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Abstract: Avian infectious bronchitis (IB) is among the major viral respiratory and reproductive
diseases of chickens caused by Avian coronavirus. In the African continent, IB was first described in
countries located in the Mediterranean basin. In other parts of the continent, the epidemiological
situation of IB remains unclear. In this study, the complete genome sequences of five IBV strains,
originating from the sub-Saharan area were determined. Phylogenetic analysis based on the full-
length S1 sequences identified three lineages (GI-14, GI-16, and GI-19) common in Africa and revealed
that a strain, D2334/11/2/13/CI, isolated in Ivory Coast may represent a novel lineage within
genotype GI. The maximum inter- and intragenotype sequence identities between this strain and
other IBVs were 67.58% and 78.84% (nucleotide) and 64.44% and 78.6% (amino acid), respectively.
The whole-genome nucleotide identity of the novel variant shared the highest values with a reference
Belgian nephropathogenic strain (B1648, 92.4%) and with another study strain from Ivory Coast
(D2334/12/2/13/CI, 94.6%). This study illustrates the importance of epidemiological monitoring of
IBV in sub-Saharan Africa, as the area may serve as a focal point for newly emerging viral lineages.

Keywords: avian coronavirus; phylogenetic analysis; whole-genome sequencing; Ivory Coast;
Ghana; Cameroon

1. Introduction

Infectious bronchitis (IB) is a highly contagious viral disease that affects the respiratory,
reproductive, and renal systems of chickens of all ages and types [1]. Infectious bronchitis
was first described in the 1930s in the USA [2,3] and has since been reported from numerous
countries worldwide [4–9]. The causative agent, infectious bronchitis virus (IBV), belongs
to the species Avian coronavirus (ACoV), genus Gammacoronavirus, family Coronaviridae [10].
IBV is an enveloped, positive-sense, single-stranded RNA virus with a 27 kb genome.
The general genome organization of ACoV is 1ab-S-3a-3b-E-M-4b-4c-5a-5b-N-6b [11]. The
genome contains 13 open reading frames that code for 25 proteins. The key protein
containing neutralization epitopes is the spike protein that is post-translationally cleaved
into two subunits, S1 and S2. The S1 is responsible for the attachment of the virus to
the cellular membrane and plays a major role in tissue tropism, induction of protective
immunity, virus neutralization, and serotype specificity [12]. The S1 gene sequencing is the
most widely used method for classifying IBV isolates into genotypes. According to the S1
gene-based classification system, there are 8 genotypes (GI to GVIII) and 37 lineages [13].
The high mutation and recombination rates have led to the emergence of new variants,
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including lineage GI-28, GI-29 as well as genotype GVII in intensive poultry farms in China,
GVIII in Poland, and recently, GI-30 in Trinidad and Tobago [14–18].

The impact of IB on poultry in the Sub-Saharan region of Africa is still poorly known [19].
Nonetheless, reports have shown that IBV is common in poultry flocks with respiratory
disease and a severe drop in egg production [20]. IB is controlled mainly by vaccination in
many African countries, using either live-attenuated or inactivated vaccines [21]. In this
region, the first documentation of IB originates from Nigeria [22,23]. Subsequent reports
that relied on serological assays showed evidence of widespread distribution of IBV in
Nigeria. Owoade and coworkers have shown a seroprevalence rate as high as 84% for
IBV [24]. Other studies from this area have also reported high levels of circulation of IBV
in backyard poultry and in commercial poultry farms with seroprevalence rates above
70% [24–27]. The exposure of captive wild birds and indigenous local chickens is significant,
with a measured seroprevalence of 11.6% and 49.1%, respectively [28]. Furthermore,
there is serological evidence of co-circulation of multiple IBV antigenic types [20]. In
West Africa, only a few studies have examined the prevalence of IBV with molecular
methods [20,27,29,30]. In Burkina Faso, the prevalence of IBV was 3.9% by using RT-
PCR [29]. A study from Ghana revealed that 40% of the samples tested positive with PCR
for IBV and 20% of the samples were found to contain both IBV and Newcastle disease
virus [30]. Although reports show that IBV may play a significant role in respiratory
disease outbreaks in poultry in Ghana, vaccination against IBV is not carried out [31]. In
Ivory Coast, the presence of IB in commercial layer farms is reported on a regular basis
based on clinical signs (respiratory signs, decline of the egg production), but IBV is also
associated with subclinical infections in backyard poultry. Both seroprevalence (72.3%)
and PCR positivity (14.6%) are considered high. Vaccination is strongly recommended,
mainly based on the M41 strain, although there has been no prior study of the circulation
of IBV in the country [19]. Overall, published records indicate that IBVs circulate in this
neglected area of Africa, but a significant shortcoming is that it is hard, if not impossible,
to distinguish between the immune response raised by natural infection and vaccination,
as well as between positive PCR results originating from infection with a field strain and
those associated with shedding vaccine strains. Thus, the true economic burden associated
with IB remains unknown.

