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Molecular analysis of nucleic acid and protein biomarkers is becoming
increasingly common in paediatric oncology for diagnosis, risk stratification
and molecularly targeted therapeutics. However, many current and emer-
ging biomarkers are based on analysis of tumour tissue, which is obtained
through invasive surgical procedures and in some cases may not be accessi-
ble. Over the past decade, there has been growing interest in the utility of
circulating biomarkers such as cell-free nucleic acids, circulating tumour
cells and extracellular vesicles as a so-called liquid biopsy of cancer. Here,
we review the potential of emerging circulating biomarkers in the manage-
ment of neuroblastoma and highlight challenges to their implementation in
the clinic.

1. Introduction to neuroblastoma

Neuroblastoma (NB) is the most common and deadly solid extracranial malig-
nancy in children, deriving from precursor sympathoadrenal cells of the neural
crest [1,2]. NB is often termed a ‘clinical enigma’, owing to its heterogeneous
clinical behaviour ranging from spontaneous regression to treatment resistance,
metastasis and death [3,4]. Therefore, in addition to the post-surgical Inter-
national Neuroblastoma Staging System (INSS; table 1), patients are classified
as very low (approx. 28%), low (approx. 27%), intermediate (approx. 9%) or
high risk (approx. 36%) based on the likelihood of disease progression and
relapse [5-8]. While low-risk disease is usually diagnosed in children younger
than 18 months and may spontaneously regress without treatment, high-risk
disease generally occurs in children older than 18 months and around half of
patients relapse [9]. Despite intensive multi-modal treatment, 5 year survival
among high-risk patients remains at 40—-50% [10].

Genomic amplification of MYCN is reported in around 25% of NB tumours
(approx. 40% among high-risk patients) and is generally accepted as the stron-
gest predictor of poor prognosis and rapid tumour progression [11,12]. Other
poor prognostic features include chromosome arm-level alterations, namely
deletions of 1p (30%) and 11q (45%) and unbalanced gain of 17q (60%), all of
which are associated with diploid or near-tetraploid karyotypes [13-16].
In addition, amplification of ALK, encoding the anaplastic lymphoma kinase
(ALK) receptor tyrosine kinase, is observed in 1-2% of cases and is often
co-amplified with MYCN [17-19]. Recently, massive genomic rearrangement,
known as chromothripsis, has been observed in 18% of advanced stage
tumours; thus, NB could be considered a predominantly copy number-driven
cancer [20,21]. Somatic mutations are less common and include point mutations
of ALK (8-10%) as well as point mutations and small, in-frame deletions of
alpha thalassaemia/mental retardation syndrome X-linked (ATRX), encoding
a SWI/SNF family chromatin remodelling protein, that occur at a frequency
correlating with age at diagnosis [20,22-25]. ATRX alterations are associated
with poor prognosis [24]. Recent genome-wide sequencing analyses in large
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Table 1. International Neuroblastoma Staging System (INSS).

1 Localized tumour with complete gross excision, with or without microscopic residual disease; representative ipsilateral lymph nodes negative
for tumour microscopically (nodes attached to and removed with the primary tumour may be positive).

2A Localized tumour with incomplete gross excision; representative ipsilateral non-adherent lymph nodes negative for tumour microscopically.

B Localized tumour with or without tomplete gfoss excision, with ipsilateral non-adherent Iymph nodes positive for tumour. Enlérged .

contralateral lymph nodes must be negative microscopically.

3 Unresectable unilateral tumour infiltrating across the midline,* with or without regional lymph node involvement; or localized unilateral

tumour with contralateral regional lymph node involvement; or midline tumour with bilateral extension by infiltration (unresectable) or by

lymph node involvement.

4 Any primary tumour with dissemination to distant lymph nodes, bone, bone marrow, liver, skin and/or other organs (except as defined for
stage 49).
45 Localized primary tumour (as defined for stage 1, 2A or 2B), with dissemination limited to skin, liver and/or bone marrow” (limited to

infants << 1 year of age).

NOTE: Multifocal primary tumours (e.g. bilateral adrenal primary tumours) should be staged according to the greatest extent of disease, as defined above, and

followed by a subscript letter M.

®The midline is defined as the vertebral column. Tumours originating on one side and crossing the midline must infiltrate to or beyond the opposite side of the

vertebral column.

®Marrow involvement in stage 45 should be minimal, i.e. less than 10% of total nucleated cells identified as malignant on bone marrow biopsy or on marrow
aspirate. More extensive marrow involvement would be considered to be stage 4. The metaiodobenzylguanidine (MIBG) scan (if performed) should be negative

in the marrow. Adapted from Brodeur et al. [5].

NB patient cohorts have identified a relative paucity of
recurrent alterations [20,24-26].

Initial investigations for NB involve laboratory testing for
full blood count, serum electrolytes, liver function and urine
catecholamine metabolites [27]. More general biomarkers
such as ferritin, lactate dehydrogenase and neuron-specific eno-
lase (NSE) may also be investigated [28]. For suspected NB in
the abdomen, ultrasound is the preferred imaging method
[29]. A provisional diagnosis is followed up with cross-sectional
imaging such as computed tomography or magnetic resonance
imaging and confirmed by histological analysis of tumour
tissue obtained from a primary tissue biopsy or bone marrow
aspirate [29,30].

