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Molecular analysis of nucleic acid and protein biomarkers is becoming

increasingly common in paediatric oncology for diagnosis, risk stratification

and molecularly targeted therapeutics. However, many current and emer-

ging biomarkers are based on analysis of tumour tissue, which is obtained

through invasive surgical procedures and in some cases may not be accessi-

ble. Over the past decade, there has been growing interest in the utility of

circulating biomarkers such as cell-free nucleic acids, circulating tumour

cells and extracellular vesicles as a so-called liquid biopsy of cancer. Here,

we review the potential of emerging circulating biomarkers in the manage-

ment of neuroblastoma and highlight challenges to their implementation in

the clinic.
1. Introduction to neuroblastoma
Neuroblastoma (NB) is the most common and deadly solid extracranial malig-

nancy in children, deriving from precursor sympathoadrenal cells of the neural

crest [1,2]. NB is often termed a ‘clinical enigma’, owing to its heterogeneous

clinical behaviour ranging from spontaneous regression to treatment resistance,

metastasis and death [3,4]. Therefore, in addition to the post-surgical Inter-

national Neuroblastoma Staging System (INSS; table 1), patients are classified

as very low (approx. 28%), low (approx. 27%), intermediate (approx. 9%) or

high risk (approx. 36%) based on the likelihood of disease progression and

relapse [5–8]. While low-risk disease is usually diagnosed in children younger

than 18 months and may spontaneously regress without treatment, high-risk

disease generally occurs in children older than 18 months and around half of

patients relapse [9]. Despite intensive multi-modal treatment, 5 year survival

among high-risk patients remains at 40–50% [10].

Genomic amplification of MYCN is reported in around 25% of NB tumours

(approx. 40% among high-risk patients) and is generally accepted as the stron-

gest predictor of poor prognosis and rapid tumour progression [11,12]. Other

poor prognostic features include chromosome arm-level alterations, namely

deletions of 1p (30%) and 11q (45%) and unbalanced gain of 17q (60%), all of

which are associated with diploid or near-tetraploid karyotypes [13–16].

In addition, amplification of ALK, encoding the anaplastic lymphoma kinase

(ALK) receptor tyrosine kinase, is observed in 1–2% of cases and is often

co-amplified with MYCN [17–19]. Recently, massive genomic rearrangement,

known as chromothripsis, has been observed in 18% of advanced stage

tumours; thus, NB could be considered a predominantly copy number-driven

cancer [20,21]. Somatic mutations are less common and include point mutations

of ALK (8–10%) as well as point mutations and small, in-frame deletions of

alpha thalassaemia/mental retardation syndrome X-linked (ATRX), encoding

a SWI/SNF family chromatin remodelling protein, that occur at a frequency

correlating with age at diagnosis [20,22–25]. ATRX alterations are associated

with poor prognosis [24]. Recent genome-wide sequencing analyses in large
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Table 1. International Neuroblastoma Staging System (INSS).

stage definition

1 Localized tumour with complete gross excision, with or without microscopic residual disease; representative ipsilateral lymph nodes negative

for tumour microscopically (nodes attached to and removed with the primary tumour may be positive).

2A Localized tumour with incomplete gross excision; representative ipsilateral non-adherent lymph nodes negative for tumour microscopically.

2B Localized tumour with or without complete gross excision, with ipsilateral non-adherent lymph nodes positive for tumour. Enlarged

contralateral lymph nodes must be negative microscopically.

3 Unresectable unilateral tumour infiltrating across the midline,a with or without regional lymph node involvement; or localized unilateral

tumour with contralateral regional lymph node involvement; or midline tumour with bilateral extension by infiltration (unresectable) or by

lymph node involvement.

4 Any primary tumour with dissemination to distant lymph nodes, bone, bone marrow, liver, skin and/or other organs (except as defined for

stage 4S).

4S Localized primary tumour (as defined for stage 1, 2A or 2B), with dissemination limited to skin, liver and/or bone marrowb (limited to

infants , 1 year of age).

NOTE: Multifocal primary tumours (e.g. bilateral adrenal primary tumours) should be staged according to the greatest extent of disease, as defined above, and
followed by a subscript letter M.
aThe midline is defined as the vertebral column. Tumours originating on one side and crossing the midline must infiltrate to or beyond the opposite side of the
vertebral column.
bMarrow involvement in stage 4S should be minimal, i.e. less than 10% of total nucleated cells identified as malignant on bone marrow biopsy or on marrow
aspirate. More extensive marrow involvement would be considered to be stage 4. The metaiodobenzylguanidine (MIBG) scan (if performed) should be negative
in the marrow. Adapted from Brodeur et al. [5].
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NB patient cohorts have identified a relative paucity of

recurrent alterations [20,24–26].

Initial investigations for NB involve laboratory testing for

full blood count, serum electrolytes, liver function and urine

catecholamine metabolites [27]. More general biomarkers

such as ferritin, lactate dehydrogenase and neuron-specific eno-

lase (NSE) may also be investigated [28]. For suspected NB in

the abdomen, ultrasound is the preferred imaging method

[29]. A provisional diagnosis is followed up with cross-sectional

imaging such as computed tomography or magnetic resonance

imaging and confirmed by histological analysis of tumour

tissue obtained from a primary tissue biopsy or bone marrow

aspirate [29,30].

The treatment algorithm for NB is dependent on risk

stratification, which is defined using parameters such as age,

disease stage, tumour histopathology, MYCN status and

DNA ploidy [31]. Low-risk patients often require surgery

alone or close observation, since spontaneous regression is

frequently observed in this risk group [31]. By contrast, inter-

mediate-risk patients require both surgery and chemotherapy

of moderate intensity, and high-risk patients are treated with

high-intensity chemotherapy, radiotherapy, surgery and

autologous haematopoietic stem cell transplant [31,32]. In

addition, high-risk patients receive immunotherapy with

anti-GD2 antibodies and cytokines, and differentiation

therapy with 13-cis-retinoic acid to eliminate minimal residual

disease (MRD) [33].
2. Current biomarkers in neuroblastoma
NB is one of few paediatric cancers in which biomarkers are

routinely used for diagnosis, prognostication and therapeutic

monitoring (table 2).
2.1. Urine catecholamines
The majority of neural crest tumours including NB secrete cat-

echolamines [64]. Elevated urinary levels of the catecholamine

metabolites vanillylmandelic acid (VMA) and homovanillic

acid (HVA) are observed in 90–95% of NB patients at diagno-

sis [34,35] and a low VMA-to-HVA ratio is associated with

poorly differentiated tumours and poor prognosis [36,37].