At present, there are only limited molecular data on IBV strains from the sub-Saharan
region of Africa. Most of the information is from a recent study performed in Nigeria and
Niger. In the GenBank database, roughly three dozen full-length spike 1 (S1) gene sequences
and a single full-length genome sequence are available [32]. One of these S1 sequences was
assigned to the widely distributed GI-1 lineage, while the remainder sequences belong to
the GI-12 and GI-26 lineages, the latter representing the majority of strains with available
sequence information (n = 32). Until now, GI-12 strains (D274-like) were only reported in
Europe and Africa, whereas the lineage GI-26 represents a unique African group of IBVs
isolated in Niger and Nigeria [32–34].

The present study gives further insight into the genetic diversity of IBV in Africa using
archived samples. The study shows that in addition to the common lineages indigenous to
the region, Africa may also serve as a focal point of emerging new variants, a finding that
warrants more intensive surveillance on IB.

2. Materials and Methods
2.1. Virus Isolates

During 2013, as part of a surveillance program, samples from various industrial flocks
located in Cameroon, Ghana, and Ivory Coast were sent to the diagnostic laboratory of
CEVA-Phylaxia (Budapest, Hungary) to detect IBV. Molecular characterization of five
strains isolated on embryonated eggs was performed in 2020 when the strains were shared
with collaborating partners at the Veterinary Medical Research Institute. All isolates origi-
nated from broiler-type chicken (aged 27 to 60 days) with various clinical and pathology
backgrounds (Table 1).
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Table 1. Characteristics of infectious bronchitis virus (IBV) isolates whose genome sequence was
determined in this study.

Isolate Age (d) Organ of Isolation Country of Origin Clinical Features/Pathology Vaccination History against IBV Genotype of Study Strain

D2326/3/13/CM/2013 42 I Cameroon respiratory signs, diarrhea not vaccinated GI-14 (B1648-like)

D2326/4/13/CM/2013 60 I Cameroon respiratory signs: groans, snoring, mucoid
nasal discharge not vaccinated GI-14 (B1648-like)

D2328/15/3/13/GH/2013 27 CT Ghana respiratory signs: hard breathing, groans, nasal
discharges, digestive signs: green feces not vaccinated GI-19 (QX-like)

D2334/11/2/13/CI/2013 31 CT Ivory Coast nasal discharge, groans,
diarrhea, growth problem D1: H120 unique variant (GI-31)

D2334/12/2/13/CI/2013 45 CT Ivory Coast respiratory signs, diarrhea D1: H120, D28: Mass GI-16 (Q1-like)

CT—caecal tonsil; I—intestine.