The treatment algorithm for NB is dependent on risk
stratification, which is defined using parameters such as age,
disease stage, tumour histopathology, MYCN status and
DNA ploidy [31]. Low-risk patients often require surgery
alone or close observation, since spontaneous regression is
frequently observed in this risk group [31]. By contrast, inter-
mediate-risk patients require both surgery and chemotherapy
of moderate intensity, and high-risk patients are treated with
high-intensity chemotherapy, radiotherapy, surgery and
autologous haematopoietic stem cell transplant [31,32]. In
addition, high-risk patients receive immunotherapy with
anti-GD2 antibodies and cytokines, and differentiation
therapy with 13-cis-retinoic acid to eliminate minimal residual
disease (MRD) [33].

2. Current biomarkers in neuroblastoma

NB is one of few paediatric cancers in which biomarkers are
routinely used for diagnosis, prognostication and therapeutic
monitoring (table 2).

2.1. Urine catecholamines

The majority of neural crest tumours including NB secrete cat-
echolamines [64]. Elevated urinary levels of the catecholamine
metabolites vanillylmandelic acid (VMA) and homovanillic
acid (HVA) are observed in 90-95% of NB patients at diagno-
sis [34,35] and a low VMA-to-HVA ratio is associated with
poorly differentiated tumours and poor prognosis [36,37].
These metabolites have been used since the 1970s as non-
invasive biomarkers to assist in the diagnosis and therapeutic
monitoring of patients with NB [38]. A recent study found the
combined diagnostic sensitivity of VMA and HVA in NB to be
84% overall [39], though sensitivity is much lower (33—-59%) in
stage I tumours [36,39]. To facilitate early detection of NB, a
screening programme based on urine catecholamine levels in
infants aged six months was trialled and later implemented
in Japan [65]. However, the programme was terminated
upon publication of evidence from screening trials conducted
in other countries, which suggested that NB-specific mortality
was not reduced among screened subjects [66—68]. Retrospec-
tive analyses have determined that screening for NB results in
overdiagnosis; screen-detected patients had a tendency to
spontaneously regress [69,70] and many of these tumours
showed favourable prognostic features at diagnosis [71].

2.2. Serum proteins

Serum lactate dehydrogenase (LDH) is used as a tumour
biomarker in several malignancies [72], although levels can
be elevated in non-malignant conditions such as heart failure,
kidney disease, hypothyroidism and anaemia [73]. In NB,
elevated serum LDH levels have been shown to confer poor
prognosis independent of disease stage in patients with
MYCN amplification (MNA) [37,40]. Moreover, a recent

study identified elevated serum LDH levels as an
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Table 2. Current biomarkers in NB.

biomarker specimen
catecholamine metabolites (HVA, VMA) urine
lactate dehydrogenase serum
neuron-specific enolase serum
ferritin serum
MYCN amplification tissue
1p deletion . . . tissue
11q deletion tissue
17qbgain ‘ - . . tis>sueb
ALK mutation tissue
ALK amplification ‘ S tissue

*Not independent.

independent predictor of poorer event-free (EFS) and overall
(OS) survival in patients with metastatic disease older than 18
months at diagnosis [74]. LDH levels are typically normal in
the early stages of disease, and significantly rise with tumour
burden as the rate of cell turnover increases [7,41]. Thus,
serum LDH levels may be used as a surrogate for the
real-time monitoring of tumour burden.

NSE is a glycolytic enzyme produced in neural tissues
[75]. Serum NSE levels are elevated in neuroendocrine
tumours such as carcinoids, islet cell tumours, small-cell
lung carcinomas and NB [42,43]. While elevated NSE levels
are therefore not specific for NB, they can be used in patients
with a confirmed diagnosis to provide prognostic infor-
mation [42,44,45]. Despite extensive tumour burden, serum
NSE levels are significantly lower in stage 4S relative to
stage 4 disease [44,46].

NB cell lines and tumours produce and secrete
glycosylated ferritin, which can be distinguished from the
non-glycosylated form secreted by healthy cells [47]. Elevated
levels of serum ferritin are observed in patients with stage 3
or 4 NB, serving as a poor prognostic biomarker independent
of age at diagnosis and disease stage [48,49]. Moreover, while
ferritin levels in tumour tissue of patients with stage 4 and 45
disease are comparable, serum ferritin levels are only signifi-
cantly elevated in stage 4 patients, thus enabling
discrimination between these two clinical stages with
markedly different prognoses [50].

2.3. Tumour genetics

Several genetic alterations in NB are routinely detected in
diagnostic tissue and serve as important prognostic and
therapeutic biomarkers. In addition to MYCN as described
above, a plethora of segmental chromosome alterations
(SCAs) are associated with poor prognosis in NB, notably
deletion of 1p and 11q, and gain of 17q; most high-risk
tumours carry at least one such alteration. Both 1p36 deletion
and 17q gain are associated with MNA and independently
correlate with poor outcome [14]. Gain of 17q is the most
frequent genetic alteration in NB and is associated with 1p
deletion [54]. Loss of 11q is almost mutually exclusive of
MNA but is also a feature of high-risk disease and portends
an unfavourable prognosis [14,55]. Interestingly, tumours

inference studies
diagnostic; prognostic [34-39]
diagnostic®; prognostic [7,37,40,41]
prognostic [42-46]
prognostic ‘ [47 - 50]
prognostic [11,51-53]
prognostic 14,54
prognostic [14,55-57]

* prognostic [15,54,58,59]
prognostic; therapeutic [22,23,60-62]

‘ prognostic; thefapeljtic ‘ ‘ [60,6‘3] -

with 11q loss tend to display numerous SCAs, suggestive of
a chromosomal instability phenotype [56,57].

