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In many parts of the world, the prevalence of obesity is increasing at an alarming rate. The association between obesity, multiple
comorbidities, and increased mortality is now firmly established in many epidemiological studies. However, the link between
obesity and exercise intolerance is less well studied and is the focus of this paper. Although exercise limitation is likely to
be multifactorial in obesity, it is widely believed that the respiratory mechanical constraints and the attendant dyspnea are
important contributors. In this paper, we examined the evidence that critical ventilatory constraint is a proximate source of exercise
limitation in individuals with mild-to-moderate obesity. We first reviewed existing information on exercise performance, including
ventilatory and perceptual response patterns, in obese individuals who are otherwise healthy. We then considered the impact of
obesity in patients with preexisting respiratory mechanical abnormalities due to chronic obstructive pulmonary disease (COPD),
with particular reference to the effect on dyspnea and exercise performance. Our main conclusion, based on the existing and rather
sparse literature on the subject, is that abnormalities of dynamic respiratory mechanics are not likely to be the dominant source of
dyspnea and exercise intolerance in otherwise healthy individuals or in patients with COPD with mild-to-moderate obesity.

1. Introduction

The prevalence of obesity is increasing at a remarkable rate
in the Western world and this has major negative health
and economic ramifications [1, 2]. Obesity is clearly linked
to multiple comorbidities and is an independent risk factor
for reduced survival [3, 4]. Obesity is also associated with
reduced activity levels [5] and this, in turn, is associated
with increased risk for comorbidities which include skeletal
muscle deconditioning, insulin resistance, and cardiovascu-
lar disease [6, 7]. Of interest, obese individuals who remain
active appear to have lower morbidity and mortality than
normal weight individuals who are sedentary [8]. A better
understanding of the nature and source of exercise intoler-
ance in obesity is required if we are to offer more effective
treatment for this increasingly common health problem.
The mechanisms of activity restriction in obesity are likely

to be multifactorial but the role of respiratory impairment
and the associated respiratory discomfort is thought to be
important. This paper will focus on the respiratory factors
that may influence exercise capacity in individuals with
mild-to-moderate obesity based on body mass index (BMI)
criteria (mild/class I (30-34.99 kg/m?) and moderate/class II
(35-39.99 kg/m?)) [9, 10]. We examine how obesity affects
the function of the respiratory system during the physi-
ological stress of exercise in otherwise healthy individuals
and in patients with preexisting respiratory impairment
from COPD. Our paper does not include consideration
of mechanisms of exercise intolerance in obese individuals
who seek medical attention because of other symptoms or
comorbidities, or in those with morbid obesity (class III
(>40kg/m?)), who may have additional abnormalities of
ventilatory control.
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2. Challenges in Obesity Research

The accurate interpretation of the existing literature on
exercise physiology in obesity presents many challenges,
particularly when it involves within-group comparisons of
obese subjects or comparisons with age-matched normal
weight individuals. While classifications of obesity by BMI
are widely accepted, greater anthropometric refinement is
needed to better describe obesity “phenotypes” [14]. Thus,
studies that exclusively rely on BMI to define obesity can
make it difficult to make definitive conclusions regarding
physiological effects. Body composition (including fat free
mass), fat distribution patterns, and visceral fat can be quan-
tified by DEXA scanning [11], hydrostatic methods [15], and
various radiographic imaging and bioimpedance techniques
[16]. Information about fat distribution patterns (central
versus peripheral) may also be inferred from calculations of
waist circumference, height: weight and waist: hip ratios, and
among other methods [16, 17].

It has been suggested that the effect of obesity on
respiratory mechanics may depend to some extent on
adipose tissue distribution patterns, which can vary greatly
among individuals with the same BMI [18-21]. However, a
recent study by Babb et al. [17] showed that the differences in
respiratory mechanics (i.e., reduction in end-expiratory lung
volume (EELV)) correlated as strongly with the increase in
BMI as with cumulative chest wall fat or regional chest wall
fat distribution patterns.

Any study on the effect of obesity on exercise perfor-
mance should also consider important confounders such
as habitual activity levels (which influence fitness levels)
and the possible presence of medical comorbidities (muscu-
loskeletal, endocrine, and cardiovascular problems). A final
consideration in assessing exercise performance in obesity is
the exercise testing modality that is selected. The increased
metabolic cost of weight-bearing exercise in obesity (e.g.,
walking) is amplified for a given external work rate when
compared with weight-supported cycle exercise [22]. For this
reason, it is possible that the obese subjects may perform
better with cycle exercise compared with treadmill exercise
tests, which more closely resemble daily activities.