These metabolites have been used since the 1970s as non-

invasive biomarkers to assist in the diagnosis and therapeutic

monitoring of patients with NB [38]. A recent study found the

combined diagnostic sensitivity of VMA and HVA in NB to be

84% overall [39], though sensitivity is much lower (33–59%) in

stage I tumours [36,39]. To facilitate early detection of NB, a

screening programme based on urine catecholamine levels in

infants aged six months was trialled and later implemented

in Japan [65]. However, the programme was terminated

upon publication of evidence from screening trials conducted

in other countries, which suggested that NB-specific mortality

was not reduced among screened subjects [66–68]. Retrospec-

tive analyses have determined that screening for NB results in

overdiagnosis; screen-detected patients had a tendency to

spontaneously regress [69,70] and many of these tumours

showed favourable prognostic features at diagnosis [71].
2.2. Serum proteins
Serum lactate dehydrogenase (LDH) is used as a tumour

biomarker in several malignancies [72], although levels can

be elevated in non-malignant conditions such as heart failure,

kidney disease, hypothyroidism and anaemia [73]. In NB,

elevated serum LDH levels have been shown to confer poor

prognosis independent of disease stage in patients with

MYCN amplification (MNA) [37,40]. Moreover, a recent

study identified elevated serum LDH levels as an



Table 2. Current biomarkers in NB.

biomarker specimen inference studies

catecholamine metabolites (HVA, VMA) urine diagnostic; prognostic [34 – 39]

lactate dehydrogenase serum diagnostica; prognostic [7,37,40,41]

neuron-specific enolase serum prognostic [42 – 46]

ferritin serum prognostic [47 – 50]

MYCN amplification tissue prognostic [11,51 – 53]

1p deletion tissue prognostic [14,54]

11q deletion tissue prognostic [14,55 – 57]

17q gain tissue prognostic [15,54,58,59]

ALK mutation tissue prognostic; therapeutic [22,23,60 – 62]

ALK amplification tissue prognostic; therapeutic [60,63]
aNot independent.
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independent predictor of poorer event-free (EFS) and overall

(OS) survival in patients with metastatic disease older than 18

months at diagnosis [74]. LDH levels are typically normal in

the early stages of disease, and significantly rise with tumour

burden as the rate of cell turnover increases [7,41]. Thus,

serum LDH levels may be used as a surrogate for the

real-time monitoring of tumour burden.

NSE is a glycolytic enzyme produced in neural tissues

[75]. Serum NSE levels are elevated in neuroendocrine

tumours such as carcinoids, islet cell tumours, small-cell

lung carcinomas and NB [42,43]. While elevated NSE levels

are therefore not specific for NB, they can be used in patients

with a confirmed diagnosis to provide prognostic infor-

mation [42,44,45]. Despite extensive tumour burden, serum

NSE levels are significantly lower in stage 4S relative to

stage 4 disease [44,46].

NB cell lines and tumours produce and secrete

glycosylated ferritin, which can be distinguished from the

non-glycosylated form secreted by healthy cells [47]. Elevated

levels of serum ferritin are observed in patients with stage 3

or 4 NB, serving as a poor prognostic biomarker independent

of age at diagnosis and disease stage [48,49]. Moreover, while

ferritin levels in tumour tissue of patients with stage 4 and 4S

disease are comparable, serum ferritin levels are only signifi-

cantly elevated in stage 4 patients, thus enabling

discrimination between these two clinical stages with

markedly different prognoses [50].
2.3. Tumour genetics
Several genetic alterations in NB are routinely detected in

diagnostic tissue and serve as important prognostic and

therapeutic biomarkers. In addition to MYCN as described

above, a plethora of segmental chromosome alterations

(SCAs) are associated with poor prognosis in NB, notably

deletion of 1p and 11q, and gain of 17q; most high-risk

tumours carry at least one such alteration. Both 1p36 deletion

and 17q gain are associated with MNA and independently

correlate with poor outcome [14]. Gain of 17q is the most

frequent genetic alteration in NB and is associated with 1p

deletion [54]. Loss of 11q is almost mutually exclusive of

MNA but is also a feature of high-risk disease and portends

an unfavourable prognosis [14,55]. Interestingly, tumours
with 11q loss tend to display numerous SCAs, suggestive of

a chromosomal instability phenotype [56,57].

Around 8–10% of sporadic NB tumours present with point

mutations in the kinase domain of the full-length ALK recep-

tor [22,23]; this is in contrast to the oncogenic NPM-ALK and

EML4-ALK fusions that drive ALK-positive anaplastic large

cell lymphoma (ALCL) and non-small cell lung cancer

(NSCLC), respectively. ALK mutations in NB are found in

equal frequencies across all tumour risk groups but appear

to be associated with MNA [60], likely representing a coopera-

tive effect between these oncogenes [61]. Additionally, 1–2%

of NB tumours harbour genomic amplification of ALK,

which almost exclusively occurs with MNA given their prox-

imal association at chromosome 2p23-24 [60]. Therefore,

ALK amplification also tends to afford poor prognosis [63].

