailability after binding with carbohydrates and proteins present in the food
matrix [3]. Natural pigments are also affected by other components naturally occurring in
foods, especially after processing steps that damage the structure of the product, releasing
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compounds such as acids and enzymes. These compounds can interact with the natural
pigments with a subsequent unwanted change in the color [4]. In this sense, encapsulation
is a powerful tool to overcome many of the previously mentioned drawbacks, because
it allows the protection of a great variety of compounds accomplished by covering the
active molecules with a protective matrix. Encapsulation can also reduce off-flavors from
certain vitamins and minerals, allow sustained release of nutrients, improve stability under
high-temperature and -humidity conditions, and reduce undesirable chemical interactions
with other ingredients, among others.

An interesting technique to develop micro- or nanostructures for delivery of active
principles is electrohydrodynamic processing (EHD), which includes two variations of the
technique: electrospinning and electrospraying. These are processing technologies where a
polymer solution can be either spun or sprayed through the application of an electric field,
giving raise to fibers or particles, respectively [5]. These are economical and industrially
scalable technologies with potential applications in the food area [6,7]. Their main uses
in the food industry include encapsulation of bioactive compounds, immobilization of
enzymes, materials for packaging, food coatings, and materials for filtration processes [7].
Another important advantage of EHD techniques is that they offer the possibility of pro-
ducing high-performance nano- or microfibers and nano- or microcapsules, developing
materials with a high surface–volume ratio. Electrohydrodynamic process parameters,
i.e., applied potential, electric field, spin distance, and flow velocity, as well as fluid proper-
ties, i.e., pH, conductivity, viscosity, surface tension, and dielectric constant, can be adjusted
to optimize the morphology and the characteristics of the structures obtained.

Capsules or fibers produced through electrospinning or electrospraying also have
an interesting advantage regarding their functionality, since these structures are suitable
matrices for slow release of bioactive compounds [7]. EHD techniques would enable encap-
sulating active principles that are thermosensitive and, hence, would not be suitable for
other encapsulation methods involving high temperatures, such as spray-drying. Overall,
the structures obtained by means of electrospraying can provide a good vehicle for the
encapsulation or immobilization of different bioactive compounds without the loss of
their activity or specificity [8]. Moreover, electrospraying and electrospinning are ideal for
development of materials for food applications, since these processing techniques allow the
use of food-grade biopolymers [7]. Food-grade biopolymers such as polysaccharides [9,10]
or proteins [9,11] have been used to produce nano- and microstructures by electrospin-
ning or electrospraying [12]. For example, alginate and zein were used as polymers for
the microencapsulation of probiotic Lactobacillus acidophilus through electrospraying [13],
while gelatin-coated κ-carrageenan capsules for delivery of phenolic compounds were also
produced through EHD [14].

Amongst the biodegradable materials from renewable sources which can be used for
encapsulation purposes, agar, a phycocolloid extracted from some red seaweed species, is
one of the most interesting ones. This is mainly due to its thermoplastic, biodegradable,
and biocompatible characteristics, and because it shows great mechanical strength with
moderate water resistance and good barrier properties, very relevant in terms of protec-
tion [15]. Agar has been previously studied as a polymer matrix for slow release of active
compounds [16,17]. However, there are few studies of agar-containing structures obtained
through electrohydrodynamic techniques, and, to the best of our knowledge, there is no
information related to the production of pure agar micro- or nanocapsules by means of
the electrospraying technique. In a previous study, Sousa et al. [18] successfully obtained
agar-based nanofibers by means of the electrospinning technique through blending it with
polyvinyl alcohol (PVA). These authors concluded that the addition of PVA was crucial to
improve the rheological properties of the solution, thus allowing to process it electrohy-
drodynamically. These authors also studied the electrospinnability of agar/PVA blends,
but with deep eutectic solvent (DES), which allowed them to increase the content of the
phycocolloid [19].
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Studies of nano- and microstructures of phycocolloids obtained by electrohydrody-
namic processes are scarce, especially based on agar. The poor electrosprayability or
electrospinnability of pure agar solutions in water could be related to the fact that the
concentration that provides a suitable rheology for EHD processing is very low and, hence,
does not provide sufficient chain entanglements [7]. To overcome this issue, this study
focuses on improving the electrosprayability of agar with organic solvents such as acetic
acid. This acid previously showed hydrolysis of agar [20]. This could provide suitable chain
sizes, small enough to allow a suitable viscosity for EHD processing at higher polymer
concentrations, but long enough to allow chain entanglements and the formation of the
capsules [7]. The use of agar as matrix to produce nanofibers or nanocapsules could open
up new and interesting applications of this biopolymer, not yet explored [18].

