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SUMMARY
We conducted a genome-wide association study (GWAS) analysis of diverticular disease (DivD) of intestine
within 724,372 individuals and identified 150 independent genome-wide significant DNA variants. Integration
of the GWAS results with human gut single-cell RNA sequencing data implicated gut myocyte, mesothelial
and stromal cells, and enteric neurons and glia in DivD development. Ninety-five geneswere prioritized based
onmultiple lines of evidence, including SLC9A3, a drug target gene of tenapanor used for the treatment of the
constipation subtype of irritable bowel syndrome. A DivD polygenic score (PGS) enables effective risk pre-
diction (area under the curve [AUC], 0.688; 95% confidence interval [CI], 0.645–0.732) and the top 20%
PGS was associated with �3.6-fold increased DivD risk relative to the remaining population. Our statistical
and bioinformatic analyses suggest that the mechanism of DivD is through colon structure, gut motility,
gastrointestinal mucus, and ionic homeostasis. Our analyses reinforce the link between gastrointestinal dis-
orders and the enteric nervous system through genetics.
INTRODUCTION

Diverticula are sac-like protrusions in the wall of the intestinal

tract, most often in the colon sigmoid.1 Diverticulosis refers to

the presence of diverticula. The prevalence of diverticulosis re-

ported in USA in 2009 was 33% in individuals 50–59 years old

and 71% in those R80 years old.2 Diverticula in Western coun-

tries are predominantly localized in the left colon, whereas in

Asian countries diverticula occur predominantly in the right co-

lon.1 Studies of migrant communities show prevalence rates

consistent with country of origin.3 Most people with diverticu-

losis are asymptomatic but �25% of individuals become symp-

tomatic and get diagnosed with diverticular disease (DivD). The

majority of DivD patients experience bothersome symptoms

that could affect their quality of life, such as bloating, abdominal
This is an open access article under the CC BY-N
pain, and bowel habit changes.1 However, 15% of those individ-

uals develop complications that may require (recurrent) hospital-

ization, such as diverticulitis (inflammation of the diverticula),

hemorrhage, abscess, and fistula.1 These complications not

only affect quality of life but can be life-threatening.1 The inpa-

tient mortality of DivD is 1.5%–3.0%.4 It has been reported that

DivD underlies �3,000 deaths annually in the US, which is high

compared with other non-malignant gastrointestinal (GI) disor-

ders.5 Besides the significant burden on individuals, DivD drains

�$9.0 billion annually in the US, which is one of the most expen-

sive GI-related healthcare expenditures.5 Despite the already

heavy burden on both individuals and the healthcare system,

the total prevalence of DivD is reported to increase annually,

especially in younger age groups, in which diverticulosis used

to be uncommon.6
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The social and economic impact of DivD demands more

attention from the community, research, andmedicine.7 Unfortu-

nately, individuals often tolerate bothersome symptoms, delay-

ing discussions with medical professionals until symptoms

become severe. Once diagnosed, first-line treatments are to in-

crease dietary fiber intake, antibiotics, and surgery.1 However,

given the high economic burden on the health system, new treat-

ment algorithms are required.7 The etiology of DivD likely in-

volves multiple factors, including genetic and lifestyle risk fac-

tors. Studying the genetic factors affecting DivD could provide

biological insight into the disease pathogenesis and further

contribute to new prevention and treatment strategies. Although

genome-wide association studies (GWASs) of DivD have been

reported, with 48 loci identified to date,8–10 the majority of herita-

ble risk remains to be elucidated.11,12 Furthermore, the underly-

ing causal tissues and cell types remain largely unknown. Here,

we integrated data from multiple large-scale biobank resources

to conduct GWAS analyses. A total of 150 independent genome-

wide significant SNPs were identified, of which 102 SNPs are

previously unreported. We further conducted a suite of post-

GWAS analyses. By integrating the DivD GWAS results with sin-

gle-cell RNA sequencing data from gut, we prioritized cells from

the enteric neuron system and gut muscular cells for use in func-

tional follow-up studies. We systematically evaluated the genetic

relationship between DivD and a range of complex traits,

including dietary habits, psychiatric disorders, behavior-related

traits, and other GI disorders, to provide insights into causal or

pleiotropic relationships.

RESULTS

DivD heritability estimation
Among 454,768 individuals of European ancestry, 56,355

individuals had a diagnosis of DivD derived from hospital admis-

sion and primary care records (lifetime risk, 12.4%). Based on

the full-sibling relative risk (1.63, 95% confidence interval [CI],

1.54–1.72; Table S1), the estimated DivD heritability of liability

(h2) is 0.406 (95% CI, 0.357–0.456). To compare the h2 of DivD

with the h2 of other GI disorders, we adopted metrics from

our previous study,13 which applied the same procedure in

United Kingdom Biobank (UKB) to estimate h2 of GI disorders

(Figures 1A and 1B). As shown in Figure 1B, the h2 of DivD is

much higher than peptic ulcer disease (PUD), gastro-esophageal

reflux disease (GERD), and irritable bowel syndrome but lower

than inflammatory bowel disease (IBD). To further characterize

the genetic architecture of DivD, we conducted a suite of

GWAS and post-GWAS analyses (Figure 1C).

GWAS meta-analysis
DivD European-ancestry (DivD-EUR) GWAS meta-analysis was

conducted within 724,372 individuals from three studies,

including UKB (56,355 cases and 398,413 controls), FinnGen

(14,357 cases and 182,423 controls), and BioVU (7,687 cases

and 65,137 controls). The DivD diagnosis information of

FinnGen and BioVU were derived in the same way as for UKB

to avoid potential inaccuracy associated with self-report. The

GWAS within each study was conducted by fitting sex, age,

and genetic principal components (PCs) as covariates followed
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by a meta-analysis (Figure S1). Table S2 provides genetic corre-

lation estimates for each pair of the three GWAS summary statis-

tics. We also conducted sensitivity analyses in UKB to justify the

covariate selection (STAR Methods; Figure S2; Tables S3 and

S4). UKB also includes participants of South Asian (SAS) and Af-

rican (AFR) ancestry, so DivD GWASwas conducted within each

of the two ancestries, namely DivD-SAS (760 cases and 11,136

controls) and DivD-AFR (596 cases and 8,579 controls). The UKB

East Asian cohort yielded only 57 cases, therefore, the cohort

was not used for analysis. The descriptionmetrics for the studied

cohorts are in Table S5. Estimated age of onset (AgeO) informa-

tion was available in UKB only, so an AgeOGWAS was conduct-

ed for 53,658 DivD cases (AgeO-EUR). Given the relatively small

number of cases among non-EUR ancestries, we did not

conduct AgeO GWAS in these individuals.

A total of 150 lead SNPs with minor allele frequency (MAF)

R0.01 were identified for DivD-EUR, with significance

(p < 5E�8) and independence assessed through the conditional

and joint GCTA-COJO14 analysis (Figure S3; Table S6). Taking

1,000 kb as window size threshold and 0.01 as linkage disequi-

librium (LD) r2 threshold, the 150DivD-EUR-associated SNPs are

pruned to 142 loci, of which eight loci contain two independent

SNPs. The Manhattan plot and quantile-quantile (Q-Q) plot for

DivD-EUR are in Figure S4. Regional visualization plots of the

150 DivD-EUR-associated SNPs are in Data S1. Using the

same method and pruning settings above, a total of two inde-

pendent SNPs with MAF R 0.01 were identified for AgeO-

EUR, and these two SNP associations represent two loci, of

which one locus is shared with DivD-EUR (Table S7). Regional

visualization plots of the two AgeO-EUR SNPs are in Data S2.

Of the 150 DivD-EUR-associated SNPs, 48 have been re-

ported by previous DivD GWASs,8–10 and 35 SNPs have been

previously reported with association p value ranging between

5E�8 and 1E�59 and here formally reached genome-wide

significance level. Sixty-seven SNPs have not previously been

reported as associated with DivD. Thus, a total of 102 indepen-

dent SNPs, corresponding to 100 loci, are reported here for the

first time as associated with DivD at the genome-wide signifi-

cance threshold. Some of these DivD-EUR-associated SNPs

have already been linked to other GI disorders or relevant traits;

e.g., #67, #68, and #80 SNP in Figure S3 are associated with

hemorrhoids,15 and #50, #67, #97 and #148 SNP in Figure S3

are associated with stool frequency16 (Table S8).

The majority of the DivD-EUR-associated common SNPs in

our analyses showed small-to-moderate risk on diverticular dis-

eases of European-ancestry individuals with odds ratio (OR) of

1.02–1.17 (Figure 2A). For DivD-EUR, the 150 SNPs explained

a total of 2.5% variance (estimated in the UKB European DivD

cohort) with rs10179961 (#17) explaining the largest individual

variance (0.13%) (Table S9). Among the 150 DivD-EUR-associ-

ated SNPs, 135 and 133 SNPs were available in the DivD-SAS

and DivD-AFR GWAS summary statistics, respectively, after

MAF filtering and allele matching. Given the small sample size

of the non-European cohorts, we showed evidence of replication

by regression of the association effect sizes of these SNPs esti-

mated from the DivD-SAS and DivD-AFR on the DivD-EUR esti-

mates. The regression coefficients were significant: 1.00 (p =

3.0E�10) in DivD-SAS and 0.91 (p = 1.3E�7) in DivD-AFR
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Figure 1. Schematic overview and workflow of the current study

(A) Illustration of the common pathological characteristics or symptoms for the five GI disorders, including diverticular disease of intestine (DivD), peptic ulcer

disease (PUD), gastro-esophageal reflux disease (GERD), irritable bowel syndrome (IBS), and inflammatory bowel disease (IBD). Note that pathological char-

acteristics or symptoms are not limited to these locations.