ALK alterations serve as important biomarkers in NB because

they confer sensitivity to small-molecule kinase inhibitors

that are currently undergoing clinical assessment in phase I

and II trials [76].
3. Emerging tumour-specific circulating
biomarkers in neuroblastoma

Tissue-based nucleic acid biomarkers are instrumental to risk

classification, prognostication and therapeutic assignment in

NB and indeed many other cancers [77]. However, surgical

acquisition of tumour tissue is invasive, not amenable to

sequential application and potentially subject to sampling

bias owing to intratumoral genetic heterogeneity, as high-

lighted in several recent NB studies [78–80]. Over the past

two decades, there has been growing interest in the develop-

ment of other blood-based tissue biomarker analytes such as

cell-free DNA and RNA, circulating tumour cells (CTCs) and,

more recently, extracellular vesicles and tumour-educated

platelets (figure 1). Collectively, these circulating analytes

have been termed a ‘liquid biopsy’ of cancer and have been

reviewed extensively elsewhere [81–83]. The non-invasive

nature of blood sampling overcomes several limitations of

conventional tissue-based tumour analysis. Whereas invasive

biopsy procedures are not amenable to repeated sampling, a

liquid biopsy can be taken at multiple time points such as at

diagnosis, during treatment and at relapse, capturing the
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Figure 1. The liquid biopsy workflow. In oncology, a liquid biopsy is a minimally invasive alternative to surgical tumour sampling, involving the collection and
analysis of a peripheral blood sample. Blood plasma/serum is a source of several circulating analytes with potential clinical utility, namely cell-free DNA, cell-free
RNA (mRNA and microRNA), extracellular vesicles (exosomes and microvesicles), tumour-educated platelets (TEPs) and tumour cells. Cell-free nucleic acids are a
potential source of tumour-specific genomic alterations such as gene mutations, translocations, copy number alterations (CNAs), DNA methylation and gene
expression changes. TEPs are a source of nucleic acids, and extracellular vesicles and tumour cells are a source of nucleic acids and protein. Molecular analysis
of circulating biomarkers can impact the clinical management of cancer patients by enabling personalized medicine, monitoring of therapeutic response and assess-
ment of disease prognosis/risk.
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genetic and proteomic changes that underlie tumour evol-

ution in real time [84]. Some notable clinical applications of

circulating biomarkers include the quantitative real-time

polymerase chain reaction (qPCR)-based test recently

approved by the US Food and Drug Administration (FDA)

for EGFR mutations in circulating cell-free DNA from

patients with NSCLC, enabling identification of patients

likely to respond to EGFR inhibitors [85], and the FDA-

approved CELLSEARCHw test for enumeration of CTCs of

epithelial origin to aid in the monitoring of patients with

metastatic breast, colorectal or prostate cancers [86].

3.1. Circulating-free DNA and circulating tumour DNA
DNA was first reported in the circulation 70 years ago [87], but

generated little interest until 1977 when levels of circulating

free DNA (cfDNA) were shown to be elevated in patients

with cancer [88]. Later studies that identified RAS mutations

in the blood of patients with pancreatic cancer and acute

myelogenous leukaemia provided evidence of a significant

tumour-derived component of cfDNA, now termed circulat-

ing tumour DNA (ctDNA), and these studies led to further

exploration of the clinical potential of cfDNA in patients

with cancer [89,90]. Basal levels of cfDNA are thought to

arise from turnover of normal haematopoietic cells, whereas

elevated levels are sometimes observed in cancer and derive

from a combination of apoptosis, necrosis and active secretion

from tumour cells [91–93]. Indeed, ctDNA is detectable in

most patients with NB [94,95]. Moreover, in many solid can-

cers, including NB [96,97], cfDNA levels have been shown to

reflect tumour burden, rising with disease progression and

falling after therapy and surgical resection [80,83,95,96].

Thus, cfDNA levels may be a dynamic biomarker for disease
monitoring, though levels can also be elevated in non-

malignant conditions [98–100]. In a recent study, cfDNA was

shown to be as reliable as NSE and LDH in discriminating

NB patients with newly diagnosed (n ¼ 79) versus stable

(n ¼ 79) disease (area under the curve (AUC), 0.953, 0.929

and 0.906, respectively). Moreover, in newly diagnosed

patients, elevated plasma cfDNA levels were associated with

high-risk disease, advanced tumour stage, MNA, abdominal

primary site and three or more metastatic sites [96]. This

study did not report a significant association between the

DNA integrity index (ratio of long to short cfDNA fragments)

and these clinical variables. Patients with NB appear to have

high levels of cfDNA at diagnosis, of which a high proportion

is tumour derived, i.e. ctDNA [94,101], and reports have

demonstrated the detection of numerous genomic alterations,

including MNA [80,95,97,101–110], ALK mutation [111], 11q

deletion [80,95,110,112], 17q gain [80,110,113], and gene

methylation [114] in cfDNA of patients with NB at various

stages of the clinical course.

3.1.1. MYCN amplification

Owing to its strong association with high-risk NB, MYCN was

the first oncogene found to be altered with clinical significance

and was consequently the first nucleic acid biomarker in oncol-

ogy [11,12,51]. Targeted overexpression of N-MYC in

neuroectodermal cells is sufficient to induce NB in mice, thus

confirming a pathogenic role of MYCN in NB [115]. Indeed,

MNA remains the strongest indicator of risk in NB, and its

levels correlate with aggressive, metastatic behaviour [116,117].

Interphase fluorescence in situ hybridization (I-FISH) on

biopsy and resected tumour tissue remains the gold standard

for assessment of MNA in NB [118]. A number of studies
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have demonstrated the potential to detect MNA in serum and

plasma from patients with NB at diagnosis across all tumour

stages using PCR methodology (table 3), thus raising the pro-

spect of using MYCN as a circulating biomarker [102–109].

Using conventional PCR, Combaret et al. [102] were the first

to show MNA in the sera of 31/32 patients with MNA

tumours, with one false positive among 70 patients without

MNA and no false positives among 72 healthy patients.

Moreover, MYCN levels in eight patients were shown to fall

after chemotherapy and rise at relapse, and in one patient

elevated levels were observed two months before a clinical

diagnosis of relapse [102]. A recent study also reported a

decrease in plasma MYCN copy number one week after sur-

gery in five patients with MNA, proportional to the extent of

tumour resection [106]. These observations suggest that

MYCN in cfDNA may serve as a dynamic biomarker for dis-

ease monitoring and early detection of relapse. Indeed,

additional studies by Combaret et al. and other groups con-

firmed the high performance of qPCR and digital PCR

(dPCR)-based strategies for detecting MNA in serum [103–

105,107,108] and plasma [106,109]. While cohort sizes and

INSS disease stages were variable between studies, the

reported sensitivities and specificities of MNA detection in

cfDNA were 84–100% and 95–100%, respectively (table 3).