In this particular study, chlorophyllin sodium copper salt (CHL) was selected as a
model bioactive compound to be incorporated into agar nanocapsules. CHL is a derivative
of chlorophyll, which has been proven to possess detoxifying, antioxidant, chemopreven-
tive, and antimutagenic properties. CHL is a semisynthetic mixture of copper and sodium
salts derived from chlorophyll [21]. Unlike natural chlorophyll, CHL is soluble in water.
This compound is used as a colorant in foods, drugs, food supplements, and cosmetics.
Specifically, E141ii corresponds to copper complexes of chlorophyllins, an additive widely
used in soft drinks, liqueurs, chewing gum, candies, or canned vegetables, authorized as
a food additive in the European Union in accordance with Annex II of Regulation (EC)
No. 1333/2008 [22]. Despite its improved stability compared to chlorophyll, the use of
CHL as a colorant remains limited, since this form, like other chlorophylls and natural
pigments, is susceptible to different degradation processes. The most common transfor-
mation suffered by CHL is pheophytinization, i.e., replacement of the central metal ion
with hydrogen, which occurs easily under acidic conditions and exposure to mild heat [23].
In the presence of certain enzymes and high water activity, maintaining the green colors of
chlorophyllin is a challenge [24]. Furthermore, although it is generally soluble in water, at
acidic pH, the CHL becomes increasingly susceptible to hydrophobic aggregation as the
carboxylic acids in its structure protonate, making it difficult to use in acidic beverages [25].

In this context, and in accordance with current trends in the processing of biomaterials
for encapsulation of bioactives, the main objective of this work was to explore the electro-
spraying technique for the development of nanocapsules based on agar, with potential use
in the food industry. As a strategy to avoid agar gelation and attain sufficient chain entan-
glements for capsule formation, acetic acid was explored as solution solvent. Furthermore,
the obtained nanocapsules were evaluated to encapsulate chlorophyllin, as a case study.

2. Materials and Methods
2.1. Materials

Commercial agar was kindly provided by Hispanagar (Burgos, Spain). The agar
content in the commercial agar was 80%. Acetic acid (HAc, p.a., 96% v/v), citric acid
anhydrous (99% purity) and ethanol (96% v/v) were supplied by Panreac Applichem
and used as received. Chlorophyllin sodium copper salt (CHL) (commercial grade) was
purchased from Sigma Aldrich (Madrid, Spain).

2.2. Preparation of Agar Solutions

On the basis of screening studies, agar solutions of a wide range of agar solutions
of different concentrations, i.e., 2.5%, 5%, 10%, 15%, and 20% (w/v), were prepared by
dispersing the biopolymer in acetic acid solutions of various concentrations (from 20%
to 40% (v/v)) (see Table 1). The minimum and maximum agar concentrations were fixed
considering the solubility of the agar in the acid media, which provided a viscosity allowing
processing. At these concentrations, agar chains can be partially hydrolyzed [20]. The initial
dispersions were maintained, under stirring, at 95 ◦C for 2 h to induce agar solubilization,
and then they were cooled down to room temperature before processing.
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Table 1. Gelling and electrosprayability of different agar solutions.

Sample Agar (% w/v) Acetic Acid (% v/v) Citric Acid (% w/v) Gelling at Room Temperature Electrosprayability
1 2.5 20 0 non-gelling −
2 5 20 0 non-gelling −
3 10 20 0 non-gelling +
4 15 20 0 gel − −
5 20 20 0 gel − −
6 20 0 20 non-gelling −

+: electrosprayable biopolymer solution. −: unstable biopolymer jet. − −: not tested for electrosprayability (gelled at room
temperature).