2.2. Whole-Genome Sequencing

Viral isolates were passed through a 0.45 µm sterile filter (Nantong FilterBio Membrane
Co., Ltd., Nantong, China). Next, a mixture of nucleases was added to the sample to
eliminate free nucleic acids that could have interfered with the output of sequencing.
These steps of viral RNA enrichment were followed by extraction of viral RNA and then
sequence-independent amplification by using a random primed RT-PCR protocol. The
random amplified DNA was analyzed by electrophoresis in 1% agarose gel stained with
GelRed (Biotium, Hayward, CA, USA) and the obtained smear was excised and extracted
from the gel using the Gel/PCR DNA Fragments Extraction Kit (Geneaid Biotech Ltd.,
Taipei, Taiwan). Nucleotide sequences were determined by next-generation sequencing
on an Ion Torrent PGM (Life Technologies/Thermo Fisher Scientific, Waltham, MA, USA)
platform following the protocols described previously [35,36].

2.3. Sequence Data and Analysis Tools

The sequencing reads were trimmed based on quality and they were de novo assem-
bled into contigs by using Geneious Prime (Biomatters Ltd., Auckland, New Zealand).
Using the obtained contigs of various sizes, a BLAST (National Center for Biotechnology
Information, Bethesda) search against a virus database was performed to identify best-
matching IBV genomic sequences. Next, the reads were mapped to the available reference
sequences, and then, the consensus sequence was extracted. Reference S1 gene as well
as whole-genome sequences of IBV strains, including those from West Africa and Central
Africa, isolates were downloaded for comparison from the NCBI’s nucleotide sequence
database (https://www.ncbi.nlm.nih.gov/, accessed on 1 September 2021). The complete
consensus genomic sequences were deposited in the GenBank, with the accession numbers,
MZ325296 to MZ325300.

The prediction of open reading frames (ORF) was carried out using the ‘Find ORFs’
module implemented in Geneious Prime and the ORF-finder program (https://www.ncbi.
nlm.nih.gov/orffinder/, accessed on 1 August 2021). Multiple alignments were prepared
using the MAFFT algorithm in the Geneious Prime program. The full S1 sequences de-
termined in this study were aligned together with reference sequences representing 32
lineages within 6 genotypes and 26 unique variants, as recommended by Valastro and
coworkers [13]. Additionally, sequences representing the three newly identified GI-28,
GI-29, and GI-30 lineages and the two GVII and GVIII genotypes were also included in the
analyses [14–17].

A phylogenetic tree based on the S1 gene was constructed using the maximum likeli-
hood (ML) method with the general time-reversible (GTR) nucleotide substitution model
with a discrete gamma distribution (+G), assuming that a certain fraction of sites are evolu-
tionary invariable (+I) with 1000 bootstrap replicates in MEGA X. [37]. The percentages
of nucleotide and amino acid identities were obtained from pairwise distances calculated
in MEGA X with the p-distance method. A heatmap was generated with the use of the
Clustvis web tool (https://biit.cs.ut.ee/clustvis/, accessed on 15 September 2021) according
to Metsalu and Vilo (2015) [38].

Possible recombination events were screened by using the recombination detection
program 4 (RDP4, Version 4.97) [39]. A total of 100 complete genome sequences showing
the highest sequence similarity based on the BLAST search were downloaded from the

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/orffinder/
https://www.ncbi.nlm.nih.gov/orffinder/
https://biit.cs.ut.ee/clustvis/
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GenBank to perform this analysis. Furthermore, complete genome sequences of 12 vaccine
strains were selected according to the vaccination history of birds. To obtain a conser-
vative estimate, a recombination event would only be accepted if it was detected by
five or more methods implemented in the program, with a p-value less than 5 × 10−4.
The putative recombination events were further analyzed by using the SimPlot software
(Version 3.5.1) [40].

3. Results

The output of next-generation sequencing runs is depicted in Table 2. The length of
complete-genomes of the five study strains without the poly-A tail varied between 27,616
and 27,671 nucleotides (nt).

Table 2. Sequence length of ORFs.