There was also wide inter-study variation in median blood

MYCN copy numbers from patients with tissue-confirmed

MNA (range, 2.56–199.32), likely reflecting the aforemen-

tioned differences in cohort characteristics. It is also

noteworthy that serum generally yields higher ‘apparent’

cfDNA levels than plasma [119] due to release of genomic

DNA from haematopoietic cells during the clotting process

[120–122]. Gotoh et al. [103] demonstrated this dilution

effect in the context of MYCN copy number measurement

by spiking white blood cells into serum samples from

patients with MNA, resulting in reduced MYCN/reference

gene ratios. Therefore, delayed isolation of serum could

result in significant genomic DNA contamination, thus redu-

cing apparent MYCN copy number measurements. For this

reason, plasma is more suitable than serum for analysis of

gene copy number in cfDNA [119].

A 2005 case report by Combaret et al. [104] highlighted the

utility of MYCN evaluation in cfDNA where tumour biopsy is

not possible. A 30-day-old infant presented with stage 4S NB,

but thrombocytopenia and hypofibrinogenaemia confounded

the collection of tumour tissue. Evaluation of serum MYCN
by qPCR revealed high-level MNA, and the child was assigned

high-intensity chemotherapy. Three weeks after a significant

response, blood coagulation parameters had returned to

normal and biopsy tissue was obtained, which showed greater

than 50 MYCN copies by qPCR. The child achieved remission

and was disease free 1 year later [104]. It is estimated that

around 29% of patients with NB have unknown MYCN status

[123,124], representing a significant proportion of patients

who could potentially benefit from MYCN testing in cfDNA.

More recent studies have assessed MYCN status in plasma

using whole-genome sequencing, whole-genome copy

number profiling (i.e. arrayCGH and OncoScan) [80,95,110]

and dPCR [97,109]. dPCR is less prone to technical bias than

qPCR for copy number measurement because it relies neither

on PCR efficiency nor on the availability of a stable reference

gene [125]. Aside from its non-invasive and repeatable

nature, MYCN evaluation in cfDNA offers several other

advantages over tissue-based methods. First, it enables rapid
determination of MYCN status, which is particularly impor-

tant for patients younger than 18 months at diagnosis where

risk grouping is dependent on such information [126,127],

and could be implemented in parallel with urine catechol-

amine tests. Second, the technique is low cost and amenable

to a high-throughput format, requiring only DNA extraction

from small blood volumes and subsequent PCR amplification

of MYCN, alone or along with a reference gene such as NAGK
[103,105–109].

3.1.2. Segmental chromosome alterations

Numerous SCAs detected in tumour tissue have been shown

to correlate with prognosis in NB by univariate [14,54,128–

134] and multivariate [135–137] analyses, and indeed the

presence of any SCA is strongly associated with a higher

risk of relapse and poorer outcome than in patients with

only numerical chromosome alterations [57,138–141]. Several

studies have demonstrated the ability to detect recurrent

SCAs such as gain of 17q and losses of 11q and 1p in

cfDNA isolated from plasma and serum of patients with

NB at diagnosis, and have frequently shown high concor-

dances of detection with paired tissue samples

[80,110,112,113].

Combaret et al. [113] used a duplex qPCR approach to sim-

ultaneously amplify genes at 17q.23.1 and 17q25 and calculate

copy numbers relative to TP53 (17p13.1) in cfDNA from

patients with NB. With an arbitrary copy number threshold

of 1.35, none of 16 cfDNA samples from healthy subjects

showed 17q gain, whereas 38% (43/112) of cfDNA samples

from patients with NB were positive. Of 58 patients with

tissue-confirmed 17q gain, 31 were positive in cfDNA, while

12 of 84 patients with 17q normal tumours showed 17q gain.

Consistent with the notion of rising cfDNA levels with disease

progression [96,97], diagnostic sensitivity was greater in INSS

stage 4 patients (60%) relative to stage 1 and 2 patients (33%),

though specificity showed the inverse trend (71.4% versus

88%, respectively) and was, in fact, greater in patients younger

than 18 months of age at diagnosis (94.4% versus 71.4%).

Indeed, a similar trend was observed upon stratification by

MYCN status. It is worth noting that the sensitivity of this

assay is lower than that reported for detection of MNA in

cfDNA (84–100% and 95–100%, respectively), likely due to

the masking effect of healthy cfDNA on moderate 17q gains,

particularly in patients with low tumour burden [113]. A

recent whole-exome sequencing (WES) analysis in NB demon-

strated a high concordance between tumour tissue and plasma

cfDNA with respect to 17q status; of 19 patients, 12 patients

showed 17q gain in both tissue and cfDNA at diagnosis, and

one patient was positive for 17q gain in cfDNA only [110].

Similarly, an earlier study by the same group showed a high

concordance of 17q gain between primary tumour tissue and

cfDNA by analysis with array CGH and OncoScan microarray,

respectively. Of 70 patients at diagnosis, 30 showed 17q gain in

both tissue and cfDNA, and two patients showed 17q gain

in either tissue or cfDNA [80]. Analysis of 17q gain in

cfDNA may be useful as a tool for prognostication and

therapeutic decision-making alongside cfDNA-based MYCN
testing, particularly in very young patients in whom tissue-

based genomic analyses may not be possible or sufficiently

reliable.

Reflecting the clinical importance of 11q loss as a negative

prognostic indicator in NB patients without MNA [142],



Ta
bl

e
3.