When CHL was incorporated for its encapsulation, it was added to the agar solutions
at room temperature under magnetic stirring. Initially, 0.033% (w/v) of CHL was used for
the pigment stability assays, carried out in 10% and 20% (w/v) agar solutions dissolved in
20% and 40% (v/v) HAc. Then, CHL was incorporated at a concentration of 5 wt.% of the
agar content for its encapsulation by the electrospraying technique. The flow rate and the
applied voltage for CHL-loaded agar solutions were 100 µL/h and 16.5 kV, respectively, as
selected from preliminary tests, in order to attain stable electrospraying.

2.3. Characterization of the Solutions

The surface tension of the solutions was measured using the Wilhelmy method in an
EasyDyne K20 tensiometer (Krüss GmbH, Hamburg, Germany) at room temperature.

The electrical conductivity of the solutions was measured using an XS Con6 conduc-
tivity meter (Labbox, Barcelona, Spain) at room temperature.

The pH of the solutions was measured using a pH meter (XS instruments).
All measurements were made at least in triplicate.

2.4. Electrohydrodynamic Processing of the Solutions

The agar solutions were processed using a homemade electrospinning/electrospraying
equipment with a variable high-voltage (0–30 kV) power supply (Spinner-3 × -Advance,
ANSTCO, Tehran, Iran). Solutions were introduced in a 5 mL glass syringes and were
pumped at a flow rate of 0.15 mL/h through a stainless-steel needle (internal diameter
0.9 mm). The needle was connected through a polytetrafluoroethylene (PTFE) wire to the sy-
ringe, which was placed on a digitally controlled syringe pump, and the voltage was main-
tained at 15 kV. Processed samples were collected on a grounded stainless-steel plate placed
at 10 cm from the tip of the needle in a horizontal configuration. The structures obtained
were collected and stored under a hood to evaporate any residual solvent. All experiments
were carried out at room temperature.

2.5. Morphological Characterization of the Particles

Scanning electron microscopy (SEM) was conducted on a Hitachi microscope (Hitachi
S-4800) at an accelerated voltage of 10 kV and a working distance of 8–10 mm. The samples
were previously sputter-coated with a gold–palladium mixture under vacuum (Q 150R-ES;
Quorum Technologies, East Sussex, London, UK) prior to examination. Image analysis
software (ImageJ) was used to determine the diameter of the particles from the SEM
micrographs in their original magnification. Size distributions were obtained from a
minimum of 200 measurements.

2.6. Stability of Agar Solutions Containing CHL

Solutions/suspensions of 0.033% w/v CHL and CHL-loaded agar solutions were
prepared by dissolving 10% or 20% (w/v) of agar in 20% or 40% (v/v) HAc, respectively.
HAc solutions at 20% and 40% (v/v) were also used as controls to evaluate the effect of the
agar on the stability of the pigment in acidic media, where it was incorporated according to
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the methodology proposed by Selig et al. [25]. The stability of the solutions, stored at 40 ◦C,
was evaluated at different time intervals, through photographic monitoring.

2.7. Encapsulation Efficiency

The encapsulation efficiency (EE) of the CHL-loaded agar particles was estimated
by dissolving ca. 25 mg of CHL-loaded nanocapsules in 5 mL of ethanol 50% v/v by
heating at 50 ◦C. The CHL content was analyzed by measuring the absorbance at 405 nm
using UV/Vis spectroscopy (Nanodrop ND-1000, Thermo Fisher Scientific, Waltham, MA,
USA). Each sample was prepared in duplicate, and triplicates were measured from each
independent run, in order to obtain the mean CHL loading efficiency. The CHL loading
efficiency was calculated using Equation (1).

EE (%) =
Calculated CFL concentration
Theoretical CFL concentration

100. (1)

2.8. Chlorophyllin Release from the Agar Particles

For this, ca. 50 mg of CHL-loaded agar nanocapsules were suspended, in triplicate,
in 10 mL of release medium and kept at 20 ◦C in the absence of light. Two different
release media were used: 10% and 50% v/v ethanol solution, which cover the testing for
foods with hydrophilic and lipophilic properties according to the Commission Regulation
10/2011 EU (10/2011/EC) [26], respectively. At different time intervals, the suspensions
were centrifuged at 3500 rpm at room temperature during 10 min using a centrifuge from
Labortechnik model Hermle Z 400 L (Wasserburg, Germany) and a 2 µL aliquot of the
supernatant removed from sample analysis. The extracted aliquots were analyzed by
UV/Vis spectroscopy (Nanodrop ND-1000, Thermo Fisher Scientific), by measuring the
absorbance at 405 nm. Calibration curves for CHL quantification in the release media were
previously obtained (R2 = 0.99, see Supplementary Figure S1). The CHL release values
were obtained from two independent experiments at the same conditions. Triplicates were
measured form each independent run.