Around 8-10% of sporadic NB tumours present with point
mutations in the kinase domain of the full-length ALK recep-
tor [22,23]; this is in contrast to the oncogenic NPM-ALK and
EML4-ALK fusions that drive ALK-positive anaplastic large
cell lymphoma (ALCL) and non-small cell lung cancer
(NSCLC), respectively. ALK mutations in NB are found in
equal frequencies across all tumour risk groups but appear
to be associated with MNA [60], likely representing a coopera-
tive effect between these oncogenes [61]. Additionally, 1-2%
of NB tumours harbour genomic amplification of ALK,
which almost exclusively occurs with MNA given their prox-
imal association at chromosome 2p23-24 [60]. Therefore,
ALK amplification also tends to afford poor prognosis [63].
ALK alterations serve as important biomarkers in NB because
they confer sensitivity to small-molecule kinase inhibitors
that are currently undergoing clinical assessment in phase I
and II trials [76].

3. Emerging tumour-specific circulating
biomarkers in neuroblastoma

Tissue-based nucleic acid biomarkers are instrumental to risk
classification, prognostication and therapeutic assignment in
NB and indeed many other cancers [77]. However, surgical
acquisition of tumour tissue is invasive, not amenable to
sequential application and potentially subject to sampling
bias owing to intratumoral genetic heterogeneity, as high-
lighted in several recent NB studies [78-80]. Over the past
two decades, there has been growing interest in the develop-
ment of other blood-based tissue biomarker analytes such as
cell-free DNA and RNA, circulating tumour cells (CTCs) and,
more recently, extracellular vesicles and tumour-educated
platelets (figure 1). Collectively, these circulating analytes
have been termed a ‘liquid biopsy” of cancer and have been
reviewed extensively elsewhere [81-83]. The non-invasive
nature of blood sampling overcomes several limitations of
conventional tissue-based tumour analysis. Whereas invasive
biopsy procedures are not amenable to repeated sampling, a
liquid biopsy can be taken at multiple time points such as at
diagnosis, during treatment and at relapse, capturing the
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1. collection and processing of peripheral blood 2. isolation of circulating analytes

3. molecular analysis of biomarkers 4. impact on disease management
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Figure 1. The liquid biopsy workflow. In oncology, a liquid biopsy is a minimally invasive alternative to surgical tumour sampling, involving the collection and
analysis of a peripheral blood sample. Blood plasma/serum is a source of several circulating analytes with potential clinical utility, namely cell-free DNA, cell-free
RNA (mRNA and microRNA), extracellular vesicles (exosomes and microvesicles), tumour-educated platelets (TEPs) and tumour cells. Cell-free nucleic acids are a
potential source of tumour-specific genomic alterations such as gene mutations, translocations, copy number alterations (CNAs), DNA methylation and gene
expression changes. TEPs are a source of nucleic acids, and extracellular vesicles and tumour cells are a source of nucleic acids and protein. Molecular analysis
of circulating biomarkers can impact the clinical management of cancer patients by enabling personalized medicine, monitoring of therapeutic response and assess-

ment of disease prognosis/risk.

genetic and proteomic changes that underlie tumour evol-
ution in real time [84]. Some notable clinical applications of
circulating biomarkers include the quantitative real-time
polymerase chain reaction (qPCR)-based test recently
approved by the US Food and Drug Administration (FDA)
for EGFR mutations in circulating cell-free DNA from
patients with NSCLC, enabling identification of patients
likely to respond to EGFR inhibitors [85], and the FDA-
approved CELLSEARCH® test for enumeration of CTCs of
epithelial origin to aid in the monitoring of patients with
metastatic breast, colorectal or prostate cancers [86].

3.1. Circulating-free DNA and circulating tumour DNA

DNA was first reported in the circulation 70 years ago [87], but
generated little interest until 1977 when levels of circulating
free DNA (cfDNA) were shown to be elevated in patients
with cancer [88]. Later studies that identified RAS mutations
in the blood of patients with pancreatic cancer and acute
myelogenous leukaemia provided evidence of a significant
tumour-derived component of ¢fDNA, now termed circulat-
ing tumour DNA (ctDNA), and these studies led to further
exploration of the clinical potential of cfDNA in patients
with cancer [89,90]. Basal levels of cfDNA are thought to
arise from turnover of normal haematopoietic cells, whereas
elevated levels are sometimes observed in cancer and derive
from a combination of apoptosis, necrosis and active secretion
from tumour cells [91-93]. Indeed, ctDNA is detectable in
most patients with NB [94,95]. Moreover, in many solid can-
cers, including NB [96,97], cfDNA levels have been shown to
reflect tumour burden, rising with disease progression and
falling after therapy and surgical resection [80,83,95,96].
Thus, cfDNA levels may be a dynamic biomarker for disease

monitoring, though levels can also be elevated in non-
malignant conditions [98-100]. In a recent study, cfDNA was
shown to be as reliable as NSE and LDH in discriminating
NB patients with newly diagnosed (n=79) versus stable
(n=79) disease (area under the curve (AUC), 0.953, 0.929
and 0.906, respectively). Moreover, in newly diagnosed
patients, elevated plasma cfDNA levels were associated with
high-risk disease, advanced tumour stage, MNA, abdominal
primary site and three or more metastatic sites [96]. This
study did not report a significant association between the
DNA integrity index (ratio of long to short cfDNA fragments)
and these clinical variables. Patients with NB appear to have
high levels of cfDNA at diagnosis, of which a high proportion
is tumour derived, i.e. ctDNA [94,101], and reports have
demonstrated the detection of numerous genomic alterations,
including MNA [80,95,97,101-110], ALK mutation [111], 11q
deletion [80,95,110,112], 17q gain [80,110,113], and gene
methylation [114] in cfDNA of patients with NB at various
stages of the clinical course.