Su
m

m
ar

y
of

NB
stu

di
es

ev
alu

at
in

g
M

YC
N

am
pl

ifi
ca

tio
n

sta
tu

s
in

pe
rip

he
ra

lb
lo

od
us

in
g

PC
R

m
et

ho
do

lo
gy

.

se
ru

m
/

pl
as

m
a

PC
R

m
et

ho
d

re
f.

ge
ne

M
NA

st
at

us
(2

/1
)b

y
IN

SS
di

se
as

e
st

ag
e

m
ed

ia
n

bl
oo

d
M

YC
N

ra
tio

by
tis

su
e

st
at

us

ov
er

al
l

se
ns

.(
%

)
ov

er
al

l
sp

ec
.(

%
)

st
ud

y

tis
su

e
se

ru
m

/p
la

sm
a

1
2

3
4

4S
1

2
3

4
4S

M
NA

2
M

NA
1

se
ru

m
qP

CR
RP

PH
1

14
/0

10
/1

8/
5

33
/2

5
5/

1
14

/0
10

/1
9/

4
32

/2
6

5/
1

NR
NR

97
99

[1
02

]

se
ru

m
qP

CR
NA

GK
22

/1
18

/1
7/

2
18

/1
3

5/
0

NR
NR

NR
NR

NR
0.

87
19

9.
32

10
0

10
0

[1
03

]

se
ru

m
qP

CR
IL1

B
NR

NR
NR

NR
NR

NR
NR

NR
NR

NR
NR

NR
89

98
[1

04
]

se
ru

m
qP

CR
NA

GK
24

/1
0a

24
/1

0a
27

/1
6

83
/4

1
60

/6
33

/1
a

33
/1

a
31

/1
2

89
/3

5
61

/5
NR

NR
84

10
0

[1
05

]

pl
as

m
a

qP
CR

NA
GK

16
/0

4/
0

7/
2

6/
14

1/
0

16
/0

4/
0

7/
2

6/
14

1/
0

0.
98

26
.7

5
10

0
10

0
[1

06
]

se
ru

m
qP

CR
NA

GK
38

/6
a

38
/6

a
14

/1
2

33
/3

8
6/

1
38

/6
a

38
/6

a
13

/1
3

37
/3

4
6/

1
2.

45
11

8.
27

86
95

[1
07

]

se
ru

m
qP

CR
NA

GK
10

/0
21

/0
13

/1
49

/9
2/

0
NR

NR
NR

NR
NR

0.
97

2.
56

91
98

[1
08

]

pl
as

m
a

dd
PC

R
NA

GK
NR

NR
NR

NR
NR

NR
NR

NR
NR

NR
2.

7
49

.2
10

0
10

0
[1

09
]

a St
ag

es
1

an
d

2
gr

ou
pe

d.
dd

PC
R,

dr
op

let
di

gi
ta

lP
CR

;I
NS

S,
In

te
rn

at
ion

al
Ne

ur
ob

las
to

m
a

St
ag

in
g

Sy
ste

m
;M

NA
,M

YC
N

am
pl

ifi
ca

tio
n;

NR
,n

ot
re

po
rte

d;
qP

CR
,q

ua
nt

ita
tiv

e
re

al-
tim

e
PC

R;
se

ns
.,

se
ns

iti
vit

y;
sp

ec
.,

sp
ec

ifi
cit

y.

royalsocietypublishing.org/journal/rsob
Open

Biol.9:190056

6



royalsocietypublishing.org/journal/rsob
Open

Biol.9:190056

7
several groups have reported the detection of 11q loss in

plasma and serum from patients with NB at diagnosis and

relapse [80,110,112]. Yagyu et al. [112] used a microsatellite

analysis approach to determine allelic status at 11q23 in the

serum of 24 patients at diagnosis. Serum allelic intensity

scores between tissue-confirmed 11q loss-positive and

loss-negative patients did not overlap, and there was full con-

cordance of 11q status between tissue and serum in these

patients. Both studies by Chicard et al. [80,110] also demon-

strated 11q loss in plasma from patients at diagnosis using

OncoScan microarray or WES with high concordance between

tissue and plasma. The earlier study used OncoScan micro-

array and array CGH to analyse plasma and tumour DNA

of 70 patients, respectively, and achieved a sensitivity of 91%

and specificity of 94% [80]. In the later study of 19 patients,

paired WES of tissue and plasma demonstrated 100% sensi-

tivity and specificity [110]. Moreover, these studies were able

to detect 1p loss in plasma to high concordance with matched

tissue, along with other recurrent SCAs such as gains of 1q, 2p

and losses of 3p, 4p and 14q [80,110]. Given that SCAs confer

poor prognosis in NB and therefore define patients that require

more intensive treatment, larger scale studies employing rapid

and targeted methodologies for detecting specific SCAs in

cfDNA at diagnosis are warranted.

3.1.3. ALK mutations and amplification

Gain-of-function alterations in ALK, namely point mutations

and gene amplification, are observed in around 10–12% of

patients with NB at diagnosis and tend to afford a poor prog-

nosis [23,60,62]. Recently, small-molecule inhibitors of ALK

currently used to treat ALK fusion-positive NSCLC have

entered clinical trials for ALK-positive NB and other ALK-

positive paediatric cancers [76]. Therefore, genomic alterations

of ALK may serve as important biomarkers in cfDNA for thera-

peutic stratification and monitoring of treatment response in

the near future. Combaret et al. [111] developed dPCR assays

for the sensitive detection of point mutations at the two most

common mutational hotspots of ALK in NB: F1174L

(c.3520T . C and c.3522C . A) and R1275Q (c.3824G . A).

Among 111 plasma/serum samples obtained from patients

with NB at diagnosis, 20 patients were found to be positive

for a single mutation and four patients were positive for both

c.3522C . A and c.3824G . A. Mutant-to-wildtype ALK
ratios ranged from 0.15% to 43.7%, likely reflecting different

tumour burdens and disease stages within the cohort. Detec-

tion of the 3520T . C, 3522C . A and 3824G . A point

mutations in cfDNA was achieved with a sensitivity of 100%,

85% and 92%, respectively, and a specificity of 100%, 91%

and 98%, respectively. However, the specificity could have

been underestimated due to potential spatial sampling bias

when obtaining biopsies from genetically heterogeneous

tumours [111,143]. ALK mutations have also been detected in

cfDNA from patients with NB using targeted [97] and whole-

exome [110] sequencing approaches, though these studies

have used small patient cohorts. Lodrini et al. [109] recently

developed a dPCR assay for quantification of ALK copy

number and demonstrated its performance in cfDNA isolated

from patients and patient-derived mouse xenografts. Of 10

patients in the study, one patient showed ALK gain (copy

number greater than or equal to 3) in both cfDNA and tissue

by dPCR and two patients showed ALK gain in cfDNA but

not in tissue. The latter observation could have been due to
ALK gains in subclones of the primary tumours or in metastatic

sites undetected at diagnosis [109,143].