2.9. Molecular Weight Distribution

The molecular weight of the agar was estimated by high-performance size exclusion
chromatography using a Waters ACQ equipped with a Waters 2998 PAD module, a Waters
2414 refractive index detector, and a 2475 FLR module (Waters, USA). Acetic acid (1.2%
v/v) was used as the mobile phase. The samples (3 mg/mL) were dissolved in the mobile
phase under magnetic stirring at 40 ◦C, filtered through 0.22 µm pore syringe filters.
Then, the samples were injected into columns in series (PolySep-GFC-P 4000 and 2000;
300 mm × 7.8 mm; Phenomenex Inc., California, USA) equilibrated at 40 ◦C. The injection
volume was 20 µL, and the flow rate was 0.5 mL/min. Calibration was performed using
pullulan standards (PSS polymer standards service GmbH, Mainz, Germany).

2.10. Statistical Analysis

The data obtained are expressed as the mean ± standard deviation. The statistical
significance between the different samples was evaluated with an analysis of variance
(ANOVA) with a Tukey test to determine the significance of the differences between the
mean values (p < 0.05), using the free software R Project [27].

3. Results and Discussion
3.1. Optimization of the Electrospraying Process for Obtaining Agar Particles

The most important challenge when trying to obtain encapsulation structures from
agar through electrohydrodynamic techniques is related to agar gelation in aqueous so-
lutions at low concentrations. Therefore, finding suitable solvent combinations able to
dissolve agar at higher concentrations and that do not gel at ambient temperature is a
pre-requisite for proper processing. Agar solutions with a wide range of concentrations
(from 2.5% to 20% w/v) were prepared in diluted acetic acid (20% v/v) (see Table 1).
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This solvent was selected aiming to avoid gelation, as a partial degradation of the agar
chains has been reported to occur under acidic conditions [20]. Furthermore, acetic acid is
considered suitable for food applications since it does not leave toxic residues on the dry
samples [28]. The appearance of the solutions produced was different depending on the
agar concentration (see Supplementary Material Figure S2). The properties of the prepared
solutions are shown in Table 1. In general, the most diluted agar solutions did not form
gels in diluted acetic acid, and gelation was only observed for solutions with 15% (w/v)
agar concentration or higher. Those solutions that formed gels at room temperature were,
thus, not suitable for electrospraying. However, from the solutions that did not gel at
room temperature, only those prepared at 10% (w/v) agar could be electrosprayed (see
Supplementary Figure S3). The remainder formed an unstable polymer jet that did not
allow capsule formation through electrospraying. This could be ascribed to the fact that
an increase in the agar concentration could induce the overlapping of molecular hydrody-
namic radii. When reaching a certain concentration, sufficient polymer chain entanglements
are obtained which stabilize the polymer jet allowing a good electrosprayability of the
solution [29]. However, if the concentration and viscosity of the polymer solution are too
high, the motion induced by the electric field will be impeded [10].

An aqueous solution containing citric acid was also evaluated as an alternative to HAc
for agar solubilization. Even though a diluted citric acid (20% w/v) solution was effective
to avoid gelation of 20% (w/v) agar at ambient conditions compared to diluted acetic
acid (see Supplementary Figure S4), it did not improve the electrosprayability of the agar
solution. This could be attributed to either an extensive hydrolysis of the carbohydrate due
to the acidic conditions of the citric acid solution [20], since the pH of citric acid solutions
was around 1.63, or to the high conductivity of the solution (>4 mS), which impeded the
stabilization of the polymer jet during electrospraying.