3.1.1. MYCN amplification

Owing to its strong association with high-risk NB, MYCN was
the first oncogene found to be altered with clinical significance
and was consequently the first nucleic acid biomarker in oncol-
ogy [11,12,51]. Targeted overexpression of N-MYC in
neuroectodermal cells is sufficient to induce NB in mice, thus
confirming a pathogenic role of MYCN in NB [115]. Indeed,
MNA remains the strongest indicator of risk in NB, and its
levels correlate with aggressive, metastatic behaviour [116,117].

Interphase fluorescence in situ hybridization (I-FISH) on
biopsy and resected tumour tissue remains the gold standard
for assessment of MNA in NB [118]. A number of studies
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have demonstrated the potential to detect MNA in serum and
plasma from patients with NB at diagnosis across all tumour
stages using PCR methodology (table 3), thus raising the pro-
spect of using MYCN as a circulating biomarker [102-109].
Using conventional PCR, Combaret et al. [102] were the first
to show MNA in the sera of 31/32 patients with MNA
tumours, with one false positive among 70 patients without
MNA and no false positives among 72 healthy patients.
Moreover, MYCN levels in eight patients were shown to fall
after chemotherapy and rise at relapse, and in one patient
elevated levels were observed two months before a clinical
diagnosis of relapse [102]. A recent study also reported a
decrease in plasma MYCN copy number one week after sur-
gery in five patients with MNA, proportional to the extent of
tumour resection [106]. These observations suggest that
MYCN in ¢fDNA may serve as a dynamic biomarker for dis-
ease monitoring and early detection of relapse. Indeed,
additional studies by Combaret ef al. and other groups con-
firmed the high performance of qPCR and digital PCR
(dPCR)-based strategies for detecting MNA in serum [103—
105,107,108] and plasma [106,109]. While cohort sizes and
INSS disease stages were variable between studies, the
reported sensitivities and specificities of MNA detection in
fDNA were 84-100% and 95-100%, respectively (table 3).
There was also wide inter-study variation in median blood
MYCN copy numbers from patients with tissue-confirmed
MNA (range, 2.56-199.32), likely reflecting the aforemen-
tioned differences in cohort characteristics. It is also
noteworthy that serum generally yields higher ‘apparent’
cfDNA levels than plasma [119] due to release of genomic
DNA from haematopoietic cells during the clotting process
[120-122]. Gotoh et al. [103] demonstrated this dilution
effect in the context of MYCN copy number measurement
by spiking white blood cells into serum samples from
patients with MNA, resulting in reduced MYCN/reference
gene ratios. Therefore, delayed isolation of serum could
result in significant genomic DNA contamination, thus redu-
cing apparent MYCN copy number measurements. For this
reason, plasma is more suitable than serum for analysis of
gene copy number in ¢fDNA [119].

A 2005 case report by Combaret et al. [104] highlighted the
utility of MYCN evaluation in cfDNA where tumour biopsy is
not possible. A 30-day-old infant presented with stage 4S NB,
but thrombocytopenia and hypofibrinogenaemia confounded
the collection of tumour tissue. Evaluation of serum MYCN
by qPCR revealed high-level MNA, and the child was assigned
high-intensity chemotherapy. Three weeks after a significant
response, blood coagulation parameters had returned to
normal and biopsy tissue was obtained, which showed greater
than 50 MYCN copies by qPCR. The child achieved remission
and was disease free 1 year later [104]. It is estimated that
around 29% of patients with NB have unknown MYCN status
[123,124], representing a significant proportion of patients
who could potentially benefit from MYCN testing in ¢fDNA.

More recent studies have assessed MYCN status in plasma
using whole-genome sequencing, whole-genome copy
number profiling (i.e. arrayCGH and OncoScan) [80,95,110]
and dPCR [97,109]. dPCR is less prone to technical bias than
qPCR for copy number measurement because it relies neither
on PCR efficiency nor on the availability of a stable reference
gene [125]. Aside from its non-invasive and repeatable
nature, MYCN evaluation in cfDNA offers several other
advantages over tissue-based methods. First, it enables rapid

determination of MYCN status, which is particularly impor- “

tant for patients younger than 18 months at diagnosis where
risk grouping is dependent on such information [126,127],
and could be implemented in parallel with urine catechol-
amine tests. Second, the technique is low cost and amenable
to a high-throughput format, requiring only DNA extraction
from small blood volumes and subsequent PCR amplification
of MYCN, alone or along with a reference gene such as NAGK
[103,105-109].

3.1.2. Segmental chromosome alterations

Numerous SCAs detected in tumour tissue have been shown
to correlate with prognosis in NB by univariate [14,54,128—
134] and multivariate [135-137] analyses, and indeed the
presence of any SCA is strongly associated with a higher
risk of relapse and poorer outcome than in patients with
only numerical chromosome alterations [57,138—-141]. Several
studies have demonstrated the ability to detect recurrent
SCAs such as gain of 17q and losses of 11q and 1p in
cfDNA isolated from plasma and serum of patients with
NB at diagnosis, and have frequently shown high concor-
dances of detection with paired tissue samples
[80,110,112,113].