3.1.4. DNA methylation

Silencing of tumour suppressors by hypermethylation of

promoter CpG islands is a key epigenetic event in tumorigen-

esis [144] and a promising circulating biomarker in diverse

cancer types [145]. Several tumour suppressors are frequently

silenced by hypermethylation in NB [146]. CpG island hyper-

methylation of the RAS effector protein RASSF1A is found in

the majority of NB tumours at all clinical stages [146–149]

and is not associated with prognostic factors such as MYCN
status or age at diagnosis [148,150]. By contrast, RASSF1A
hypermethylation in the pre-treatment serum of patients

with NB has been shown to be significantly associated with

age . 12 months at diagnosis and advanced (INSS stage 4)

MNA disease [148]. In this study, Misawa et al. [148] used

methylation-specific PCR and detected serum RASSF1A
hypermethylation in 25% (17/68) of patients, demonstrating

its utility as a poor prognostic factor comparable to that of

MNA by univariate analysis. The same group also investigated

the prognostic potential of serum DCR2 hypermethylation,

given its association with poor outcome in primary NB

tumours [114,151]. DCR2 hypermethylation was associated

with tumour stage, independent of MYCN status, and patients

with this alteration had a poorer 5 year EFS, which was particu-

larly significant among patients without MNA [114].

Moreover, hypermethylation levels were found to decrease

towards disease remission and become elevated at relapse,

thus demonstrating the potential of serum DCR2 hypermethy-

lation as a dynamic biomarker for prognostication and

therapeutic monitoring in NB [114].

3.2. Circulating microRNA
MicroRNAs (miRNAs) are a family of endogenous, short

(20–25 nt) non-coding RNA molecules that provide post-

transcriptional regulation of gene expression [152].

Dysregulation of miRNAs is widely observed in cancer, often

caused by mechanisms such as deletion, amplification and

changes in gene expression [152]. Over the past decade,

miRNAs have been investigated in plasma and serum as non-

invasive biomarkers for diagnosis, therapeutic stratification

and prognostication across diverse cancer types [153].

Many known oncogenic and tumour-suppressive

miRNAs have been shown to be aberrantly expressed in pri-

mary NB tumours, with a particular focus on those targeting

MYCN [154–156] among other genes implicated in NB patho-

genesis [157]. In addition, a limited number of studies have

demonstrated the roles of specific miRNAs in mediating che-

moresistance in NB cell lines and tumours [157]. However,

few studies have investigated the expression and clinical

utility of circulating miRNAs in NB. Murray et al. [158] under-

took a global (n ¼ 741) reverse transcription (RT)-qPCR-based

analysis of miRNA expression in diagnostic serum from 33

paediatric cancer patients and identified a unique expression

profile for each tumour type. Sera from NB patients with

MNA (n ¼ 2) showed overexpression of miR-124-3p, miR-9-

3p, miR-218-5p, miR-490-5p and miR-1538, consistent with a

previous study demonstrating MYCN status as a determinant

of global miRNA profiles in NB tissue [159]. Moreover, miR-9

is known to be induced by MYCN and its high expression in
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NB is associated with MNA and metastatic disease [160]. In a

recent study, whole-miRNome profiling was conducted in

sera from mice bearing favourable, non-metastatic NB xeno-

grafts and mice with high-risk, metastatic disease [161]. The

authors identified a circulating miRNA signature of high-

risk disease, comprising high and low expression of 34 and

46 miRNAs, respectively. Individual miRNAs were function-

ally validated by analysing expression of their putative

target proteins at distant metastatic sites from the high-risk

model, and three miRNAs (miR-381, miR-548h and miR-580)

were identified as showing greater than 10-fold increased

expression in sera from this model, thereby serving as putative

biomarkers of high-risk disease for clinical investigation [161].

Another recent study investigated expression of miRNAs in

pooled sera from patients with low- and high-risk NB, identi-

fying 743 well-expressed miRNAs [162]. The authors then

evaluated expression of these miRNAs in sera from a cohort

of 141 patients with NB at diagnosis, identifying tumour

stage as the greatest determinant of variance in miRNA

levels. Nine miRNAs that showed significantly different

expression between patients with low- and high-risk disease

were further investigated, and their expression levels were

found to increase with tumour stage. Moreover, in mice xeno-

grafted with NB tumours, serum expression levels of all nine

miRNAs were found to increase with tumour load, an obser-

vation subsequently confirmed by longitudinal blood

sampling in five patients with high-risk metastatic NB. Inter-

estingly, expression of the nine miRNAs in primary NB

tumours was not significantly different between disease

stages, leading the authors to conclude that differential

expression between disease stages in sera most likely reflects

tumour burden and therefore metastatic status [162].

While these studies have provided proof of principle that

circulating miRNA profiles can distinguish between favour-

able and high-risk NB, candidate miRNA biomarkers must

be evaluated in large, prospective patient cohorts before their

clinical utility can be realized. Moreover, given that miRNA

profiles associated with chemoresistance have been identified

in NB, further investigation of these miRNAs as circulating

biomarkers for therapeutic monitoring is warranted [157].

3.3. CTCs and CTC-derived mRNA
CTCs are malignant cells that disseminate into the blood-

stream from primary or metastatic tumours and are

responsible for seeding metastatic growth [163]. Together

with disseminated tumour cells in bone marrow, CTCs are

surrogate markers of sub-clinical metastasis (MRD), in

which small numbers of tumour cells persist after therapy

in patients in remission, often leading to clinical relapse

[164]. CTCs are rare, comprising as few as one cell per billion

haematological cells, and this has presented a major chal-

lenge to their isolation and molecular characterization.