Considering that only the 10% (w/v) agar solution prepared with diluted acetic acid
at 20% (v/v) resulted in a stable electrospraying process, two different strategies were
also evaluated to understand how the solution properties affected the morphology of
the structures. The first approach consisted of fixing the agar:HAc ratio at 1:2, while the
second one fixed the amount of acetic acid at 40% (v/v), the minimum needed to avoid the
gelation of agar at the highest concentration used. Therefore, both approaches were used
for the preparation of the electrospraying solutions, and the influence of the agar and acetic
acid concentration on the electrosprability and the morphology of the resulting capsules
was evaluated.

The size and morphology of the electrosprayed structures are strongly dependent on
the properties of the biopolymer solutions [30–32]. Therefore, the selected phycocolloid
solutions were characterized in terms of pH, surface tension, and electrical conductivity
prior to their processing, and the results are summarized in Table 2. Furthermore, Figure 1
shows the morphology of the processed structures obtained from the different phycocolloid
solutions together with the particle size distributions of the dried samples.

Table 2. Properties of the different acetic acid agar solutions.

Sample pH Electrical Conductivity (µS) Surface Tension (mN/m) Electrosprayability
Agar10%HAc20% 2.45 ± 0.02 a 1469 ± 9 ab 39.2 ± 0.6 a +
Agar15%HAc30% 2.37 ± 0.03 b 1481 ± 34 a 39.0 ± 1.1 a +
Agar20%HAc40% 2.31 ± 0.03 c 1521 ± 147 a 39.2 ± 0.8 a +
Agar15%HAc40% 2.22 ± 0.01 d 1335 ± 44 b 37.1 ± 1.3 a +
Agar10%HAc40% 2.07 ± 0.02 e 1118 ± 16 c 36.9 ± 2.7 a −

Mean values ± standard deviation. Different letters in the same column indicate significant differences between
samples (p < 0.05). +: electrosprayable biopolymer solution. −: unstable biopolymer jet.
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Figure 1. SEM images of the agar structures obtained through electrospraying from different agar
and acetic acid concentration (left) and particle size distributions for the electrosprayed samples
(right) obtained from measurements of 200 capsules. Scale bars in SEM images correspond to 5 µm.
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The results revealed that solutions prepared using the first approach, increasing both
the agar and the acetic acid concentration (in which the acetic acid was always twice that
of the biopolymer concentration), were more adequate for the formation of agar nanos-
tructures, showing smaller particle sizes for lower agar concentrations (10% w/v) which
ranged between 50 and 400 nm. A higher particle polydispersity was observed in those
prepared at 20% (w/v) agar concentration, in which the diameters ranged between 100 nm
and 1 µm. Ibili and Dasdemir [33] also reported an increase in the size of nanoparticles
with increasing polymer concentration. Considering the solution properties, in general,
a slight increase in the conductivity of the solutions was observed with the agar concen-
tration (cf. Table 2), whereas no significant variation was observed for the surface tension
(p > 0.05). Therefore, differences in the particle size and sphericity of the processed so-
lutions could be mainly attributed to changes in the rheology. Given the low pH of the
solutions, the rheological properties were not evaluated to avoid instrument corrosion, but
the Mw of agar in the different solutions was measured as shown in Table S1 and Figure S5
(Supplementary Materials). As expected, a certain hydrolysis of agar took place in the
acetic acid solutions, and clearly defined Mw agar populations were distinguished, whose
abundance depended on both the agar concentration and the acetic acid concentration.
Increasing the acetic acid concentration and decreasing the agar concentration led to an
increased population of short-chain agars. From the electrospraying results, it seems that
there is a critical chain length required leading to biopolymer entanglement and resulting
in capsule formation.

The morphology of nanostructures was detrimentally affected as the acetic acid concen-
tration increased (40% v/v), showing signs of dripping, wetted particles, and agglomeration
in those prepared with 15% (w/v) agar, probably due to a greater degradation of the poly-
mer chains in the presence of a higher proportion of acid, which is directly related to the
lower conductivity values obtained in this case and to the Mw profile shown in Figure S5
(Supplementary Materials). For a given acetic acid concentration, a decrease in the agar
content may favor the hydrolysis of the polymer chains due to the higher acidic conditions
(lower pH, see Table 1), resulting in lower molecular weight (as observed in Table S1,
Supplementary Materials) and, thus, decreasing the formation of chain entanglements,
which is known to be the main factor determining nanostructure formation. This would
explain the fact that solutions prepared with 10% (w/v) agar at the highest acetic acid
concentration could not be electrosprayed.