(B) Summary metrics for GI disorders based on the UKB data. Note that the metrics for the GI disorders except DivD are adopted fromWu et al.13 Note that ‘‘142’’

within the ‘‘number of independent loci’’ plot is based on a meta-analysis GWAS of 78,399 DivD cases and 645,973 controls, where the UKB is the primary

contributing cohort.

(C) Workflow of the current study. The work flow mainly includes two steps: (1) cross-biobank GWAS meta-analysis for DivD, and (2) post-GWAS analyses.

Descriptions of each cohort used for meta-analysis are in Figure S1.
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(Figure 2B), providing evidence for shared genetic risk for DivD

across ancestries. Although effect size estimates for some

SNPs were larger in DivD-SAS and DivD-AFR compared with

DivD-EUR, the standard errors were higher so that only

rs10910384 (#7) in AFR ancestry was formally significant (p =

1.4E�06) after Bonferroni correction from these analyses

(Tables S10 and S11).
SNP-based heritability, tissues, and cell types
The proportion of variance in trait liability attributable to genome-

wide common SNPs jointly, the SNP-based heritability (h2SNP),

was estimated to be 0.113 (95% CI, 0.101–0.125) for DivD-

EUR and 0.020 (95% CI, 0.003–0.036) for AgeO-EUR

(Table S12). The genetic correlation (rg) between DivD-EUR

and AgeO-EUR was estimated to be �0.85 (p = 2.4E�5).
Cell Genomics 3, 100326, July 12, 2023 3
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Figure 2. Characteristics of effect size of DivD-EUR-associated SNPs

(A) Per-effect allele OR vs. effect allele frequency for DivD-EUR-associated SNPs (p < 1.0E�5).

(B) Regression of DivD-SAS and DivD-AFR GWAS SNP effect sizes on DivD-EUR effect sizes of SNPs that are genome-wide significant. Each dot represents an

SNP, and labeled SNPs are those with association p value within the corresponding ancestry <0.05. The number in the bracket corresponds to the number in the

‘‘#’’ column of Figure S3. The regression line and 95% CI are presented. Note that rs10910384 (#7) in AFR ancestry was the only significant association (p =

1.4E�06) after Bonferroni correction from these analyses.
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Genomic partitioning analyses to identify genomic annotations

enriched for SNP-based heritability17 were conducted based

on various genomic annotations. First, the DivD-EUR h2SNP was

partitioned by SNP annotation set derived from cell-type group

histone mark data. Results showed that h2SNP of DivD-EUR was

statistically significantly enriched in all 10 system-level cell-

type groups, but GI cell-type group was the most significant

(Table S13; Figure S4).

Given the highest significance and relevance of the GI cell-

type group, we repeated our analyses using cell-type-specific

SNP annotations derived from GI tissues of human18 and colon

and ileum cells of both human and mouse.19 Briefly, we tested

whether the DivD-EUR h2SNP was enriched in regions containing

the gene sets for tissues or cell types (defined as the top 10%

genes that are specifically expressed in them; STAR Methods).

Previous study shows ulcerative colitis (UC) and Crohn’s disease

(CD) h2SNP are enriched in regions containing genes specifically

expressed in T cells.20 To validate our derived annotations, we

conducted the same analyses using GWAS summary statistics

from UC and CD21 and T cell annotations. To understand the dif-

ference of implicated cell types across DivD, UC, and CD, we

also included other cell-type annotations for comprehensive

analyses.

DivD h2SNP showed higher significance of enrichment in esoph-

agus gastroesophageal junction, esophagus muscularis, and

colon sigmoid in human GTEx GI bulk tissues, while CD and

UC h2SNP were more enriched in ileum and colon transverse (Fig-

ure 3A). In addition to SNP annotations from human GI bulk tis-

sue, we also used SNP annotations from human colon cells

andmouse colon and ileum cells. In human colon cell SNP anno-

tations, DivD h2SNP was enriched in genes that are highly ex-

pressed in myocytes, interstitial cells of Cajal (ICCs), mesothelial

cells, pericytes, and fibroblast cells, while UC and CD h2SNP were

more enriched in genes that are highly expressed in T cells,

macrophage, and epithelial cells (Figure 3B). In addition to these

results, we observed significant enrichment of DivD, UC, and CD

h2SNP in human colon glia and neurons (Figures 3C and 3D). The

enrichment results in human GI bulk tissues and colon cells are
4 Cell Genomics 3, 100326, July 12, 2023
provided in Table S14. The DivD h2SNP enrichment results in

mouse colon and ileum cells were similar to those in human co-

lon cells (Table S15 and S16; Figures S5 and S6). UC and CD

h2SNP enrichment showed similar patterns across human GI tis-

sues, human colon cells, and mouse colon and ileum cells, but

the associations for CD are more significant. This may reflect

in part the differential power of the GWAS data used, which

can be benchmarked by the number of genome-wide significant

SNPs for UC (50) and CD (72)21 (https://www.ebi.ac.uk/gwas/

publications/28067908; Figures 3, S5, and S6; Tables S15 and

S16). Given the significant enrichment results of DivD, UC, and

CD h2SNP in the enteric nervous system, we further repeated our

analyses in independent mouse nervous system data. We found

that DivD, UC, and CD h2SNP showed enrichment in both enteric

glia and enteric neuron (Table S17; Figure S7).

In addition to these gene-expression-derived annotations,

we also used chromatin annotations to partition the DivD h2SNP. A

total of 489 tissue-specific chromatin-based annotations from

peaks measured from six epigenetic marks were included.20 The

h2SNP of DivD-EUR was enriched in chromatin-based annotations

from peaks of four epigenetic marks (H3K27ac, H3K4me1,

H3K4me3, DNase; Table S18). The enriched annotations of the

four epigenetic marks were in digestive tissues, including stom-

ach, duodenum, colon, and rectal smooth muscle.

Gene prioritization and pathways
To better understand the potential biological mechanism of each

lead SNP, we applied several approaches to prioritize candidate

causal genes (Figure 4A), including the nearest gene, genes

containing SNPs in LD (r2 R 0.6) with a lead SNP, a gene with

the highest V2G (variant-to-gene) score of a lead SNP from

Open Target Genetics platform, and genes from the bowel-

related pathways that are within ± 1 Mb of a lead SNP. Results

are in Table S19.We also tried to identify a gene with a fine-map-

ped cis quantitative trait locus (QTL) of which the posterior inclu-

sion probability (PIP) isR0.1 for DivD-EUR. Briefly, we first fine-

mapped DivD-EUR SNPs and filtered out those with PIP < 0.1.

We then retrieved the overlapped SNPs between the remaining

https://www.ebi.ac.uk/gwas/publications/28067908
https://www.ebi.ac.uk/gwas/publications/28067908
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DivD-EUR fine-mapped SNPs and fine-mapped SNPs from the

eQTL Catalogue (PIP R 0.1). The corresponding gene was re-

ported if both criteria were met. The QTL of different measures

includes gene expression (ge), exon counts, transcript usage

(tx) and promoter, splicing and 30-end usage event (txrev).

Detailed information for gene prioritization is described in the

STAR Methods section. The DivD-EUR fine-mapped results

are in Table S20 and the retrieved information from eQTL Cata-

logue are in Tables S21–S24.

A total of 164 genes (155 unique) were prioritized, among

which 95 genes were identified from at least three approaches

(Figure 4B). SLC9A3, prioritized by rs11747491 (#43) with four

approaches, encodes the sodium-proton exchanger hNHE3, a

therapeutic-effect target for tenapanor for the treatment of the

constipation subtype of irritable bowel syndrome (IBS-C). Muta-

tions in the SLC9A3 gene cause congenital sodium diarrhea.

SPINT2, prioritized by rs12976534 (#137), also has mutations

known to cause congenital sodium diarrhea.22 HTR2B, priori-

tized by rs7604042 (#24) from three approaches, encodes the

serotonin receptor 5-HT2b. We also checked the overlapped

genes between the 164 prioritized genes and the top 10%

most specific genes for the enriched GI tissues and cell types

of Figure 3 (Table S25); e.g., GPN1 is in the colon putative inhib-

itory motor neuron (PIMN) gene set. Similarly, PIEZO2 is in fibro-

blast, ICCs, and putative excitatory motor neuron (PEMN) gene

sets, and BDNF is in mesothelial, pericytes, and glia gene sets.

Among the 164 prioritized genes, a total of 10 genes encode

therapeutic-effect mediating targets for US Food and Drug

Administration (FDA)-approved drugs (Table S26), including

SLC9A3 (mentioned above for IBS-C), HTR2B, CACNB2,

COL6A1, COL6A2, FGFR2, ITGB3, KCNA4, KCNH2, and

SCN9A. We then tested the enrichment of the 164 prioritized

genes in the Gene Ontology pathways using g:Profiler (https://

biit.cs.ut.ee/gprofiler). The enriched molecular function path-

ways include notch binding and extracellular matrix structural

constituent, and the top two biological process pathways

include anatomical structure morphogenesis and cation trans-

port (Table S27). More details for genes with biological implica-

tions are provided in the Discussion.

Polygenic score analysis
We first derived SNP weights based on DivD-EUR summary sta-

tistics using SBayesR23 and then calculated polygenic scores

(PGSs) in independent cohorts using the SNP weights. We sys-

temically investigated the prediction accuracy and stratification

ability of the PGSs in these cohorts (Figure 5A). The 7,696 partic-

ipants of EUR ancestry from the CARTaGENE Biobank,24

including 146 individuals with DivD, were used to estimate the

prediction accuracy. The AUC of the calculated PGS solely pre-
Figure 3. Human GI tissues and colon cell types implicated by GWAS a

(A–D) The tissue and cell-type annotations are labeled with the corresponding dat

cell, (C) colon glia, and (D) colon neuron. The length of the bar represents the signifi

tissue or cell-type annotations (shared y axis). The color of each bar shows the sig

significance while p <0.05/213 were labeled single-trait significance. EsoGasJu

colon, sigmoid; ColonTrans, colon, transverse; EsoMucosa, esophagus mucosa;

putative excitatory motor neuron; PSN, putative sensory neuron; PIN, putative

neuron types are defined in Drokhlyansky et al.19 See Figure S6–S8 for additiona
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dicting DivD risk was 0.688 (95% CI, 0.645–0.732) and the AUC

increased to 0.760 (95% CI, 0.721–0.800) when incorporating

family history, age, and sex into the PGS predicting DivD risk

model (Figure 5B; Table S28). We next characterized PGS for

DivD risk stratification in the CARTaGENE cohort. The average

PGS of DivD case is 0.70 (Cohen’s d, 95% CI, 0.54–0.87, p =

8.9E�14) standard deviations greater than those of controls.