Combaret et al. [113] used a duplex qPCR approach to sim-
ultaneously amplify genes at 17q.23.1 and 17925 and calculate
copy numbers relative to TP53 (17p13.1) in cfDNA from
patients with NB. With an arbitrary copy number threshold
of 1.35, none of 16 cfDNA samples from healthy subjects
showed 17q gain, whereas 38% (43/112) of ¢fDNA samples
from patients with NB were positive. Of 58 patients with
tissue-confirmed 17q gain, 31 were positive in ¢fDNA, while
12 of 84 patients with 17q normal tumours showed 17q gain.
Consistent with the notion of rising cfDNA levels with disease
progression [96,97], diagnostic sensitivity was greater in INSS
stage 4 patients (60%) relative to stage 1 and 2 patients (33%),
though specificity showed the inverse trend (71.4% versus
88%, respectively) and was, in fact, greater in patients younger
than 18 months of age at diagnosis (94.4% versus 71.4%).
Indeed, a similar trend was observed upon stratification by
MYCN status. It is worth noting that the sensitivity of this
assay is lower than that reported for detection of MNA in
cfDNA (84-100% and 95-100%, respectively), likely due to
the masking effect of healthy ¢fDNA on moderate 17q gains,
particularly in patients with low tumour burden [113]. A
recent whole-exome sequencing (WES) analysis in NB demon-
strated a high concordance between tumour tissue and plasma
cfDNA with respect to 17q status; of 19 patients, 12 patients
showed 17q gain in both tissue and cfDNA at diagnosis, and
one patient was positive for 17q gain in ¢fDNA only [110].
Similarly, an earlier study by the same group showed a high
concordance of 17q gain between primary tumour tissue and
cfDNA by analysis with array CGH and OncoScan microarray,
respectively. Of 70 patients at diagnosis, 30 showed 17q gain in
both tissue and ¢fDNA, and two patients showed 17q gain
in either tissue or c¢fDNA [80]. Analysis of 17q gain in
¢fDNA may be useful as a tool for prognostication and
therapeutic decision-making alongside cfDNA-based MYCN
testing, particularly in very young patients in whom tissue-
based genomic analyses may not be possible or sufficiently
reliable.

Reflecting the clinical importance of 11q loss as a negative
prognostic indicator in NB patients without MNA [142],
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several groups have reported the detection of 11q loss in
plasma and serum from patients with NB at diagnosis and
relapse [80,110,112]. Yagyu et al. [112] used a microsatellite
analysis approach to determine allelic status at 11923 in the
serum of 24 patients at diagnosis. Serum allelic intensity
scores between tissue-confirmed 11q loss-positive and
loss-negative patients did not overlap, and there was full con-
cordance of 11q status between tissue and serum in these
patients. Both studies by Chicard et al. [80,110] also demon-
strated 11q loss in plasma from patients at diagnosis using
OncoScan microarray or WES with high concordance between
tissue and plasma. The earlier study used OncoScan micro-
array and array CGH to analyse plasma and tumour DNA
of 70 patients, respectively, and achieved a sensitivity of 91%
and specificity of 94% [80]. In the later study of 19 patients,
paired WES of tissue and plasma demonstrated 100% sensi-
tivity and specificity [110]. Moreover, these studies were able
to detect 1p loss in plasma to high concordance with matched
tissue, along with other recurrent SCAs such as gains of 1q, 2p
and losses of 3p, 4p and 14q [80,110]. Given that SCAs confer
poor prognosis in NB and therefore define patients that require
more intensive treatment, larger scale studies employing rapid
and targeted methodologies for detecting specific SCAs in
cfDNA at diagnosis are warranted.

3.1.3. ALK mutations and amplification

Gain-of-function alterations in ALK, namely point mutations
and gene amplification, are observed in around 10-12% of
patients with NB at diagnosis and tend to afford a poor prog-
nosis [23,60,62]. Recently, small-molecule inhibitors of ALK
currently used to treat ALK fusion-positive NSCLC have
entered clinical trials for ALK-positive NB and other ALK-
positive paediatric cancers [76]. Therefore, genomic alterations
of ALK may serve as important biomarkers in ¢cfDNA for thera-
peutic stratification and monitoring of treatment response in
the near future. Combaret ef al. [111] developed dPCR assays
for the sensitive detection of point mutations at the two most
common mutational hotspots of ALK in NB: F1174L
(.3520T > C and ¢.3522C > A) and R1275Q (c.3824G > A).
Among 111 plasma/serum samples obtained from patients
with NB at diagnosis, 20 patients were found to be positive
for a single mutation and four patients were positive for both
c3522C > A and ¢.3824G > A. Mutant-to-wildtype ALK
ratios ranged from 0.15% to 43.7%, likely reflecting different
tumour burdens and disease stages within the cohort. Detec-
tion of the 3520T >C, 3522C > A and 3824G > A point
mutations in cfDNA was achieved with a sensitivity of 100%,
85% and 92%, respectively, and a specificity of 100%, 91%
and 98%, respectively. However, the specificity could have
been underestimated due to potential spatial sampling bias
when obtaining biopsies from genetically heterogeneous
tumours [111,143]. ALK mutations have also been detected in
cfDNA from patients with NB using targeted [97] and whole-
exome [110] sequencing approaches, though these studies
have used small patient cohorts. Lodrini et al. [109] recently
developed a dPCR assay for quantification of ALK copy
number and demonstrated its performance in cfDNA isolated
from patients and patient-derived mouse xenografts. Of 10
patients in the study, one patient showed ALK gain (copy
number greater than or equal to 3) in both ¢fDNA and tissue
by dPCR and two patients showed ALK gain in ¢fDNA but
not in tissue. The latter observation could have been due to

ALK gains in subclones of the primary tumours or in metastatic

sites undetected at diagnosis [109,143].