Study Strains All Read Output Assembled Reads Assembled
Nucleotides

Mean Sequencing
Depth (X) Genome Size *

D2326/3/13/CM/2013 40,932 33,342 5,960,515 205 27,641
D2326/4/13/CM/2013 40,949 31,821 5,818,590 180 27,671

D2328/15/3/13/GH/2013 77,472 62,435 12,043,754 391 27,616
D2334/11/2/13/CI/2013 97,955 80,170 17,037,995 559 27,640
D2334/12/2/13/CI/2013 74,763 56,316 11,871,797 456 27,646

* Without poly-A tail.

The order of ORFs between the 5′ and 3′ untranslated regions (UTRs) was conserved
(5′-UTR-1a-1ab-S-3a-3b-E-M-4b-4c-5a-5b-N-6b-3′UTR). The two large polyproteins, 1a and
1ab, are proteolytically processed following translation to yield 15 functional proteins
(nsp2–nsp16). Variation in sequence length was seen in some ORFs (Table 3). Variable
genomic regions included ORF1a (range 11,829 to 11,862 nt), ORF1ab (19,863 to 19,896 nt),
spike protein gene (3498 to 3507 nt), ORF 3b (186 to 195 nt), envelope and membrane
protein genes (282–324 nt and 672–678 nt, respectively), ORF4b (201–285 nt), nucleocapsid
protein gene (1224–1230 nt) and ORF6b (222–225 nt). The ORF3a (174 nt), ORF4c (171 nt)
ORF5a (198 nt), and ORF5b (249) did not show a variation in sequence length.

Table 3. Sequence length of ORFs.

ORF Length (nt)

Study Strains 1a 1ab Spike 3a 3b Envelope Membrane 4b 4c 5a 5b Nucleocapsid 6b

D2326/3/13/CM/2013 11,841 19,875 3498 174 186 324 672 285 171 198 249 1230 225
D2326/4/13/CM/2013 11,862 19,896 3501 174 192 324 672 285 171 198 249 1230 225

D2328/15/3/13/GH/2013 11,829 19,863 3498 174 192 285 678 285 171 198 249 1224 225
D2334/11/2/13/CI/2013 11,850 19,884 3507 174 195 282 672 201 171 198 249 1230 222
D2334/12/2/13/CI/2013 11,862 19,896 3501 174 195 282 672 285 171 198 249 1230 222

The five study strains were also diverse in the deduced amino acid sequence of the cleavage
recognition site motif within the spike protein precursor (Figure 1). The S1 cleavage site of
the strains from Cameroon (D2326/3/13/CM/2013 and D2326/4/13/CM/2013) was Arg-
Arg-Thr-Arg-Arg (R-R-T-R-R). The putative S1 cleavage site motifs of the Ghanaian strain,
D2328/15/3/13/GH/2013, and the two strains from Ivory Coast, D2334/12/2/13/CI/2013
and D2334/11/2/13/CI, were His-Arg-Arg-Lys-Arg (H-R-R-K-R), Arg-Arg-Thr-Gly-Arg
(R-R-T-G-R) and Arg-Arg-Ser-Arg-Arg (R-R-S-R-R), respectively.