We converted the PGS into quintiles (1 = lowest, 5 = highest)

and calculated the OR of DivD risk for participants of each quin-

tile (DivD status�PGSquintiles). Individuals from the top quintile

have an OR of 8.85 (95% CI, 4.24–18.47) to develop DivD

compared with individuals from the bottom quintile (Figure 5C).

We also converted the PGS into percentiles and calculated the

OR using individuals from the top percentiles against the remain-

ing percentiles (the top 0.5% vs. the remaining 99.5%, the top

1% vs. the remaining 99%, the top 5% vs. the remaining 95%,

the top 10% vs. the remaining 90%, and the top 20% vs. the

remaining 80%). For example, individuals from the top 20%

percentiles had an OR of 3.60 for DivD risk compared with the

remaining individuals (Table 1). We further took the AgeO into

consideration in DivD risk stratification. Participants from the

top quintile of PGS reached CARTaGENE sample-estimated life-

time risk (1.9%, 146 out of 7,696) at �45 years old, while those

from the bottom quintile did not reach this prevalence even 20

years later (Log rank p < 1.0E�4; Figure 5D). In addition to

EUR ancestry, we also investigated prediction accuracy of the

PGSs in UKB participants of other ancestries using the

SBayesR-derived SNP weights. The PGSs are predictive in par-

ticipants of SAS (AUC, 0.638; 95% CI, 0.612–0.658; p =

6.9E�37) and AFR ancestry (AUC, 0.587; 95% CI, 0.563–

0.611; p = 8.9E�14) (Table 2).

Genetic relationship with complex traits
Wefirst investigated the genetic relationship betweenDivD and a

range of complex traits using PGS regression. For PGS regres-

sion, we first constructed PGS for BioVU participants of Euro-

pean ancestry using DivD GWAS summary statistics of EUR

ancestry from UKB. We then regressed 1,378 diseases outcome

and 295 laboratory measurements on DivD PGS using logistic

and linear models, respectively. PGS regression method does

not require the GWAS summary statistics of complex traits

from BioVU. DivD PGS was statistically significantly associated

not only with BioVU diverticulosis and diverticulitis (p =

8.9E�85; Figure 6A; Table S29) but also with obesity, hernia,

GERD and abdominal pain. Total white blood cell count was

the most significant association among the 295 laboratory mea-

sures (p = 2.5E�12; Figure 6B; Table S30).

In addition to PGS regression, we also estimated the genetic

correlation between DivD and 358 other complex traits using
ssociations for DivD, UC, and CD

aset name, as shown on the left side of the y axis. (A) GTEx GI tissue, (B) colon

cance of enrichment (x axis) for each of DivD, UC, and CD in the corresponding

nificance level after Bonferroni correction. p <0.05/639 were labeled cross-trait

nc, gastroesophageal junction; EsoMuscu, esophagus muscularis; ColonSig,

ICCs, interstitial cells of Cajal; PIMN, putative inhibitory motor neuron; PEMN,

interneuron; PSVN, secretomotor/vasodilator neuron. Cell types and glia and

l results.

https://biit.cs.ut.ee/gprofiler
https://biit.cs.ut.ee/gprofiler
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GWAS summary statistics and bivariate LDSC.25 The genetic

correlation from bivariate LDSC is not biased by sample over-

lap.25 Our analyses were conducted both on the LDHub platform

and locally (STARMethods). We identified strong rg with gastritis

and duodenitis (0.45, p = 3.8E�43), gastroenteritis and colitis

(0.38, p = 6.6E�15), and irritable bowel syndrome (0.37, p =

1.3E�23) (Figure 6C, ‘‘GI trait and disorders’’ column). The signif-

icant rg may help explain why DivD is frequently diagnosed

alongside other conditions in clinics such as irritable bowel

syndrome.26 We further conducted cross-sectional analyses

to determine the number of individuals who had both DivD

and other GI disorders, such as irritable bowel syndrome

(Table S31; Figure S8). Our results showed that approximately

1 in 5 individuals with irritable bowel syndrome also had DivD

over the course of their lifetimes. In addition to these GI-related

traits, as shown in Figure 6C, we also identified other significant

rg with years of education (EA, �0.17, p = 7.6E�14), body mass

index (BMI, 0.12, p = 6.9E�7), stress (0.37, p = 5.3E�10), anxiety

(0.29, p = 7.0E�18), and depression (0.23, p = 8.2E�20). More-

over, DivDwas negatively genetically correlated with dietary pat-

terns PC1, a diet composition trait representing increased

wholemeal bread consumption, and increased fruit and vege-

table intake (�0.15, p = 2.5E�12) (Figure 6C, ‘‘Diet intake-related

traits’’ column). Full significant rg results for DivD are provided in

Table S32.

DISCUSSION

We conducted genome-wide association analyses on DivD,

maximizing sample size by integrating data from three biobanks.

We identified 150 independent SNPs (149 autosomal SNPs and

one X chromosome SNP) associated with DivD and 2 SNPs

associated with the AgeO of DivD at the genome-wide signifi-

cance threshold.We conducted comprehensive post-GWAS an-

alyses using the GWAS summary statistics to provide insights

into the biological mechanisms and epidemiology of DivD.

There is an important genetic contribution to DivD, and it is a

highly polygenic disease. The heritability of DivD estimated using

UKB data is 0.406 (95%CI, 0.357–0.456), which is similar to 0.40

(95% CI, 0.18–0.47) estimated using primary and secondary di-

agnoses from Swedish Twin Registry data11 and lower than 0.53

(95% CI, 0.45–0.61) estimated from a population-based study in

Denmark.12 The variation in these estimates may reflect differ-

ences among these cohorts. Despite this variation, these esti-

mates provide evidence that genetic factors significantly

contribute to DivD susceptibility. Previous studies identified

three loci,8 39 loci,9 and 48 loci10 associated with DivD in individ-

uals of European ancestry. The number of DivD cases in our

study triples the previous study,10 and our 150 independent

SNP associations represent 142 loci, including 141 autosomal

loci and one X chromosome locus (Table S33 provides a com-
Figure 4. Gene prioritization for DivD

(A) Approaches and criteria for DivD gene prioritization. Details for gene prioritiza

(B) Ninety-five genes were prioritized with at least three sources. The number in

Number in the ‘‘No. of sources’’ corresponds to the number of blue-colored squar

categories to gene expression QTL (Ge-QTL); exon-QTL; transcript usage QTL (T

indicated by yellow color.
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parison between current study and previous DivD GWAS studies

using UKB as discovery cohort). Among the 150 independent

SNPs, 102 SNPs (101 autosomal SNPs and one X chromosome

SNP), corresponding to 100 loci, have not been previously re-

ported. The prediction accuracy of PGS predicting DivD risk

model in our study is 0.688 (95%CI, 0.645–0.732), which is com-

parable with or even higher than AUC frommany PGS predicting

corresponding complex trait models.27 The prediction accuracy

increases further when sex, baseline age, and family history are

incorporated into the model (Figure 5B). The top 20% of the PGS

was associated with 3.6-fold increased risk of DivD in EUR

ancestry compared with the remaining 80% of the sample. The

negative genetic correlation between DivD-EUR and AgeO-

EUR (Figure 6C) suggests that individuals with higher PGS

have an earlier onset of DivD, and this relationship has been

observed in other diseases, such as asthma28 and breast can-

cer,29 but here is reported for DivD for the first time. Despite

the limited sample size of datasets of non-European ancestries,

we show that DivD-associated loci are shared, at least partially,

across individuals of SAS and AFR ancestry (Figure 2B). This

conclusion is also supported by the transferability of DivD PGS

derived from European GWAS summary statistics in SAS and

AFR DivD risk (Table 2).

We appliedmultiple strategies to interpret DivDGWAS results,

including (1) integrating large-scale bulk tissue and single-cell

gene expression data with DivD h2SNP to identify potentially

causal cell types at high resolution (a brief discussion of results

fromUC andCD h2SNP for a comparison are provided as a supple-

mental note in the STARMethods section), (2) linking diverse an-

notations (physical distance, LD region, bowel-related pathway,

V2G score, uniform-QCed fine-mapped QTL data) with DivD

lead SNPs to prioritize potentially causal genes, (3) testing the

enrichment of prioritized DivD genes in a range of GeneOntology

pathways to relate the potential mechanisms, and (4) connecting

DivD PGS with a range of common diseases to understand DivD

biological nature by disease similarity. In the current study,

based on the results from the four analytic strategies above,

the biological insights into the potential mechanisms of genetic

predisposition to DivD onset could be divided into four themes,

as shown in Figure 7:

Colon structure
The normal colonic wall consists of mucosa, submucosa, mus-

cularis propria and the outmost serosa. Unlike the small intes-

tine, the longitudinal muscle of the colon is not continuous but

formed into three parallel running muscle bands, which is the ba-

sis for the preferential occurrence of diverticula.30 Diverticula

develop between the longitudinal muscle bands of the haustra,

in the areas where blood vessels pierce the circular muscle layer

(weak point) to supply blood to the mucosa.30,31 Consistent with

these observations, our study shows that DivD h2SNP is highly
tion are also provided in the STAR Methods section.

the ‘‘#’’ column corresponds to the number in the ‘‘#’’ column of Figure S3.

es in the matrix. For the ‘‘Fine-mapped QTL’’ column, we also expand the QTL

x-QTL); and promoter, splicing, and 30-end usage event QTL (Txrev-QTL), as
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Figure 5. DivD PGS prediction analyses
(A) Workflow for prediction analyses. SBayesR was applied to derive the SNP weights for downstream PGS calculation together with DivD-EUR GWAS summary

statistics.