3.1.4. DNA methylation

Silencing of tumour suppressors by hypermethylation of
promoter CpG islands is a key epigenetic event in tumorigen-
esis [144] and a promising circulating biomarker in diverse
cancer types [145]. Several tumour suppressors are frequently
silenced by hypermethylation in NB [146]. CpG island hyper-
methylation of the RAS effector protein RASSF1A is found in
the majority of NB tumours at all clinical stages [146—-149]
and is not associated with prognostic factors such as MYCN
status or age at diagnosis [148,150]. By contrast, RASSF1A
hypermethylation in the pre-treatment serum of patients
with NB has been shown to be significantly associated with
age > 12 months at diagnosis and advanced (INSS stage 4)
MNA disease [148]. In this study, Misawa et al. [148] used
methylation-specific PCR and detected serum RASSF1A
hypermethylation in 25% (17/68) of patients, demonstrating
its utility as a poor prognostic factor comparable to that of
MNA by univariate analysis. The same group also investigated
the prognostic potential of serum DCR2 hypermethylation,
given its association with poor outcome in primary NB
tumours [114,151]. DCR2 hypermethylation was associated
with tumour stage, independent of MYCN status, and patients
with this alteration had a poorer 5 year EFS, which was particu-
larly significant among patients without MNA [114].
Moreover, hypermethylation levels were found to decrease
towards disease remission and become elevated at relapse,
thus demonstrating the potential of serum DCR2 hypermethy-
lation as a dynamic biomarker for prognostication and
therapeutic monitoring in NB [114].

3.2. Circulating microRNA

MicroRNAs (miRNAs) are a family of endogenous, short
(20-25nt) non-coding RNA molecules that provide post-
transcriptional regulation of gene expression [152].
Dysregulation of miRNAs is widely observed in cancer, often
caused by mechanisms such as deletion, amplification and
changes in gene expression [152]. Over the past decade,
miRNAs have been investigated in plasma and serum as non-
invasive biomarkers for diagnosis, therapeutic stratification
and prognostication across diverse cancer types [153].

Many known oncogenic and tumour-suppressive
miRNAs have been shown to be aberrantly expressed in pri-
mary NB tumours, with a particular focus on those targeting
MYCN [154-156] among other genes implicated in NB patho-
genesis [157]. In addition, a limited number of studies have
demonstrated the roles of specific miRNAs in mediating che-
moresistance in NB cell lines and tumours [157]. However,
few studies have investigated the expression and clinical
utility of circulating miRNAs in NB. Murray ef al. [158] under-
took a global (n = 741) reverse transcription (RT)-qPCR-based
analysis of miRNA expression in diagnostic serum from 33
paediatric cancer patients and identified a unique expression
profile for each tumour type. Sera from NB patients with
MNA (n = 2) showed overexpression of miR-124-3p, miR-9-
3p, miR-218-5p, miR-490-5p and miR-1538, consistent with a
previous study demonstrating MYCN status as a determinant
of global miRNA profiles in NB tissue [159]. Moreover, miR-9
is known to be induced by MYCN and its high expression in
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NB is associated with MINA and metastatic disease [160]. In a
recent study, whole-miRNome profiling was conducted in
sera from mice bearing favourable, non-metastatic NB xeno-
grafts and mice with high-risk, metastatic disease [161]. The
authors identified a circulating miRNA signature of high-
risk disease, comprising high and low expression of 34 and
46 miRNAs, respectively. Individual miRNAs were function-
ally validated by analysing expression of their putative
target proteins at distant metastatic sites from the high-risk
model, and three miRNAs (miR-381, miR-548h and miR-580)
were identified as showing greater than 10-fold increased
expression in sera from this model, thereby serving as putative
biomarkers of high-risk disease for clinical investigation [161].
Another recent study investigated expression of miRNAs in
pooled sera from patients with low- and high-risk NB, identi-
fying 743 well-expressed miRNAs [162]. The authors then
evaluated expression of these miRNAs in sera from a cohort
of 141 patients with NB at diagnosis, identifying tumour
stage as the greatest determinant of variance in miRNA
levels. Nine miRNAs that showed significantly different
expression between patients with low- and high-risk disease
were further investigated, and their expression levels were
found to increase with tumour stage. Moreover, in mice xeno-
grafted with NB tumours, serum expression levels of all nine
miRNAs were found to increase with tumour load, an obser-
vation subsequently confirmed by longitudinal blood
sampling in five patients with high-risk metastatic NB. Inter-
estingly, expression of the nine miRNAs in primary NB
tumours was not significantly different between disease
stages, leading the authors to conclude that differential
expression between disease stages in sera most likely reflects
tumour burden and therefore metastatic status [162].

While these studies have provided proof of principle that
circulating miRNA profiles can distinguish between favour-
able and high-risk NB, candidate miRNA biomarkers must
be evaluated in large, prospective patient cohorts before their
clinical utility can be realized. Moreover, given that miRNA
profiles associated with chemoresistance have been identified
in NB, further investigation of these miRNAs as circulating
biomarkers for therapeutic monitoring is warranted [157].

3.3. (TCs and CTC-derived mRNA

CTCs are malignant cells that disseminate into the blood-
stream from primary or metastatic tumours and are
responsible for seeding metastatic growth [163]. Together
with disseminated tumour cells in bone marrow, CTCs are
surrogate markers of sub-clinical metastasis (MRD), in
which small numbers of tumour cells persist after therapy
in patients in remission, often leading to clinical relapse
[164]. CTCs are rare, comprising as few as one cell per billion
haematological cells, and this has presented a major chal-
lenge to their isolation and molecular characterization.
Recent advancements in immunological and size-based
enrichment methods have enabled enumeration and molecu-
lar analysis of CTCs in peripheral blood isolated from
patients with diverse cancer types [165]. CTCs are currently
under investigation as biomarkers for diagnosis, therapeutic
monitoring, prognostication and assessment of relapse risk
[166]. The presence of CTCs in patients with NB was first
demonstrated through the establishment of NB cell lines
during in vitro culture of peripheral blood samples from
patients with disseminated disease [167,168]. These studies

highlighted the potential for tumour cell contamination in n

stem cell harvests from peripheral blood, a concern sup-
ported by a later study demonstrating the clonogenic
properties of NB CTCs in vitro [169].