Therefore, one of the solution parameters that is crucial for the electrospraying pro-
cessing of agar solutions is the concentration of the acetic acid solution used as a solvent.
It seems that the acetic acid concentration should be twice more than the agar concen-
tration for the optimal electrospraying, showing the most spherical morphology; thus,
these were selected to load a bioactive compound. As the surface tension of the agar solu-
tions did not significantly vary with the acetic acid concentration (p > 0.05), the dripping
in those prepared with higher proportion of acetic acid could be attributed to a slight
decrease in the viscosity of the solutions (as deduced from the molecular weight of the
agar, see Supplementary Materials S1) in combination with the decrease in their electrical
conductivity, and ascribed to the higher degree of biopolymer chain hydrolysis.

3.2. Stability of Chlorophyllin in Agar Solutions

Once the conditions for the production of electrosprayed agar capsules were optimized,
solutions obtained with the lowest and highest agar concentration were firstly selected
to load a model bioactive compound and to test the stability of dispersed CHL in the
agar solutions. To this end, an accelerated stability test was conducted at mild heating
conditions (40 ◦C) with the agar solutions being stored for 7 days, and the results are shown
in Figure 2.
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Figure 2. CHL stability test in fresh acetic acid solutions (up) and stored at 40 ◦C, for 1 week (down).
From left to right: acetic acid 20% v/v (HAc20%), agar 10% w/v in acetic acid 20% v/v
(Agar10%HAc20%), acetic acid 40% v/v (HAc40%), and agar 20% w/v in acetic acid 40% v/v
(Agar20%HAc40%).

The first thing to highlight is that the CHL rapidly began to aggregate and settled
down to the bottom of the control containers (containing the solvent solutions without agar)
prepared with 20% and 40% (v/v) acetic acid. In contrast, the addition of agar counteracted
the aggregation phenomenon, showing an improvement in the long-term stabilization
of the pigment’s solubility in acid solutions even after 7 days at 40 ◦C. It is possible that
the viscosity provided by the agar continuous phase improved the stability against CHL
aggregation, significantly reducing the aggregation of the bioactive. This improvement was
greater in those prepared with a higher agar concentration.

Selig et al. [25] explored the hypothesis that long-chain anionic polysaccharides, par-
ticularly xanthan gum and sodium alginate, can interact through the negative charges on
the polymer chain with the positive CHL. These small electrostatic interactions may be
enough to stabilize the solubility of pigments in acidic solutions and improve color stability
by reducing water activity, which affects access to enzymatic degradation reactions and
improves copper ion stability, thus improving the color in the core of the pigment structure.
These authors evaluated the effects of xanthan gum and alginate in aqueous solutions of
CHL with citric acid. On the basis of this work, it would be interesting to evaluate the
behavior of CHL in agar nanocapsules, thus guaranteeing the stability of the pigment in
acid solutions. Furthermore, due to their low stability at high temperatures, the use of the
electrospraying technique is interesting for these types of heat-sensitive additives.
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3.3. CHL Release from the Electrosprayed Agar Particles

Once the conditions for the production of electrosprayed agar particles were optimized
and the stability of the bioactive in the agar solutions was proven, agar suspensions with the
higher biopolymer concentration were loaded with CHL since the stability of the bioactive
was increased at higher agar concentration, and increasing the amount of biopolymer in the
electrospraying solution would increase the yield of the resulting electrosprayed capsules.
To this end, the agar solution (20% w/v) was dissolved in 40% (v/v) acetic acid solution, as
in previous experiments, and CHL was subsequently incorporated at room temperature to
achieve a final theoretical concentration of 2.5 or 5 wt.% of the agar content. In both cases,
the EE was relatively low, showing no significant differences: 38.2 ± 0.8 and 38.6 ± 0.7 for
2.5 and 5 wt.%, respectively. This effect could be either ascribed to a partial degradation of
nonencapsulated CHL or to a partial precipitation of the CHL in the syringe during the
electrospraying process. Furthermore, the composition and type of wall and core material
influence the encapsulation efficiency [34]. Higher encapsulation efficiencies (>80%) have
been reported for hydrophilic active compounds encapsulated into hydrophilic matrices
such as chitosan or gelatin [35,36]. In contrast, lower encapsulation efficiencies (between
23–60%) were found when hydrophilic matrices (i.e., proteins and polysaccharides) were
loaded with hydrophobic compounds [37]. Figure 3 shows a representative micrograph of
the agar microcapsules loaded with 5 wt.% CHL, which exhibits a similar morphology to
that obtained in the absence of the CHL.