(B) AUC of DivD risk prediction models in CARTaGENE cohort. The derived PGS provides comparable predictive ability on top of traditional risk factors (age and

sex). The AUC is based on a logistic regressionmodel with coefficients estimated for age, sex, family history (FH), and PGS estimated from the CARTaGENE data.

(C) OR for developing DivD in CARTaGENE cohort (146 individuals with DivD and 7,550 controls) for each PGS quintile. The black dots are the OR values and the

error bars are the 95% CIs.

(D) The cumulative risk of DivD for individuals in the top and bottom quintile (with 95% CIs) of PGS of the CARTaGENE data.
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enriched in regions containing genes highly expressed in the

colon sigmoid bulk tissue but not in the ileum (Figure 3B), sug-

gesting the relevance of colon sigmoid in understanding the

mechanisms of genetics in DivD initiation (STAR Methods pro-

vides a supplemental note for discussion about other bulk-tissue

enrichment results for DivD). The enrichment of DivD h2SNP in co-

lon sigmoid bulk tissue is sensible but not very informative in

terms of understanding the mechanism of genetics in DivD

development, especially since colonoscopy, histology following

biopsy, and various imaging modalities have already achieved

high-resolution visualizations. Hence, we linked DivD h2SNP with

single-cell gene expression data derived from the human colon,

as these analyses may implicate cell types of particular

importance to the onset of DivD, which could further inform
iPSC-based organoid models of GI disorders.32 We found the

enrichment of DivD h2SNP in genes highly specifically expressed

in myocytes, mesothelial cells, fibroblasts, and pericytes (Fig-

ure 3B). Previous pathology study has shown changes in enteric

musculatures between 20 DivD patients and 19 controls, such as

thickened circular and longitudinal muscle layers, the disturbed

architecture of smooth muscle cells, and reduced myofilament

density.33 Alterations in enteric connective tissue have also

been reported, including increased connective tissue index in

the longitudinal muscle layer of DivD patients33 and elastin fi-

bers.34 Cells enriched from our analyses are concordant with

cells of tissues involved in the alterations described above,

suggesting that genetic predisposition to DivD is mediated, at

least in part, through influences on these cells. Although the
Cell Genomics 3, 100326, July 12, 2023 9



Table 1. Risk stratification of PGS in DivD risk in CARTaGENE participants of EUR ancestry

High-PGS definition Reference group

No. of individuals from

high-PGS group

No. of individuals from

reference group Odds ratio 95% CI p value

Top 20% of distribution Remaining 80% 1,539 6,157 3.60 2.59–5.01 2.8E�14

Top 10% of distribution Remaining 90% 770 6,926 3.53 2.43–5.11 3.0E�11

Top 5% of distribution Remaining 95% 385 7,311 3.51 2.21–5.60 1.2E�07

Top 1% of distribution Remaining 99% 77 7,619 5.38 2.43–11.92 3.3E�05

Top 0.5% of distribution Remaining 99.5% 39 7,657 9.76 4.03–23.67 4.6E�07

Top 20% of distribution Bottom 20%

of distribution

1,539 1,540 8.85 4.24–18.47 6.3E�09
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observations from pathology studies mentioned above could be

the consequence of DivD, given the unique position of genetics

in the central dogma of molecular biology, our findings suggest

that these changes could also contribute to DivD onset. In addi-

tion to prioritizing cells for iPSC-based organoid models to study

how genetic variation contributes to DivD onset, our study also

highlights the need to track pathology changes prior to diver-

ticula presence.

Corresponding to the cell types identified through DivD h2SNP
analyses, the enriched Gene Ontology sets, including extracel-

lular matrix structural constituent and anatomical structure

morphogenesis (Table S27), and the association between DivD

PGS and incisional hernias (Table S29) also point to connective

tissues. It has been reported that individuals with DivD have

altered connective tissue composition and collagen meta-

bolism1,33 and are more prone to having other connective tissue

disorders.35COL6A1 andCOL6A2 are both associatedwithDivD

in our analyses and they encode the basic structural alpha 1 and

alpha 2 chains of type VI collagen, a ubiquitously expressed

extracellular matrix protein.36 In addition to collagen-related

genes,wealso identifiedELN encoding elastin,which constitutes

part of the extracellularmatrix andconfers elasticity to tissues. As

mentioned above, diverticula often develop at the sites of

vascular entry. The enrichment of colon pericytes, which are reg-

ulators of vascular morphogenesis and function,37 indicates that

mesenteric vascular may also be involved in DivD initiation.

Gut motility
Other cell-type enrichment results for DivD implicated ICCs,

enteric glia, and enteric neurons. A parsimonious interpretation

is that common genetic variants underlying DivD risk may

act through these cell types histologically or physiologically.
Table 2. Prediction accuracy of PGS in DivD risk in UKB SAS and A

Biobank Ancestry

No. of cases/

no. of controls

Logistic

regression

coefficient

s.e. for logistic

regression

coefficient

UKB SAS 760/11,136 0.485 0.038

AFR 596/8,579 0.320 0.043

CARTaGENEa EUR 146/7,550 0.708 0.085

aResults of prediction accuracy of PGS in individuals of EUR ancestry are a
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Disturbances of gut motility have been observed in some

DivD patients, such as myoelectrical aberrations,38 increased

amounts of motility, disorganization, and retrograde propaga-

tion of propulsions.39 Although these observations were after

DivD onset (i.e., could be a compensatory reaction to DivD

pathophysiology), the results demonstrate the link between

gut motility and DivD. The enrichment of ICCs and cells from

the enteric nervous system in our study implies that motility

disturbance contributes to DivD etiology. Future prospective

colonic manometry studies based on large-scale individuals

are needed to track the motility change prior to DivD onset.

GDNF, associated with DivD in our analyses (Figure 4), en-

codes glia-derived neurotrophic factors. The protein promotes

growth and differentiation as well as synaptic plasticity of the

enteric nervous system.40 Lack of GDNF mRNA expression

has been reported in DivD patients and could further contribute

to the observation of a reduced number of enteric glia, neurons,

and ICCs in DivD patients.40–42 Our results also implicate

several neurotransmitter receptors. HTR2B, encoding serotonin

receptor 5-HT2b, is associated with DivD in our analyses. A

recent study has found that 5-HT2b is predominantly expressed

in colon ICCs, and antagonists of this protein impaired colonic

motility in healthy mice.43 We identified loci around PIEZO1 and

PIEZO2 genes, which have been implicated in GI motility and

serotonin synthesis.44,45 Gut motility relies on cell-to-cell inter-

actions. A mouse model study showed that ICCs integrate and

mediate enteric neurons and generate slow waves and rhyth-

mic contractions of smooth musculature, supporting the

concept that the core units for controlling GI motility are

made up of nerves, ICCs, and smooth muscle cells.46 Our an-

alyses imply the role of the enteric nervous cells-ICCs-myo-

cytes circuit in DivD etiology.
FR ancestry participants

p value for

logistic regression

coefficient AUC

95% CI

of AUC

R2 on the

liability

scale

s.e. for R2 on

the liability

scale

6.9E�37 0.638 0.612–

0.658

0.053 0.008

8.9E�14 0.587 0.563–

0.611

0.023 0.006

9.7E�17 0.688 0.645–

0.732

0.079 0.019

lso listed for comparison.
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Figure 6. Genetic relationship between DivD and complex traits

(A) Association of DivD PGS with common diseases in BioVU using UKB participants of EUR ancestry as the discovery sample.

(B) Association of DivD PGS with clinical biomarker measurements in BioVU using UKB participants of EUR ancestry as the discovery sample.

(C) Statistically significant genetic correlation estimates between DivD and other complex traits after Bonferroni correction. The blue dot represents the genetic

correlation (rg) estimate between DivD and complex trait using bivariate LDSC with a 95% CI presented as a red horizontal line. The corresponding trait name is

labeled above the dot. The blue dashed vertical line represents rg equaling zero. The traits are grouped into five categories, as labeled at the top of each rectangle.
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GI mucus
In addition to the two themes above, similar to those proposed

by the previous study,10 the genetic associations from our
study also suggest other mechanisms. rs4556017, an intronic

variant within the MUC12 gene, is associated with DivD. This

gene encodes membrane-associated mucin 12, which plays
Cell Genomics 3, 100326, July 12, 2023 11
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Figure 7. Schematic plot of the mechanism insights from the current DivD GWAS study

The biological insights into the potential mechanisms of genetic predisposition to DivD onset could be summarized into four themes (capitalized words in the four

blue triangles with the regional enlarged illustration in the four boxes). Note that the pericytes annotation belongs to the colon structure theme. The italic words

represent some of the pathological changes observed in DivD patients and the non-italic non-capitalized words are linked to the meaning of corresponding

illustrations using black segments. Detailed descriptions are provided in the Discussion.
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an essential role in forming a protective and lubricative layer on

epithelial cells and interactions between cells and the luminal

environment.47 MUC12 gene is highly expressed in the colon47

and has been reported as associated with hemorrhoids.15

Mucin 12 was downregulated in colorectal cancer cell lines,

suggesting the implication in epithelial cell growth regulation.48

The role of mucins in intestinal mucosal defense and inflamma-

tion has been emphasized49; however, studies regarding the

relationship between mucin 12 and DivD remain sparse. Inter-

estingly, a previous PUD GWAS also identified loci within or

around mucin genes, including one membrane-associated

gene MUC1 and three secreted gel-forming genes, MUC6,

MUC2, andMUC5AC.13 Both the results highlight mucin biology

in the etiology of GI disorders. An earlier study reported micro-

biota differences between individuals with diverticula and those

without.50 By the analogy of the relationship between MUC1

and Helicobacter pylori,51 it is possible that mucin 12 interacts

with microbiota and thus is involved in the development of

DivD, including diverticulitis. Future studies are needed to

advance our understanding of whether mucin 12 or microbiota

are involved in the pathogenesis of DivD and if there is an inter-
12 Cell Genomics 3, 100326, July 12, 2023
action between mucin 12 and microbiota that contributes to

DivD development.