Recent advancements in immunological and size-based

enrichment methods have enabled enumeration and molecu-

lar analysis of CTCs in peripheral blood isolated from

patients with diverse cancer types [165]. CTCs are currently

under investigation as biomarkers for diagnosis, therapeutic

monitoring, prognostication and assessment of relapse risk

[166]. The presence of CTCs in patients with NB was first

demonstrated through the establishment of NB cell lines

during in vitro culture of peripheral blood samples from

patients with disseminated disease [167,168]. These studies
highlighted the potential for tumour cell contamination in

stem cell harvests from peripheral blood, a concern sup-

ported by a later study demonstrating the clonogenic

properties of NB CTCs in vitro [169].

3.3.1. CTC detection methods

The first prospective molecular analyses of CTCs employed

immunocytochemical methods with monoclonal antibodies

against neuronal cell markers such as CD56 (NCAM), CD90

(Thy-1) and GD2 [168,170,171]. CTCs were detected in patients

with metastatic disease at diagnosis [168,170,171], during

therapy [170,171] and at relapse [168]. In one study, the pres-

ence of CTCs in patients with metastatic disease during

therapy was found to be an indicator of disease relapse

[170]. Subsequent studies have used RT-PCR-based method-

ologies for the indirect detection of CTCs, targeting mRNA

with neuron-specific expression such as UCH-L1 (PGP9.5)

[172–175], TH (tyrosine hydroxylase) [173–207], GALGT
(GD2 synthase) [200,204,208], DCX (doublecortin) [187,193,

199,203–205,207], DDC (DOPA decarboxylase) [192,193,198,

202,204,205] and PHOX2B [187,193,202,204,205,207]. Mattano

et al. [172] evaluated the performance of an RT-PCR assay tar-

geting UCH-L1, reporting a 100-fold increase in sensitivity

relative to immunocytochemical assays, with the ability to

detect a single CTC among 107 peripheral blood mononuclear

cells (PBMCs) versus 1 or 2 CTCs among 105 PBMCs by

immunocytochemistry. Subsequent RT-qPCR analyses target-

ing other markers such as TH and GALGT have demonstrated

variable sensitivities, with detection limits ranging from 1

CTC in 103 to 1 CTC in 107 PBMCs [174,176,178,190,

194–202,209].

3.3.2. Association of CTCs with clinical features

As with immunocytochemical analyses, RT-PCR-based

studies have consistently identified NB-specific mRNA in per-

ipheral blood at diagnosis in patients with metastatic disease

and in a fraction of patients with localized and stage 4S disease

(table 4). Diagnostic TH mRNA levels and CTC counts are

typically higher in patients with more advanced metastatic dis-

ease [185,204,206,212] and in patients with high-risk disease

[206,212], as observed in other solid malignancies [166]. How-

ever, NB-specific mRNA levels and CTC counts do not

correlate with MYCN status [182,184,206,207,212]. In addition

to serving as a potential diagnostic biomarker, there is a wealth

of evidence supporting the prognostic value of NB-specific

mRNA, with numerous studies reporting a correlation

between mRNA levels and survival outcomes (table 4). High

transcript levels of TH and other NB-specific genes at diagnosis

have been associated with poor OS and/or EFS in patients

with localized and metastatic disease, independent of risk

status [187,193,194,197,203,206,208]. Similarly, high CTC

counts (� 10 cells per 4 ml blood) have recently been shown

to correlate with poor OS [212]. Among patients with high-

risk disease, high expression of TH and PHOX2B mRNA at

diagnosis has been shown to correlate with remarkably

poorer outcome, thus identifying a subset of patients with

ultra-high-risk disease who may benefit from novel treatment

approaches [187].

Detection of CTCs or NB-specific mRNA in peripheral

blood of patients in remission following completion of

therapy may indicate MRD and is associated with poorer
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prognosis in NB [183]. Consistent with the eradication of sys-

temic disease, several studies have shown that mRNA may

decrease and/or become undetectable during and after che-

motherapy [175–177,212]. CTCs or detectable levels of

mRNA that remain upon completion of chemotherapy or

after surgical resection are associated with an increased risk

of relapse [170,176,177,183,185,197,200]. Thus, mRNA in per-

ipheral blood has potential as a dynamic biomarker for

monitoring response to therapy and evaluation of relapse

risk in patients with NB.

Several groups have demonstrated an increase in sensi-

tivity of MRD detection in peripheral blood and bone

marrow by evaluating multiple mRNAs simultaneously,

which is perhaps expected given the genetic heterogeneity

of NB [193,202,204,205]. However, some mRNAs such as

GALGT have been shown to lack sensitivity [200] and contrib-

ute false positivity [189,192], and hence should be validated

individually before incorporation into multi-marker panels.

Corrias et al. [204] evaluated a panel of seven mRNAs and

found no correlation of any individual mRNA with specific

clinical features in patients with localized disease. Moreover,

a high rate of false positivity was observed upon combined

analysis of all mRNAs, leading the authors to conclude that

multi-marker analysis may not offer benefit over analysis of

a single mRNA in patients with low tumour burden [204].

Towards clinical implementation of mRNA-based MRD

analysis in patients with NB, Viprey et al. [201] coordinated

an initiative to standardize the methodology for detection

of NB cells by RT-qPCR. Original methodologies on blood

collection, RNA isolation and PCR protocols were evaluated

from several reference laboratories across Europe and a stan-

dardized, quality-controlled protocol was devised. This

protocol led to an increase in sensitivity of TH mRNA detec-

tion by RT-qPCR from 58% to 90% [201] and has since been

implemented by the same group for MRD detection in

patients with metastatic disease enrolled on the international

phase 3 HR-NBL-1/SIOPEN trial [187,207]. In the first of two

studies, Viprey et al. [187] reported that levels of TH, PHOX2B
and DCX mRNAs in peripheral blood (and bone marrow) of

patients at diagnosis and at the end of induction therapy

were predictive of EFS. A recently published follow-up

study evaluated levels of TH, PHOX2B and DCX mRNAs

in patients , 18 months of age at diagnosis, since this age

group was not sufficiently represented in the first study. In

these patients, levels of PHOX2B and DCX mRNA, but not

TH mRNA, in the highest tertile at diagnosis were associated

with shorter EFS, and PHOX2B mRNA alone showed prog-

nostic power in patients during the first year of follow-up

[207]. Studies into MRD detection in patients with NB

(table 4) have clearly demonstrated the potential for NB-

mRNAs in peripheral blood as non-invasive predictive and

prognostic biomarkers within defined patient subsets. The

clinical significance of NB-mRNAs in peripheral blood is

worthy of further exploration in comparison with established

biomarkers in large multi-centre trials using standardized

protocols before integration into the clinic [201,213].
4. Clinical implementation of circulating
biomarkers in neuroblastoma