The phylogenetic classification based on the spike 1 (S1) protein-coding region [13]
identified three genotypes and a unique variant among the five study strains, includ-
ing two GI-14 strains (B1648-like; D2326/3/13/CM, D2326/4/13/CM) from Cameroon,
one GI-19 (QX-like; D2328/15/3/13/GH) from Ghana and one GI-16 strain (Q1-like;
D2334/12/2/13/CI) and a novel lineage (D2334/11/2/13/CI) from Ivory Coast. The
phylogenetic tree based on the S1 gene demonstrates that the D2334/11/2/13/CI strain
differs from strains belonging to other lineages and genotypes (maximum inter- and
intragenotype identities, nt, 67.58% and 78.84%, aa, 64.44%, and 78.6%, respectively;
Figures 2 and 3, Tables S1 and S2). Furthermore, this unique strain branched separately
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from the Nigerian GI-26 reference strain (nt and aa identities, 78.84%, and 76.24%, respec-
tively; Figure 3). Additional analyses failed to identify any recombination event when
comparing D2334/11/2/13/CI with a representative number (n = 112) of reference strains
(data not shown). Hence, we classified this strain as the first member of a new lineage,
designated tentatively as GI-31.
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To further investigate the genetic relationship among the study strains with a focus
on the novel variant, D2334/11/2/13/CI, other genomic regions were also analyzed.
The genome-wide pairwise nucleotide identity of this unique variant with 27 reference
sequences collected from the GenBank ranged between 85.9% and 92.4%, sharing the
highest nucleotide identity with a Belgian strain, B1648. The nucleotide identity compared
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to the single complete genome sequence available from West Africa (NGA/A116E7/2006,
lineage GI-26) was 91.3%. The unique variant, D2334/11/2/13/CI, showed the highest
complete genome sequence identity (94.6%) with another study strain from Ivory Coast
(D2334/12/2/13/CI). An overview of genome-wide nucleotide identity values among the
five study strains is shown in Table 4. The genome-based identity among the remaining
African strains originating from other regions ranged from 91.3% to 88.3%.

Table 4. Complete genome nucleotide identity matrix of study strains.

D2334/11/2/13/CI D2334/12/2/13/CI D2326/4/13/CM D2326/3/13/CM D2328/15/3/13/GH

D2334/11/2/13/CI
D2334/12/2/13/CI 94.58
D2326/4/13/CM 91.42 91.62
D2326/3/13/CM 91.35 91.55 99.37

D2328/15/3/13/GH 90.23 90.05 89.15 89.12

The pairwise nucleotide comparisons between the 13 ORFs and the 15 nsps of the
unique variant with the newly assigned 4 IBV isolates and the other 27 strains obtained
from the GenBank database are depicted in Figure 4. The unique variant strain shared the
highest nucleotide identity with the other Ivorian strain (D2334/12/2/13/CI) in the case
of seven out of thirteen (7/13) ORFs (ORF 3b, 4c, 5a, 5b, 6b, membrane, and nucleocapsid
protein genes) and nine out of fifteen (9/15) nsps (nsp2-nsp5, nsp9-nsp14). Four nsps
(nsp6-nsp8, nsp15) and the ORF 4b shared the greatest sequence identity with the newly
determined Ghanaian strain (D2328/15/3/13/GH). The nsp16 of the novel lineage was
the most identical (93.4%) to a TCoV strain (KR822424/TCoV/FR/2008). ORF 3a was
most similar (97.1%) to another African strain (KP662631/ZA/2011). The envelope protein-
coding gene was mostly identical (92%) to the Nigerian strain (FN430415/NG/2006). In
the similarity matrix, we added some turkey origin coronaviruses (TCoVs) because BLAST
analyses showed a high degree of sequence identity between study strains and TCoV
strains in the replicase complex (nsp2-nsp16), membrane (M), 5b and nucleocapsid (N)
genes with a >90% (up to 96.9%) sequence identity for each (Figure 4) [41–43].
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deep red color that converts to orange, yellow, and deep green with increasing distance. White boxes
indicate that no 6b protein is encoded.
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4. Discussion

The aim of the present study was to characterize IBV strains originating from Western
and Central Africa. IB is among the major viral respiratory and reproductive diseases of
chickens affecting poultry production in parts of Africa. Yet, the epidemiological situation
of IBV, particularly in the tropical countries of the sub-Saharan region, is still unexplored
due to a lack of optimized surveillance programs and the absence of adequate sequence
data from the circulating strains. The availability of study strains from a single year, 2013,
illustrates well the lack of surveillance efforts.