Ionic homeostasis
Interestingly, we also identified genes related to sodium

channels, including SLC9A3 and NEDD4L. SLC9A3 encodes

hNHE3, an epithelial brush border Na+/H+ exchanger that

uses an inward sodium ion gradient to expel acids from the

cell. Defects of this gene cause congenital secretory sodium

diarrhea. A recent study has shown Nedd4-2 (encoded by

NEDD4L) affects hNHE3 activity, which further contributes to

human diarrheal symptoms.52 hNHE3 is also a drug target of

tenapanor for IBS-C treatment. Constipation is one of the

symptoms shared between IBS-C and DivD. SPINT2 is also

associated with DivD in our analyses, and mutations in this

gene also cause congenital sodium diarrhea.22 In addition to

abdominal pain, changing bowel habits are often observed in

DivD patients. Our analyses show that intestinal ionic homeo-

stasis, including sodium, may play a role in changing bowel

habits, in addition to the enteric neuron system mentioned

above.
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The development of DivD is a process involving both struc-

tural and functional changes and their interaction with the intra-

luminal environment such as pressure. Our results provide a

plausible mechanistic interpretation that individuals with genetic

susceptibility to DivD are more prone to have colonic wall weak-

ness, abnormality of gut motility in the degree and duration,

impaired mucus, and disturbance of ionic homeostasis. The

presence of these defects individually or collectively, under

certain triggers from environmental changes such as diet, leads

to DivD onset.

The genetic correlations between DivD and other complex

traits have implications for understanding the factors for DivD

onset. For example, our result shows that smoking was posi-

tively correlated with DivD. A previous study applied the Mende-

lian randomization (MR) paradigm to investigate the causal

effect of smoking on DivD.53 The significant outcome from MR

analysis has implications for disease prevention. However, the

pre-requisites must be met before conducting MR analysis to

prevent potential biases.54 Our results also prioritize insomnia

and dietary fiber intake for future MR investigation, which may

provide strategies for DivD onset. Note that these diet intake

traits were habits based on a snapshot or a certain time period

in a lifetime course. Genetic correlation estimates using GWAS

of these traits may change when taking different time periods

into consideration. The genetic correlations between DivD and

GI /psychiatric-related traits may reflect the shared pathways

or causal relationships among these disorders. Future larger

studies are needed to investigate the causal relationships be-

tween DivD and other complex traits. Analyses conducted using

the BioVU hospital database to investigate the relationship be-

tween DivD PGS and clinical and laboratory measurements

highlight abdominal pain and white blood cell count in a positive

direction (regression coefficient >0; Tables S29 and S30).

Abdominal pain is one of the most typical symptoms of DivD pa-

tients, and individuals with diverticulitis often showed increased

white blood cell counts, hence our analyses depicting the ge-

netic relationship between DivD and complex traits also fit the

clinical manifestation of DivD patients. These results imply

that such analyses could also help highlight unobserved clinical

characteristics.

In summary, we identified 150 independent SNPs (102 are

novel) and two independent novel SNPs for DivD and the corre-

sponding AgeO respectively by integrating several biobank

resources for GWAS analyses. We explored these findings

through bioinformatic analyses at the level of functional geno-

mics, biological mechanisms, and epidemiology. Our analyses

show that our GWAS findings point to potential mechanism

insight, including colon structure, gut motility, GI mucus, and

ionic homeostasis. These findings directly support that explora-

tion of the genetic architecture of GI disorders is useful for

understanding their causal mechanisms, which will further

contribute to disease prevention, diagnosis, and treatment.

Taken together, these findings of DivD, a lower GI disorder,

and our previous findings of PUD,13 an upper GI disorder, illus-

trate that large biobank data boost power for our understanding

of the common diseases, especially for those whose genetic

factors are well recognized but have not yet been studied using

GWAS paradigm.
Limitations of the study
Despite the comprehensive analyses and informative results of

our study, there are also some limitations. First, the definition

of DivD in our primary analyses is relatively broad, given the

limited phenotype information. Analyses based on finer disease

subtypes should be conducted if additional phenotypes are

available in future. The DivD status information of participants

is obtained during the period from the recruitment date to the

last follow-up date through the available medical records. This

means that some of the individuals currently considered as con-

trols in our analyses may change their DivD status later, which

could reduce the statistical power to detect more risk variants.

Second, the identification of implicated genes from GWAS loci

remains a challenging task. The prioritized genes in this study

are based on current data, methods, and criteria. As such, there

is a possibility that some of these genes may not be the true

implicated genes. However, the gene prioritization framework

used in this study could be further improved by incorporating

more optimized methods and utilizing powerful and appropriate

data in future research. Third, we combined RNA sequencing

data with GWAS findings to prioritize the tissues and cell types

for functional follow-up of DivD loci. However, many of the data-

sets are based onmousemodels, which are important resources

as cell-type-specific gene expressions are highly conserved

across species,19,55 but we recognize that there are differences

between human and mouse GI tracts. Fourth, Genetic relation-

ships of DivD with other complex traits were estimated using

GWAS summary statistics from various cohorts. It is important

to acknowledge the presence of potential sample and recruit-

ment biases within these cohorts, as these biases may influence

the observed estimates.
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fide researchers upon application to the UK Biobank. Data are available from the CARTaGENE Biobank (https://cartagene.qc.

ca/en/index.html) for researchers who meet the criteria for access to de-identified CARTaGENE data. We used GWAS sum-

mary statistics for major depression that include data from 23andMe. These data can be obtained by qualified researchers un-

der an agreement with 23andMe that protects the privacy of the 23andMe participants. Researchers can perform meta-anal-

ysis of 23andMe summary statistics and the other five-cohort results file, as described in Wray et al., to get major depression

GWAS summary statistics.

d This paper does not report original code.

d Any additional information required to reanalyse the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

The United Kingdom Biobank study
Approved by the North West Multicentre Research Ethnics Service Committee, the United Kingdom Biobank (UKB) is a large pop-

ulation-based prospective studywith deep genetic and phenotypic data collected on approximately 500,000 individuals.68 Additional

study and quality control details are described in Bycroft et al.68 UKB genotyped individuals were used for analyses. We applied a

two-stage approach to infer the genetic ancestry for UKB individuals, as shown in ref.69 and 70. Briefly, the first step consisted of

projecting each UKB individuals onto the genotypic principal components (PCs) calculated in the 1000 genomes project (1KGP) par-

ticipants71 of European (EUR) ancestry, South Asian (SAS) ancestry, East Asian (EAS) ancestry and African (AFR) ancestry. The sec-

ond step assigned each UKB individual to the closest ancestry based on their ancestry PCs, giving 456,426 EUR, 11,906 SAS, 2,486

EAS and 9,184 AFR. Details for ancestry inference settings, including EUR and others (SAS, EAS and AFR), have been described

elsewhere.69,70 For individuals of EUR ancestry, we used the imputed genotype data centrally processed by the UKB team, as

described in Bycroft et al.68 The reference panels used for imputation include the Haplotype Reference Consortium (HRC) and

UK10K. Genotype probabilities were converted to hard-call genotypes using PLINK258 (–hard-call 0.1). Variants with Hardy-

Weinberg Equilibrium (HWE) test p value <1.0E-5, missing genotype rate >0.05, imputation score <0.3 and minor allele frequency

(MAF) <0.01 were excluded, and the remaining variants (hereafter SNPs but could include small insertion/deletions) were available

for further analyses. Detailed genotype quality control process for non-European ancestry in UKB has been described inWang et al.70

Quality-controlled SNPs with MAF R0.01 within each ancestry were available for the following analyses.

Two main phenotypes were derived from the UKB, diverticular disease (DivD) of intestine diagnosis and estimated DivD age of

onset (AgeO). DivD phenotype was defined using diverticular disease diagnosis data (UKB data field: 131637). Briefly, individuals

with either a primary care, hospital admission or death register records that could be mapped to the International Classification of

Diseases 10th version (ICD10) code K57 (diverticular disease of intestine) were assigned as cases (note these individuals may also

have a K57 record from self-report source at the same time). Individuals with only self-reported diverticular disease record (1,619

of total 61,908 cases, data were downloaded on Oct 2020) were excluded, and the remaining individuals were assigned as controls.

The DivD dataset was divided into four phenotypes based on the UKB individual ancestry group, namely EUR (56,355 cases and

398,413 controls), SAS (760 cases and 11,136 controls), EAS (57 cases and 2,426 controls), and AFR (596 cases and 8,579 controls).

The AgeO phenotype was generated for DivD case individuals by calculating year difference between estimated date of birth and first

reported date for diverticular disease (UKB data field: 131636). There is actual date of birth information in UKB data field 33, but these

data are restricted, thus we combined year of birth (UKB data field: 34), month of birth (UKB data field: 52), together with the first for

day ofmonth to generate the estimated date of birth. Individuals whose first reported date of DivD is from self-report DivD date record

were removed to avoid the potential self-report inaccuracy. Given that the number of DivD cases of other ancestries is small, we only

generated AgeO phenotype of EUR ancestry (53,658 individuals) for the downstream analyses.