A major obstacle to the discovery and validation of clinically

applicable biomarkers in NB, and indeed paediatric cancers
in general, is the scarcity of patient material available for cor-

relative research. There is a tendency to take core needle

biopsies rather than tissue sections, which limits the number

of tests that can be performed. In addition, protocols used

for blood collection, plasma/serum isolation and specimen

storage may not permit optimal recovery of biomarker ana-

lytes such as nucleic acids [119]; these methodological

factors may be a significant cause of inter-study variability,

as exemplified by the choice of plasma or serum for analysis

of MNA in blood [102–109]. Furthermore, retrospective bio-

marker analysis requires access to patient clinicopathological

data, which is not always possible or easy unless in the context

of a clinical trial. Indeed, inferences made from prospective

biomarker analyses in patients enrolled on clinical trials are

often limited due to small cohort sizes that result from stratifi-

cation of patients into treatment arms or into groups based on

clinicopathological features such as age, risk status and dis-

ease stage [201,207]. Despite these limitations, it has been

possible to develop prognostic assays.

There is sufficient retrospective evidence to indicate that

analysis of MNA in blood by qPCR can determine MYCN
status in the majority of NB patients with advanced disease,

thus serving as a biomarker for prognostication and poten-

tially response to therapy [102–109]. The most obvious

benefit of blood-based MYCN analysis is the rapid determi-

nation of risk status in patients at diagnosis, enabling

immediate application of appropriate treatment. Blood-

based MYCN assessment should now be incorporated into

large-scale prospective trials in patients at diagnosis,

during/after induction therapy and at relapse. A limited

number of retrospective studies have demonstrated success-

ful detection of various SCAs in plasma and serum of

patients with advanced disease [80,110,112,113]. Given that

SCAs are currently used as tissue-based indicators of poor

prognosis, further analysis of their detectability in blood in

larger patient cohorts is warranted, perhaps in tandem with

MYCN analysis [113]. The relatively ‘quiet’ nature of NB gen-

omes has not provided a plethora of potential aberrations for

the development of further blood-based assays, which has

further confounded the implementation of this approach to

patient management.

To date, ALK is the only druggable gene product that is

frequently mutated in NB, and small-molecule inhibitors of

ALK currently approved for the treatment of ALK-positive

NSCLC are undergoing clinical assessment in patients with

NB and other ALK-positive paediatric malignancies. How-

ever, a wealth of preclinical studies and a few clinical case

reports in patients with NB are highlighting the issue of

therapeutic resistance, thus compromising the long-term effi-

cacy of these compounds [76]. The ability to detect ALK
mutations in the blood at diagnosis and relapse, and to moni-

tor mutations during treatment, would enable the rapid

assignment of ALK inhibitors to eligible patients and to

monitor treatment efficacy in real time. In particular, given

that many children are too unwell for re-biopsy on relapse,

an assay that can determine the identity of the ALK mutation

on relapse would be highly beneficial in the clinic. For

example, emergence of secondary ALK mutations in the

blood would indicate resistance and may provide the ration-

ale for switching to other structurally related compounds

with distinct resistance profiles. Combaret et al. [111] have

demonstrated the detection of mutations at the F1174 and

R1275 hotspots of ALK in cfDNA of patients at diagnosis
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using a droplet digital PCR (ddPCR) methodology [111], and

several other groups have detected point mutations in ALK
by next-generation sequencing in small patient cohorts

[97,110]. The utility of ALK mutations in cfDNA as thera-

peutic biomarkers will only be realized upon integration of

cfDNA analysis into large, well-designed prospective trials

that include an ALK inhibitor treatment arm, several of

which are currently underway [214,215].

Another clinical application of circulating biomarkers is

the detection of MRD, a strong predictor of relapse in

cancer [164]. To this end, a variety of MRD detection methods

have been developed based on direct and indirect detection

of tumour cells in peripheral blood [216]. Early studies in

patients with NB employed immunocytochemical methods

to detect CTCs, and later studies revealed the increased sen-

sitivity offered by qualitative and quantitative RT-PCR-based

strategies targeting NB-specific mRNAs (table 4). Numerous

retrospective analyses have amassed a substantial evidence

base around the utility of qualitative and quantitative RT-

PCR for detection of rare CTCs in NB, with a sensitivity of

a single tumour cell in up to 10 million normal haematopoie-

tic cells [172,202]. Of particular clinical interest is the ability of

NB-specific mRNA levels in blood to predict OS and/or EFS

outcomes among patients with metastatic disease, as deter-

mined in a series of small-cohort studies [183,192,193,197,

200,203,206] and more recently in larger studies of patients
enrolled on the HR-NBL-1/SIOPEN trial [187,207]. RT-

qPCR-based MRD analysis must now be incorporated into

well-powered prospective clinical trials to assess the predic-

tive and prognostic value of NB-specific mRNA levels in

blood, both independently and in combination with estab-

lished biomarkers.
5. Summary
The poor prognosis of patients with high-risk NB necessitates

the development of biomarkers to facilitate therapeutic stratifi-

cation, prognostication and assessment of relapse risk. There is

substantial evidence from retrospective studies to warrant

investigation of MNA and CTC-derived mRNAs in peripheral

blood of patients enrolled on large-scale prospective trials to

confirm the clinical utility of these biomarkers in risk stratifica-

tion and prognostic assessment, respectively. The detection of

ALK mutations in cfDNA of patients enrolled on current ALK

inhibitor trials will establish the feasibility of real-time non-

invasive monitoring of treatment response and detection of

resistance.
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