The majority of information on the genetic diversity of IBV variants circulating in
Africa comes from North African countries, such as Egypt, Morocco, and Tunisia, where
besides the widely distributed GI-1 (Mass, H120), GI-13 (4/91, CR88, 793B), GI-16 (Q1-
like) and GI-19 (QX-like) strains, GI-12 (D274-like), GI-21 (Italy 02) and GI-23 (Variant
2) strains were also reported [44–51]. In other parts of the continent, data on IBV strain
diversity is scarce. Nonetheless, GI-13 and GI-19 IBV strains were detected lately in
Algeria, GI-19 in Ghana, and some IBV variants were reported in recent years from Libya
and Ethiopia [52–56]. Strains belonging to GI-12, GI-14, GI-16, GI-19, GI-23, and GI-26
lineages were isolated from Nigeria [20, unpublished GenBank records]. Additionally,
studies reported the circulation of lineages GI-1, GI-13, and GI-19 from South Africa and
Zimbabwe [48,57]. Our study extends the knowledge of circulating IBV strains, even if both
temporal and spatial representation of study strains were limited. We identified lineage
GI-14 strains from Cameroon, a GI-16 from Ivory Coast, and a GI-19 strain from Ghana as
well as a putative novel lineage from Ivory Coast, a genetic variant that can be differentiated
from other lineages by sequence identity and phylogenetic analyses.

The S1 protein, being responsible for the attachment to the host cells is involved
in tissue tropism, pathogenicity, and virus neutralization; yet, the association between
viral genetic features and clinical disease has not been unequivocally demonstrated for
IBV [58]. Analyses of the S1 protein showed that the primary structure of its cleavage
recognition site is not associated with the genotype or serotype specificity. Moreover,
it seems to be irrelevant to the viral pathogenicity and tissue tropism, although this re-
gion of the protein shows a continuous evolution in various IBV strains [58,59]. In this
study, four sequence variants of the S1 protein cleavage recognition motif were found
among the five isolates. The S1 cleavage site motif of GI-14 strains from Cameroon
(D2326/3/13/CM/2013 and D2326/4/13/CM/2013) was shared with the motif of lin-
eage GI-23 strains from Egypt, Iran, and Poland [34,60–62]. The S1 cleavage site motifs
of the Ghanaian GI-19 strain (D2328/15/3/13/GH/2013) and the GI-16 strain from Ivory
Coast (D2334/12/2/13/CI/2013) were commonly observed in other isolates with shared
genetic lineages [63,64]. The unique strain isolated in Ivory Coast (D2334/11/2/13/CI)
has a cleavage recognition site of Arg-Arg-Ser-Arg-Arg (R-R-S-R-R), and might be an
ancient and common cleavage site motif that was observed in numerous IBV genotypes
and serotypes and even in other coronaviruses (such as alpha-, beta-, and gammacoro-
naviruses) [58,62,65]. The S1 gene serves as the basis of subgenotype classification with
29 published lineages and at least 26 unique variants within genotype GI IBVs. It is clear
that multiple S1-gene-based lineages of genotype GI IBVs may cause a particular disease
and the same clinical signs may be caused by different lineages. Regarding the widely
distributed African lineages, in previous reports, genotype GI-14 strains were characterized
as being nephropathogenic and causing egg production problems [66]. Lineage GI-16
was linked to respiratory syndrome, nephropathogenic disease, and severe drops in egg
production [32,67–69]. GI-19 IBV strains were associated with respiratory and intestinal
signs as well as with disorders of the urinary and reproductive tracts [70–73]. All study
strains from West and Central African countries, including the tentative lineage GI-31
strain, were isolated from flocks showing respiratory disease with or without diarrhea. The
question of why a particular clinical manifestation dominates in IB outbreaks seems to be a
complex question and, in addition to the viral genotypes, it may involve host immunologic
and genetic factors that need to be determined.
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In summary, this survey demonstrates that common IBV lineages indigenous to
Central and Western Africa circulated in the mid-2010s and showed that the study region
may serve as a focal point of emerging new variants, a finding that warrants more intensive
surveillance on IB in the tropical countries of Africa.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/life12040475/s1, Table S1: Pairwise nucleotide identity matrix of
the S1 genomic region between the reference strains; Table S2: Pairwise amino acid identity matrix of
the S1 genomic region between the reference strains.
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