Figure 3. Electrosprayed agar nanocapsules loaded with 5 wt.% CHL of the agar content (scale bar
corresponds to 4 µm).

The release profile of encapsulated bioactive compounds is of outmost importance
when designing delivery systems. Therefore, a release study of CHL from the electro-
sprayed agar particles was carried out in two different food simulants with different
hydrophilicity (10% v/v and 50% v/v ethanol), according to the Commission Regulation
10/2011 EU (10/2011/EC) [26], which simulate hydrophilic and lipophilic foods, respec-
tively. The resulting release profile of CHL soluble in 50% (v/v) ethanol (the medium in
which the release was maximum) is depicted in Figure 4.

The release of CHL from the capsules in the medium with lower ethanol concentration
was negligible, which could be ascribed to a lower solubility of the bioactive in this medium.
Another possibility can be related to the effect that the presence of ethanol has on the
water network of a polysaccharide with gelling properties [38,39], which directly affects
the biopolymer network interactions and, thus, the stability of gel structure. Briefly, the
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presence of a higher concentration of alcohol tends to destabilize the hydrogen bonds of gels
(as also reported for gellan gum or κ-carrageenan by Cassanelli et al. [38]), thus decreasing
the network order. In contrast, the presence of higher concentrations of ethanol could
improve the solubility of CHL; however, as commented above, it could also destabilize
the hydrogen bonds, affecting the mobility of the biopolymer chains and promoting less
hydrated agar capsules with higher porosity and a faster CHL release. As a result, an initial
burst release was observed, followed by a slower sustained release when the capsules were
immersed in 50% ethanol solution.

Figure 4. Chlorophyllin (CHL) release from electrosprayed agar nanocapsules in 50% ethanol.

4. Conclusions

Food-grade agar-based encapsulation matrices were, for the first time, successfully
developed by electrospraying agar solutions in diluted acetic acid. The electrospraying
process was initially optimized in order to obtained neat capsules, without fibrils. The mor-
phology of the nanostructures was detrimentally affected as the acetic acid concentration
increased (40% v/v), showing signs of dripping, wetted particles, and agglomeration in
those prepared with 15% (w/v) agar, due to a greater degradation of the polymer chains
in the presence of a higher acid concentration. The results also showed that solutions
prepared by increasing both the agar and the acetic acid concentration (in which the acetic
acid doubled the biopolymer concentration) were more adequate for the formation of agar
nanostructures, showing smaller particle sizes for lower agar concentrations (10% w/v)
which ranged between 50 and 400 nm.

Electrosprayed agar particles with theoretical CHL loading of 5% w/w were developed,
and the release of CHL from the agar nanocapsules was also tested. With an estimated
encapsulation efficiency of around 40%, CHL release was significantly higher in the 50%
ethanol solution, being almost negligible in the 10% ethanol one. Future work to reach
higher encapsulation efficiencies should be conducted to further confirm their suitability as
delivery vehicles.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/foods11142093/s1, Figure S1: Chlorophyllin calibration
curves in EtOH at 10 and 50% v/v; Figure S2: Agar solutions (from left to right: 2.5, 5.0 and
10.0% w/v) in HAc 20% v/v; Figure S3: Agar 15 % w/v in HAc 20% v/v; Figure S4: Evaluation of
citric acid (left) and acetic acid (right) for the dissolution of agar 20% w/v; Figure S5: Molecular
weight distribution of the agar solutions: Agar10%HAc20%, Agar15%HAc30%, Agar20%HAc40%,
Agar15%HAc40%, Agar10%HAc40% and Agar10%-water. The black squares correspond to pullulan
standards with the matching molecular weight. Table S1: Mw weight average, Mn Number average
and PDI polydispersity index, for agar samples prepared under different conditions.
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