3.3.1. (1C detection methods

The first prospective molecular analyses of CTCs employed
immunocytochemical methods with monoclonal antibodies
against neuronal cell markers such as CD56 (NCAM), CD90
(Thy-1) and GD2 [168,170,171]. CTCs were detected in patients
with metastatic disease at diagnosis [168,170,171], during
therapy [170,171] and at relapse [168]. In one study, the pres-
ence of CTCs in patients with metastatic disease during
therapy was found to be an indicator of disease relapse
[170]. Subsequent studies have used RT-PCR-based method-
ologies for the indirect detection of CTCs, targeting mRNA
with neuron-specific expression such as UCH-L1 (PGP9.5)
[172-175], TH (tyrosine hydroxylase) [173-207], GALGT
(GD2 synthase) [200,204,208], DCX (doublecortin) [187,193,
199,203-205,207], DDC (DOPA decarboxylase) [192,193,198,
202,204,205] and PHOX2B [187,193,202,204,205,207]. Mattano
et al. [172] evaluated the performance of an RT-PCR assay tar-
geting UCH-L1, reporting a 100-fold increase in sensitivity
relative to immunocytochemical assays, with the ability to
detect a single CTC among 107 peripheral blood mononuclear
cells (PBMCs) versus 1 or 2 CTCs among 10° PBMCs by
immunocytochemistry. Subsequent RT-qPCR analyses target-
ing other markers such as TH and GALGT have demonstrated
variable sensitivities, with detection limits ranging from 1
CTC in 10° to 1 CTC in 10”7 PBMCs [174,176,178,190,
194-202,209].

3.3.2. Association of CTCs with clinical features

As with immunocytochemical analyses, RT-PCR-based
studies have consistently identified NB-specific mRNA in per-
ipheral blood at diagnosis in patients with metastatic disease
and in a fraction of patients with localized and stage 4S disease
(table 4). Diagnostic TH mRNA levels and CTC counts are
typically higher in patients with more advanced metastatic dis-
ease [185,204,206,212] and in patients with high-risk disease
[206,212], as observed in other solid malignancies [166]. How-
ever, NB-specific mRNA levels and CTC counts do not
correlate with MYCN status [182,184,206,207,212]. In addition
to serving as a potential diagnostic biomarker, there is a wealth
of evidence supporting the prognostic value of NB-specific
mRNA, with numerous studies reporting a correlation
between mRNA levels and survival outcomes (table 4). High
transcript levels of TH and other NB-specific genes at diagnosis
have been associated with poor OS and/or EFS in patients
with localized and metastatic disease, independent of risk
status [187,193,194,197,203,206,208]. Similarly, high CTC
counts (> 10 cells per 4 ml blood) have recently been shown
to correlate with poor OS [212]. Among patients with high-
risk disease, high expression of TH and PHOX2B mRNA at
diagnosis has been shown to correlate with remarkably
poorer outcome, thus identifying a subset of patients with
ultra-high-risk disease who may benefit from novel treatment
approaches [187].

Detection of CTCs or NB-specific mRNA in peripheral
blood of patients in remission following completion of
therapy may indicate MRD and is associated with poorer
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prognosis in NB [183]. Consistent with the eradication of sys-
temic disease, several studies have shown that mRNA may
decrease and/or become undetectable during and after che-
motherapy [175-177,212]. CTCs or detectable levels of
mRNA that remain upon completion of chemotherapy or
after surgical resection are associated with an increased risk
of relapse [170,176,177,183,185,197,200]. Thus, mRNA in per-
ipheral blood has potential as a dynamic biomarker for
monitoring response to therapy and evaluation of relapse
risk in patients with NB.

Several groups have demonstrated an increase in sensi-
tivity of MRD detection in peripheral blood and bone
marrow by evaluating multiple mRNAs simultaneously,
which is perhaps expected given the genetic heterogeneity
of NB [193,202,204,205]. However, some mRNAs such as
GALGT have been shown to lack sensitivity [200] and contrib-
ute false positivity [189,192], and hence should be validated
individually before incorporation into multi-marker panels.
Corrias et al. [204] evaluated a panel of seven mRNAs and
found no correlation of any individual mRNA with specific
clinical features in patients with localized disease. Moreover,
a high rate of false positivity was observed upon combined
analysis of all mRNAs, leading the authors to conclude that
multi-marker analysis may not offer benefit over analysis of
a single mRNA in patients with low tumour burden [204].