To estimate the heritability of DivD based on the UKB data, we first calculated the full-sibling relative risk and then applied the li-

ability distribution theory72–74 to get the DivD heritability estimate, under the assumption that the increased risk only reflects shared

genetic factors. To compare the DivD heritability estimate with the heritability estimates of other GI disorders, we adopted results

from Wu et al.,13 which applied the same procedure to estimate heritability for GI disorders based on UKB data. We then performed

case-control GWAS analysis for DivD phenotype of EUR ancestry and quantitative GWAS analysis for AgeO phenotype using

BOLT-LMM59 with sex, age and 20 PCs as covariates. For these two phenotypes, 543,919 SNPs generated by linkage disequilibrium

(LD) pruning (r2 < 0.9) from European-relevant HapMap3 SNPs were used to control population structure and polygenic effects,

including genetic relatedness between individuals. For case-control GWAS, the effect size for SNPs from BOLT-LMM on the

observed 0–1 scale were transformed to odds ratio (OR) using the following equation75: OR = ðk + bð1�pÞÞ3ð1� k +bpÞ
ðk� bpÞ3ð1� k� bð1�pÞÞ, where k is the

proportion of sample that are cases, and p is the allele frequency in the full UKB ancestry-specific cohort. The standard errors

(s:e:) forORwere then calculated based on theOR and P value from the initial GWAS using the formula s:e: =
�
�
�

lnðORÞ
F� 1ðP=2Þ

�
�
�. Considering

the sample size for DivD phenotypes of the other three ancestries (SAS, EAS and AFR), GWASs were conducted using

GCTA-MLMA76 fitting the polygenic effect (the corresponding genetic relatedness effect matrix [GRM]) in the mixed linear model.

To better improve the computational efficiency, covariates were not included in the analyses, as recommended in GCTA-MLMA tuto-

rial (https://cnsgenomics.com/software/gcta/#MLMA). The 7,263,094 autosome SNPswere used for association analyses, including
Cell Genomics 3, 100326, July 12, 2023 e2

https://cartagene.qc.ca/en/index.html
https://cartagene.qc.ca/en/index.html
https://cnsgenomics.com/software/gcta/


Article
ll

OPEN ACCESS
4,853,455 SNPs shared across UKB, FinnGen and BioVU Biobank and 2,409,639 SNPs shared only between UKB and FinnGen Bio-

bank. We also conducted X chromosome association analysis using the UKB v3 imputation release BGEN files. 199,292 SNPs with

MAF R0.01 overlapped with FinnGen genotypes were analyzed. For DivD GWAS of other ancestries, the SNPs with MAF R0.01

within each ancestry cohort were analyzed.

FinnGen Biobank
The FinnGen Biobank, a nationwide study launched in Finland in 2017, combines both genetic information and healthcare data to

improve personalized health care. Diverticular disease GWAS summary statistics were downloaded from the freeze 5 release of

FinnGen GWAS results. Briefly, the phenotype consists of 14,357cases and 182,423 controls. The case definition was defined as

individuals with diverticular disease of intestine record (K57 for ICD10 and 562 for ICD9 and ICD8) from hospital discharge and cause

of death data. The FinnGenGWASwas conducted on 16,962,023 SNPs using SAIGE,61 fitting sex, age, 10 PCs and genotyping batch

as covariates. Detailed information, including genotypes and GWAS settings, are described in https://finngen.gitbook.io/

documentation. SNPs with MAF <0.01 were filtered out and genome build of the remaining SNPs were converted from hg38 to

hg19 using LiftOver tool from UCSC human genome browser.77 Non-biallelic SNPs were further removed and a total of 7,263,094

autosome SNPs and 199,292 X chromosome SNPs were selected based on the overlap with other cohorts’ genotype.

BioVU Biobank
BioVU, a biobank launched by Vanderbilt University Medical Center (VUMC), uses information documented in the electronic

health records of patients.78 Patients were provided the BioVU consent form in the outpatient clinic environment at VUMC. Through

genotype information and ancestry inference, a total of 72,824 individuals of European ancestry were identified. Individuals with

clinical records 562 and K57, based on the International Classification of Diseases 9th and 10th editions (ICD9 and ICD10), respec-

tively, were assigned case status, and the remaining individuals were assigned as controls. A total of 7,687 cases and 65,137 controls

were used for GWAS analysis. To minimize differences in the GWAS procedures, the analyses were conducted following similar set-

tings as those in UKB. Briefly, GWAS was conducted using BOLT-LMM,59 together with age, sex and genetic principal components

1–10 as covariates. A total of 4,853,455 autosome SNPs with MAF R0.01, which are overlapped with both UKB and FinnGen DivD

EUR summary statistics, were used for association analyses. Given the non-availability of X chromosome data, we did not conduct X

chromosome association analysis. Details about VUMC BioVU data quality control have been described previously.78

GWAS meta-analysis of UKB, FinnGen and BioVU for DivD
We applied an inverse-variance-based method METAL,62 together with UKB, FinnGen and BioVU DivD GWAS summary statistics of

EUR ancestry, to conduct a meta-analysis. 7,263,094 autosome SNPs and 199,292 X chromosome SNPs were analyzed. Among the

7,263,094 autosome SNPs, 4,853,455 SNPs are shared across all three cohorts’ genotype. The weighted average frequency of al-

leles for each SNP across the summary statistics used for meta-analysis is the reported allele frequency for each SNP in the meta-

analysed GWAS summary statistics. The meta-analysed summary statistics (abbreviated as DivD-EUR), together with UKB AgeO

summary statistics of EUR ancestry (abbreviated as AgeO-EUR), were used for the follow-up analyses. DivD GWASs of other ances-

tries, including DivD-SAS and DivD-AFR, were used as supplementary analyses.

Independent lead SNPs and loci identification
We used GCTA14,60 (–cojo-slct) to identify independent SNPs for DivD-EUR and AgeO-EUR. We set p value threshold as 5.0E-8.

Other parameters were set as default. The obtained SNPs were reported as genome-wide significant SNPs. To investigate the

MAF and OR relationship for DivD-EUR-associated SNPs, we repeated the analysis using a p value threshold of 1.0E-5 to obtain

more SNPs. The genotype data (SNPs with MAF R 0.01) of 20,000 random sampled unrelated UKB European individuals were

used to provide a LD reference. Due to the complexity of the major histocompatibility complex (MHC) region (25-34 Mb), only the

most statistically significant SNP across that region was reported. To obtain the number of independent loci for DivD-EUR and

AgeO-EUR, we pruned the independently associated SNPs obtained from GCTA by taking 1000 kb as window size threshold and

0.01 as LD r2 threshold. Regional visualization plots were produced using LocusZoom63. To calculate the variance explained by

each DivD-EUR-associated SNP, we first applied a logistic regression model to predict the diverticular disease status in UKB Euro-

pean individuals based on the genotype information of these SNPs and then used the NagelkerkeR2() function of R package ‘‘fmsb’’.

DivD reported SNPs identification and pleiotropy analyses
We used results from the three published DivD GWAS8–10 to count the number of independent genome-wide significant SNPs from

the current study that have been previously reported to be associated with DivD. Briefly, we checked the LD relationship between our

DivD-EUR and AgeO-EUR associated SNPs and the variants reported from the Table 1 of Sigurdsson et al.8, Table 1 of Maguire

et al.,9 and Tables 2, 3 and Supplementary Table 1 of Schafmayer et al.10. Supplementary Table 2 of ref 9 also listed variants with

association p value < 1E-5, which were also included in our analyses. A DivD-EUR and AgeO-EUR SNP was classified as previously

reported if it is LD correlated with the variants in the aforementioned tables from the three published DivD GWASs.8–10 The LD infor-

mation were obtained from LDlink (https://ldlink.nci.nih.gov/?tab=ldpair) by selecting EUR population. We also checked if the DivD-

EUR associated SNPs have been reported to be associated with other traits (pleiotropy analyses). Briefly, we downloaded published
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GWAS associations from the GWAS Catalog79 on Feb 22nd, 2022. We first selected SNPs from the GWAS Catalog SNPs that are

within ±1000 kb window size of the index SNP. We reported a pleiotropic association if the selected GWAS Catalog SNP is in LD

(r2 > 0.6) with the index SNP as well as the reported association p value < 5.0E-8.

Cross-ancestry effect comparison
We compared the effect of independent SNPs (obtained from DivD-EUR GWAS summary statistics) on diverticular disease of EUR

ancestry with the effect of these SNPs on diverticular disease of each of SAS and AFR ancestry. Only allele-matched SNPs that are

common between DivD-EUR and each of the DivD-SAS and DivD-AFR GWAS summary statistics were used.

SNP-based heritability estimation
Univariate LD score regression (LDSC)64 was used to estimate SNP-based heritability (h2SNP) from the DivD-EUR and AgeO-EUR

summary statistics. For DivD-EUR GWAS summary statistics, the h2SNP estimated on the observed scale were transformed to the

liability scale taking the sample lifetime risk (proportion of sample that are cases) as the disease lifetime risk estimate, i.e., 10.8%

for DivD-EUR. The summary statistics for each phenotype were filtered using the LDSC default file, w_hm3.snplist, with the default

LD scores (eur_w_ld_chr) computed using 1000 Genomes European data as a reference.