Towards clinical implementation of mRNA-based MRD
analysis in patients with NB, Viprey et al. [201] coordinated
an initiative to standardize the methodology for detection
of NB cells by RT-qPCR. Original methodologies on blood
collection, RNA isolation and PCR protocols were evaluated
from several reference laboratories across Europe and a stan-
dardized, quality-controlled protocol was devised. This
protocol led to an increase in sensitivity of TH mRNA detec-
tion by RT-qPCR from 58% to 90% [201] and has since been
implemented by the same group for MRD detection in
patients with metastatic disease enrolled on the international
phase 3 HR-NBL-1/SIOPEN trial [187,207]. In the first of two
studies, Viprey et al. [187] reported that levels of TH, PHOX2B
and DCX mRNAs in peripheral blood (and bone marrow) of
patients at diagnosis and at the end of induction therapy
were predictive of EFS. A recently published follow-up
study evaluated levels of TH, PHOX2B and DCX mRNAs
in patients < 18 months of age at diagnosis, since this age
group was not sufficiently represented in the first study. In
these patients, levels of PHOX2B and DCX mRNA, but not
TH mRNA, in the highest tertile at diagnosis were associated
with shorter EFS, and PHOX2B mRNA alone showed prog-
nostic power in patients during the first year of follow-up
[207]. Studies into MRD detection in patients with NB
(table 4) have clearly demonstrated the potential for NB-
mRNAs in peripheral blood as non-invasive predictive and
prognostic biomarkers within defined patient subsets. The
clinical significance of NB-mRNAs in peripheral blood is
worthy of further exploration in comparison with established
biomarkers in large multi-centre trials using standardized
protocols before integration into the clinic [201,213].

4. (linical implementation of circulating
biomarkers in neuroblastoma

A major obstacle to the discovery and validation of clinically
applicable biomarkers in NB, and indeed paediatric cancers

in general, is the scarcity of patient material available for cor-
relative research. There is a tendency to take core needle
biopsies rather than tissue sections, which limits the number
of tests that can be performed. In addition, protocols used
for blood collection, plasma/serum isolation and specimen
storage may not permit optimal recovery of biomarker ana-
lytes such as nucleic acids [119]; these methodological
factors may be a significant cause of inter-study variability,
as exemplified by the choice of plasma or serum for analysis
of MNA in blood [102-109]. Furthermore, retrospective bio-
marker analysis requires access to patient clinicopathological
data, which is not always possible or easy unless in the context
of a clinical trial. Indeed, inferences made from prospective
biomarker analyses in patients enrolled on clinical trials are
often limited due to small cohort sizes that result from stratifi-
cation of patients into treatment arms or into groups based on
clinicopathological features such as age, risk status and dis-
ease stage [201,207]. Despite these limitations, it has been
possible to develop prognostic assays.

There is sufficient retrospective evidence to indicate that
analysis of MNA in blood by qPCR can determine MYCN
status in the majority of NB patients with advanced disease,
thus serving as a biomarker for prognostication and poten-
tially response to therapy [102-109]. The most obvious
benefit of blood-based MYCN analysis is the rapid determi-
nation of risk status in patients at diagnosis, enabling
immediate application of appropriate treatment. Blood-
based MYCN assessment should now be incorporated into
large-scale prospective trials in patients at diagnosis,
during/after induction therapy and at relapse. A limited
number of retrospective studies have demonstrated success-
ful detection of various SCAs in plasma and serum of
patients with advanced disease [80,110,112,113]. Given that
SCAs are currently used as tissue-based indicators of poor
prognosis, further analysis of their detectability in blood in
larger patient cohorts is warranted, perhaps in tandem with
MYCN analysis [113]. The relatively ‘quiet’ nature of NB gen-
omes has not provided a plethora of potential aberrations for
the development of further blood-based assays, which has
further confounded the implementation of this approach to
patient management.

To date, ALK is the only druggable gene product that is
frequently mutated in NB, and small-molecule inhibitors of
ALK currently approved for the treatment of ALK-positive
NSCLC are undergoing clinical assessment in patients with
NB and other ALK-positive paediatric malignancies. How-
ever, a wealth of preclinical studies and a few clinical case
reports in patients with NB are highlighting the issue of
therapeutic resistance, thus compromising the long-term effi-
cacy of these compounds [76]. The ability to detect ALK
mutations in the blood at diagnosis and relapse, and to moni-
tor mutations during treatment, would enable the rapid
assignment of ALK inhibitors to eligible patients and to
monitor treatment efficacy in real time. In particular, given
that many children are too unwell for re-biopsy on relapse,
an assay that can determine the identity of the ALK mutation
on relapse would be highly beneficial in the clinic. For
example, emergence of secondary ALK mutations in the
blood would indicate resistance and may provide the ration-
ale for switching to other structurally related compounds
with distinct resistance profiles. Combaret ef al. [111] have
demonstrated the detection of mutations at the F1174 and
R1275 hotspots of ALK in cfDNA of patients at diagnosis
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using a droplet digital PCR (ddPCR) methodology [111], and
several other groups have detected point mutations in ALK
by next-generation sequencing in small patient cohorts
[97,110]. The utility of ALK mutations in ¢fDNA as thera-
peutic biomarkers will only be realized upon integration of
ofDNA analysis into large, well-designed prospective trials
that include an ALK inhibitor treatment arm, several of
which are currently underway [214,215].

Another clinical application of circulating biomarkers is
the detection of MRD, a strong predictor of relapse in
cancer [164]. To this end, a variety of MRD detection methods
have been developed based on direct and indirect detection
of tumour cells in peripheral blood [216]. Early studies in
patients with NB employed immunocytochemical methods
to detect CTCs, and later studies revealed the increased sen-
sitivity offered by qualitative and quantitative RT-PCR-based
strategies targeting NB-specific mRNAs (table 4). Numerous
retrospective analyses have amassed a substantial evidence
base around the utility of qualitative and quantitative RT-
PCR for detection of rare CTCs in NB, with a sensitivity of
a single tumour cell in up to 10 million normal haematopoie-
tic cells [172,202]. Of particular clinical interest is the ability of
NB-specific mRNA levels in blood to predict OS and/or EFS
outcomes among patients with metastatic disease, as deter-
mined in a series of small-cohort studies [183,192,193,197,
200,203,206] and more recently in larger studies of patients
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