Partitioning DivD h2
SNP by publicly available annotations

Following the estimation of h2SNP of DivD-EUR GWAS , we applied the LDSC method to partition the h2SNP by cell-type group

annotations to prioritize tissues and cell types.17 The annotations were provided by ref. 17. Briefly, genetic variants were annotated

to histonemarks (H3K4me1, H3K4me3, H3K9ac andH3K27ac) by cell-type-specific classes and these annotations were allocated to

ten groups: adrenal and pancreas, central nervous system (CNS), cardiovascular, connective and bone, gastrointestinal, immune

and hematopoietic, kidney, liver, skeletal muscle, and other. The method evaluates the contribution of each functional category to

the overall h2SNP of a trait. A category is enriched for h2SNP if the variants with high LD to that category have elevated c2 association

statistics, compared to the expectation given the number of SNPs in that category. Given that DivD h2SNP showed enrichment in

all ten cell-type group annotations, we also used LDSC specific expressed gene (SEG)20 analysis to test the enrichment of h2SNP in

489 publicly available tissue-specific chromatin-based annotations derived from DNase I hypersensitivity (DHS) and five activating

histone marks (H3K27ac, H3K4me3, H3K4me1, H3K9ac and H3K36me3).20

Partitioning DivD h2
SNP by manually derived annotations

We further derived annotations based on gene expression datasets from different studies, with a main focus on gastrointestinal tis-

sues and cells. These datasets include 1) bulk-tissue RNA-seq gene expression data from 54 tissues (v8, median across samples)

from the GTEx consortium18 (abbreviated as GTEx). 2) single-cell (sc) and single-nucleus (sn) RNA-seq gene expression datasets

from human colon cells, human colon glia, human colon neurons, mouse colon cells, mouse colon glia, mouse colon neurons, mouse

ileum cells, mouse ileum glia, and mouse ileum neurons (abbreviated as Drokhlyanhsky, note that the study applied two sequencing

methods for mouse colon glia and neuron, thus there are two datasets for each of mouse colon glia and neurons).19 3) 39 broad cat-

egories (level 4) from the entire mouse nervous system (19 regions), including enteric glia and neurons category (abbreviation as Zei-

sel).80 In summary, there are 13 datasets, i.e., 4 from human (1 from GTEx, 3 from Drokhlyanhsky) and 9 from mouse (8 from Drokh-

lyanhsky and 1 from Zeisel).

GTEx data (GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_median_tpm.gct.gz) were downloaded from GTEx portal

(https://www.gtexportal.org/home/datasets/). Drokhlyanhsky data (SCP1038), including colon and ileum data from both human

and mouse, were downloaded from the Single Cell portal (https://singlecell.broadinstitute.org/single cell). Zeisel data (L5 All.loom)

were downloaded from http://mousebrain.org/downloads.html. The data processing procedures followed those of Bryois et al.55

All data were processed uniformly. First, for each gene in each cell type, the mean expression was computed based on the informa-

tion from corresponding single-cell expression data. We applied the generate.celltype.data() function from R package ‘EWCE’65 for

Drokhlyanhsky data. For the GTEx data, we used the pre-computed median expression across individuals. Genes with non-unique

names, not expressed in any cell types, non-protein-coding genes, and for mouse datasets, genes that had no expert-curated 1:1

orthologs between mice and human (Mouse Genome Informatics, The Jackson Laboratory, version 11/22/2016) were filtered out.

The gene expression was then scaled to a total of 1 million UMIs (or TPM) for each tissue or cell type. Gene expression in each tissue

or cell type was divided by the total expression of that gene in all cell types to show gene expression specificity, of which the metric

ranges from 0 to 1 (0 means that there is no expression in the cell type while 1 means that 100% of the expression is in the cell type).

The 10%most specific genes in each tissue or cell type were used for generating tissue or cell-type-specific annotations. Briefly, for

each tissue or cell type, we created an annotation file using the 10% genes most expressed in that cell type and then computed the

LD scores using the created annotation file with default settings.

We then tested the enrichment of h2SNP in each tissue and cell type.17 As a comparison, we also used the published Crohn’s disease

(CD) and ulcerative colitis (UC) GWAS summary statistics21 as these two diseases are well-studied by the GWAS paradigm and well

statistically powered. The GWAS summary statistics were restricted to SNPs with minor allele frequency R0.01 with UKB as a

reference.
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Gene prioritization
To prioritize candidate causal genes for DivD-EUR, we used various gene prioritization approaches. Given we only described the in

silico gene prioritization results without characterizing the actual functional activity in vitro or in vivo, we aimed to provide a systematic

approach to nominate potential causal gene(s) in a locus using the following criteria:

1) The nearest gene: a gene that is closest to a lead SNP by distance to the gene body. Information was directly obtained from the

Open Targets Genetics platform (https://www.opentargets.org/genetics) when inputting the DivD-EUR lead SNPs.

2) Genes in the LD region: genes within ±1Mb of a lead SNP and containing any SNPs that in LD (r2R 0.6) with a lead SNP. For LD

estimation, we used the genotype data (SNPs with MAFR 0.01) of 20,000 random sampled unrelated UKB European individ-

uals as reference.

3) V2G score: a gene with the highest overall score from the Open Target Genetics platform56. For each SNP, the overall V2G

score integrates differentially weighted evidence of variant-gene associations from several data resources, includingmolecular

cis quantitative trait loci (QTL) data, interaction-based datasets, genomic distance and variant effect predictions fromEnsembl.

Details of the resources and weights are in the platform (https://genetics-docs.opentargets.org/our-approach/data-pipeline).

4) Fine-mapped genes: genes with a fine-mapped cisQTL SNP (posterior inclusion probability, PIPR 0.1) of which the PIP is also

R 0.1 for DivD-EUR.
a. We first fine-mapped SNPs for DivD-EUR using a combination of PolyFun66 and SuSiE.67 PolyFun computes prior causal

probabilities based on functional annotations and SuSiE fine-maps SNPs and provides PIP and credible sets of SNPs. We

used the precomputed per-SNP heritability for UKB SNPs based on functional annotations and then used this metric as

prior causal probability in SuSiE for fine-mapping. We set ±1 Mb of DivD-EUR lead SNPs as the window size and SNP

with PIP R 0.1 were reported. Other parameters were set as default.

b. The fine-mappedQTL results for different quantificationmeasures of genes were downloaded from eQTLCatalogue (http://

www.ebi.ac.uk/eqtl/Data_access/, release 5). Detailed information for data quality control are provided in ref. 81. Briefly,

raw gene expression and genotype data from various studies were downloaded and uniformly processed. Four gene quan-

tification measures, including gene expression (ge), exon expression (exon), transcript usage (tx) and promoter, splicing

and 30-end usage even (txrev), were used for association testing. Statistical fine-mapping for different QTLs were further

performed using SuSiE. SNPs with PIP R0.1 for different quantification measures of genes were retained.

c. For each DivD-EUR lead SNP, we further checked the overlap between fine-mapped QTLs for genes from eQTL Catalogue

and fine-mapped SNPs for DivD-EUR according to a previous study.82 If an overlap was found, the corresponding gene,

along with the quantification measure, was reported.

5) Bowel genes: genes from bowel-related gene sets from Human Phenotype Ontology57 that are within ±1 Mb of a lead variant.

The 40 bowel-related gene sets include "Bowel Diverticulosis", "Malrotation of Small Bowel", "Abnormal Bowel Sounds",

"Colonic Diverticula", "Colon Cancer", "Aplasia Hypoplasia Of The Colon", "Aganglionic Megacolon", "Adenomatous Colonic

Polyposis", "Neoplasm Of The Colon", "Abnormal Intestine Morphology", "Functional Abnormality Of The Gastrointestinal

Tract", "Abnormal Large Intestine Morphology", "Abnormality Of The Small Intestine", "Neoplasm Of The Gastrointestinal

Tract", "Intestinal Hypoplasia", "Inflammation Of The Large Intestine", "Intestinal Polyp", "Intestinal Atresia", "Gastrointestinal

Dysmotility", "Intestinal Pseudo Obstruction", "Abnormal Large Intestine Physiology", "Gastrointestinal Inflammation",

"Abnormality Of Small Intestinal Villus Morphology", "Gastrointestinal Eosinophilia", "Large Intestinal Polyposis", "Intestinal

Malrotation", "Gastrointestinal Atresia", "Neoplasm Of The Large Intestine", "Gastrointestinal Obstruction", "Gastrointestinal

Haemorrhage", "Intestinal Carcinoid", "Intestinal Fistula", "AdenocarcinomaOf The Large Intestine", "AdenocarcinomaOf The

Intestines", "Gastrointestinal Stroma Tumor", "Gastrointestinal Infarctions", "Gastrointestinal Carcinoma", "Recurrent Infec-

tion Of The Gastrointestinal Tract", "Neoplasm Of The Small Intestine", "Intestinal Bleeding".

For each DivD-EUR-associated lead SNP, genes from the above 1) – 5) were ranked based on the number of sources and only

genes with the highest number of sources were prioritized. If there are multiple genes with the same number of sources, genes

with 3) V2G score and 4) fine-mapped genes were chosen to report. In any case, genes with evidence solely from 5) bowel genes

were used to complement other lines of evidence and cannot be solely relied upon.

Polygenic score analyses
We first used SBayesR23 and DivD-EUR GWAS summary statistics to derive SNP weights for polygenic score (PGS) calculation. We

used the bandedmatrix provided from https://cnsgenomics.com/software/gctb/#Download as LD reference.We then calculated the

PGS for participants of EUR ancestry from CARTaGENE Biobank24 and of SAS and AFR ancestry from UKB. Those individuals are

independent of cohorts for constructing DivD-EUR GWAS summary statistics. The CARTaGENE Biobank is a population-based

study, targeting the segment of the population that is most at risk of developing chronic disorders. Detailed health and sociodemo-

graphic information, together with biological samples, were collected for individuals aged 40–69 years across 12 assessment sites.

For CARTaGENE Biobank, participants were projected onto the genetic principal components 1–20 calculated using HapMap3

SNPs in 1KGP individuals. The ancestry information was predicted based on the 1KGP individual information using R package ‘‘ran-

domForest’’. A total of 7,696 participants of EUR ancestry were identified. Among these participants, 146 individuals answered ‘‘yes’’
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to the diverticular disease choice for the question ‘‘has a doctor ever told you that you suffer from a bowel disorder such as Crohn’s

disease, ulcerative colitis, irritable bowel syndrome, polyps or diverticular disease?’’. We conducted the following analyses to assess

the PGS prediction accuracy and stratification ability: 1)The p value of case-control PGS difference was calculated by Student’s t

test; 2) Area under the curve (AUC) and R2 on the liability scale83 of the prediction model. We used four models to assess the pre-

diction accuracy, including ‘‘phenotype � PGS’’, ‘‘phenotype � age + sex’’, ‘‘phenotype � PGS + age + sex’’ and ‘‘phenotype �
PGS + age + sex + family history’’. The relative weight of each term included in each model was also estimated. 3) PGS was further

discretised into quintiles (1 = lowest, 5 = highest) and the odds ratio and 95%CIs for the 2nd and 5th PGS quintiles compared with the

1st quintile were estimated using ‘‘DivD status� PGS quintile’’ model. 4) Instead of quintile, we also discretised the PGS into percen-

tiles and calculated the odds ratio by comparing those with high PGS against the remainder of the population (the top 0.5% vs. the

remaining 99.5%, the top 1% vs. the remaining 99%, the top 5% vs. the remaining 95%, the top 10% vs. the remaining 90%, and

the top 20% vs. the remaining 80%) in a logistic regression model. 5) Further, we took DivD AgeO into consideration and compared

the cumulative risk between the 1st quintile and the 5th quintile using Kaplan-Meier method and log-rank test (‘‘DivD status � PGS

quintiles’’ model). For UKB participants of SAS and AFR ancestry, we calculated the PGS using the SBayesR-derived weights

and estimated the AUC of PGS predicting DivD risk model. We then compared these AUCs based on non-EUR ancestries with

AUC based on EUR ancestry. Details for DivD PGS association with common diseases and laboratory measurements in BioVU

cohort are provided in ref 78. The UKB DivD GWAS summary statistics were used to construct PGS for BioVU individuals.

Genetic correlation analyses
We investigated the genetic relationship between DivD and a range of complex traits using bivariate LDSC25, which estimated

genetic correlations (rg) between pairs of traits using GWAS summary statistics while accounting for the sample overlap.We first esti-

mated the rg between DivD-EUR and AgeO-EUR. We next uploaded DivD-EUR GWAS summary statistics to LD Hub, a platform

applying bivariate LDSC to estimate rg between the uploaded trait and those already-collected traits. A total of 258 traits rather

than rapid GWAS of LD Hub were selected for analyses as in previous study13.

Given our interests in the genetic relationship of DivD with food intake, we used summary statistics from Cole et al.,84 a genetic

study focusing on dietary habits. In that study, 60 of 85 PCs generated by the dietary patterns showed statistically significant

SNP-based heritability. We used these 60 PCs for our rg analyses. In addition to these PCs, we also included other 50 traits across

meat, fiber and other dietary habits from that study to estimate the rg with DivD. Meddens et al.85 conducted GWAS on diet compo-

sition (fat, protein, sugar and carbohydrate) and we used the corresponding four GWAS summary statistics to explore the genetic

relationship between diet composition and DivD. We also included four anthropometric traits: body mass index (BMI),86 hip circum-

stance adjusted for BMI,87 waist circumstance adjusted for BMI87 and waist-hip-ratio adjusted for BMI.87

We previously showed that gastro-esophageal reflux disease, peptic ulcer disease and irritable bowel syndrome were genetically

correlated and these gastrointestinal disorders were also genetically correlated with major depression and attention deficit hyperac-

tivity disorder (ADHD).13 Motivated by these analyses, we also investigated the genetic relationship between DivD and a range of GI

traits and psychiatric disorders. For GI traits, we included one stool frequency trait16 and 19 GI disorders (UKB unpublished). For the

UKB unpublished data, we first conducted GWAS using data from UKB data categories 2411 and 153 and then conducted bivariate

LDSC analyses. Note that data category 153 was used to derive ROME III criteria-based IBS phenotype. For psychiatric disorders,

we included ADHD,88 schizophrenia,89 posttraumatic stress disorder,90 bipolar disorder,91 autism spectrum disorder,92 depres-

sion,93,94,95 anxiety (published study96 and unpublished data) and reaction to severe stress and adjustment disorders (unpublished

data). We incorporated 10 GWAS summary statistics for depression given the different definitions, including one major depression

from Wray et al.,93 one antidepressants usage from Wu et al.,94 and eight other definitions from Cai et al.95 (GPpsy, Psypsy, DepAll,

SelfRepDep, ICD10Dep, LifetimeMDD, MDDRecur, and GPNoDep). Detailed descriptions for these abbreviations are in Figure 1 of

Cai et al.95 For two psychiatric disorders labeled with "unpublished data", we conducted GWAS using data filed 130907 and 130911

from UKB data categories 2405 with same settings as described above and further investigated the genetic relationship.

Supplemental notes
The effect of BMI as a covariate in UKB DivD GWAS analysis

While there is evidence to suggest that obesity is associated with colonic diverticulosis and diverticular disease,97 the exact nature of

the relationship (causal or pleiotropy) is not clear. A previous study has shown that adjusting for heritable covariate when the causality

relationship between the covariate and the phenotype is unclear could bias effect estimates of genetic variants from GWAS anal-

ysis.98 In case unwanted bias could be induced, we did not fit BMI as a covariate in our primary analysis (DivD-EUR). However,

we conducted sensitivity analyses to investigate the effect of BMI as a covariate in DivD GWAS analysis using UKB data, as the in-

dividual-level genotype and phenotype information is available. Briefly, we repeated GWAS in UKB fitting BMI as a covariate on the

basis of previous covariates (age, sex, genetic principal components 1-20). The BMI information (UKB Data Field: 21001) was first

separated intomale and female groups and then normalized and combined. The DivDGWASwithout BMI as a covariate was referred

to as ‘‘No BMI’’, while the GWAS with BMI as a covariate was referred to as ‘‘BMI’’. ‘‘No BMI’’ GWAS identified 104 independent

significant SNPs and ‘‘BMI’’ GWAS identified 101 independent significant SNPs, with significance (p value < 5E-8) and independence

assessed using the conditional and joint GCTA-COJO14 analysis. As shown in Figure S2, the effect of the 104 SNPs (same allele) from

‘‘NoBMI’’ GWAS are highly concordant with the effects of these SNPs from ‘‘BMI’’ GWAS (the regression estimate is 0.995with s.e. of
Cell Genomics 3, 100326, July 12, 2023 e6



Article
ll

OPEN ACCESS
2.4E-03, Table S3). Moreover, using bivariate LDSC, the genome-wide genetic correlation is 0.988 with s.e. of 8.0E-4 (Table S4).

These results suggest that the effect of BMI as a covariate in UKB DivD GWAS analysis is little in the current study and further

large-scale studies are needed to investigate whether BMI is causal for diverticulosis and diverticular disease.

Incorporating cell-type-specific enrichment results by partitioning ulcerative colitis and Crohn’s disease h2
SNP using

annotations derived in the current study

A previous study has shown that ulcerative colitis (UC) and Crohn’s disease (CD) h2SNP are enriched in regions containing genes spe-

cifically expressed in T cells20. To validate our derived annotations, we conducted the same partitioning h2SNP analyses using GWAS

summary statistics from UC and CD21 and our T cell annotation. We found T cell enrichment of UC and CD h2SNP, supporting the vali-

dation of our annotations indirectly. Among the derived bulk-tissue annotations, the most significant tissue was the terminal ileum of

small intestine,99 providing further support for the validity of the approach. Among the other derived cell-type annotations, different

specific cell types were identified (Tables S14–S17, Figures 3 and S6–S8), which were also consistent with their clinical

presentation20,55,100. This, once again, reinforces the validity of the bioinformatic method used for investigating diseasemechanisms.

DivD bulk-tissue enrichment results in esophagus gastric junction and muscularis

In addition to the enrichment of DivD h2SNP in colon sigmoid bulk tissue, esophagus gastric junction and esophagus muscularis were

also significantly implicated by these analyses (Figure 3). Notably, 1,081 genes are shared among the top 10% most specific genes

(1,737 genes in total) for colon sigmoid and esophagus muscularis from the GTEx database. We also note that in the GTEx study

mucosa of the sigmoid colon was discarded and only muscularis was obtained (https://gtexportal.org/home/samplingSitePage).

Hence, these results may reflect the similarity in anatomical and physiological characteristics among these tissues. Same interpre-

tation could be also applied to enrichment of multiple cell types of DivD h2SNP (or UC and CD h2SNP), as some of these cell types are

histologically similar and the top 10% most specific genes are highly overlapped across these cell types.

QUANTIFICATION AND STATISTICAL ANALYSIS

Details regarding statistical tests, significance thresholds, sample sizes and p value can be found in the tables and figure legends, as

well as in the relevant sections above.
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https://gtexportal.org/home/samplingSitePage

	150 risk variants for diverticular disease of intestine prioritize cell types and enable polygenic prediction of disease su ...
	Introduction
	Results
	DivD heritability estimation
	GWAS meta-analysis
	SNP-based heritability, tissues, and cell types
	Gene prioritization and pathways
	Polygenic score analysis
	Genetic relationship with complex traits

	Discussion
	Colon structure
	Gut motility
	GI mucus
	Ionic homeostasis
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	Acknowledgments
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Method details
	The United Kingdom Biobank study
	FinnGen Biobank
	BioVU Biobank
	GWAS meta-analysis of UKB, FinnGen and BioVU for DivD
	Independent lead SNPs and loci identification
	DivD reported SNPs identification and pleiotropy analyses
	Cross-ancestry effect comparison
	SNP-based heritability estimation
	Partitioning DivD hSNP2 by publicly available annotations
	Partitioning DivD hSNP2 by manually derived annotations
	Gene prioritization
	Polygenic score analyses
	Genetic correlation analyses
	Supplemental notes
	The effect of BMI as a covariate in UKB DivD GWAS analysis
	Incorporating cell-type-specific enrichment results by partitioning ulcerative colitis and Crohn’s disease hSNP2 using anno ...
	DivD bulk-tissue enrichment results in esophagus gastric junction and muscularis


	Quantification and statistical analysis