3. Cardiorespiratory Fitness in Obesity

Peak oxygen uptake (VO,) is widely used as a measure of
aerobic capacity and cardiorespiratory fitness. Controversy
still exists as to the best way to express peak VO, in
obesity, that is, in absolute (L/min) or relative (mL/kg/min
or mL/kg fat free mass (FFM)/min) terms or as a percentage
of predicted normal. Peak VO, expressed in relative terms
may underestimate cardiorespiratory fitness in comparison
with normal weight individuals because of the higher weight
denominator in obesity [23]. Lean body mass (or FFM) and
skeletal muscle hypertrophy may be increased in the obese
as an adaptation to the sustained mass loading effect from
excessive adipose tissue [17, 24]. Lorenzo and Babb have
recently suggested that peak VO, should be expressed as
percent predicted, rather than in absolute or relative terms,
when assessing cardiorespiratory fitness in obese individuals
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[23]. These investigators advocated the use of the predictive
VO, equations of Wasserman et al. [25] for men and of
Riddle et al. [26] for women. In addition to adjusting for
age and height, these formulae consider ideal body weight
[25, 26] and the increased metabolic cost of unloaded cycle
exercise (i.e., 6 mL O,/min/kg of excess body weight) [25].

Most studies expressing peak symptom-limited VO, in
absolute terms or as % predicted have concluded that,
contrary to expectations, cardiorespiratory fitness is gen-
erally in the normal range in individuals with mild-to-
moderate obesity [11, 23, 27-29]. Peak work rate measured
during incremental cycle exercise may be diminished or
fall within the lower range of normal [11, 25, 30]. Other
indices of cardiorespiratory fitness such as peak oxygen pulse,
submaximal heart rate responses, and anaerobic/ventilatory
threshold are generally within the normal range in moderate
obesity [31]. The corollary is that the determinants of peak
VO, (i.e., cardiac output and the arteriovenous oxygen
content difference) are also generally preserved in the obese.
Preservation of peak symptom-limited VO, also suggests
that the respiratory impairment is not a proximate source
of exercise limitation in otherwise healthy eucapnic obese
subjects (see below).

4. Respiratory Consequences of Obesity at Rest

The mass loading effects of excess adipose tissue on the chest
wall and abdomen results in reduced compliance (increased
stiffness) of the relaxed respiratory system [32-35]. While
early physiological studies emphasized the contribution of
reduced chest wall compliance [32], more recent studies in
anesthetized subjects highlight the significant contribution
of reduced lung compliance [35, 36]. Thus, excessive bibasal
airway closure and air trapping [37], diffuse heterogeneous
microatelectasis, and relatively increased intrathoracic blood
volume [38] collectively increase static lung elastic recoil
pressure [34]. The net effect of these obesity-related changes
on lung and chest wall compliance is a resetting of the
relaxation volume (functional residual capacity (FRC) or
EELV) of the respiratory system to a lower volume than pre-
dicted in normal weight individuals [9, 29, 36]. Since resting
EELV is lower, tidal volume becomes positioned closer to the
lower nonlinear and less compliant extreme of respiratory
system’s sigmoid-shaped pressure-volume relation. Reduced
respiratory system compliance contributes to increased work
and oxygen cost of breathing in moderate obesity [39].

The reduced EELV in obesity also means that the airways
resistance is proportionately increased [40], in absolute
terms [41], reflecting the reduced airway diameter compared
with normal weight individuals. It is noteworthy that when
the volume differences in health and obesity are accounted
for as with measurements of specific airway resistance or
specific conductance, this difference in airway resistance
disappears [40, 42, 43]. In obesity, closing volume may
occur at volumes above the lower EELV [37, 44—46]; thus,
significant airway closure and gas trapping may occur in
basal lung segments during the quiet tidal breathing cycle.
The diminished expiratory reserve volume (ERV) in obesity
compared with normal weight individuals means that the
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lung volume at the end of quiet tidal expiration (EELV)
and following forced expiratory efforts (i.e., residual volume
(RV)) are quite similar [9] (Figure 1).

5. Effect of Obesity on Pulmonary
Function Measurements

5.1. Lung Volumes and Spirometry. Jones and Nzekwu
demonstrated an exponential relationship between increas-
ing BMI and decreasing EELV and ERV in a healthy popula-
tion [9]: these static volume components show the steepest
rates of decline within the overweight and mild obesity
categories (Figure 2). The decline in RV with increasing BMI
is relatively less than that of EELV [9, 11] and in some studies
falls within the normal range [47, 48]. Total lung capacity
(TLC) may decline modestly with obesity [9, 28, 49, 50].
RV/TLC may be increased in obesity reflecting air trapping
secondary to increased volume-dependent airway closure
[9, 41, 51], although Jones and Nzekwu found no significant
difference in this ratio between BMI groups [9]. Vital
capacity (VC) may decline as BMI increases but generally
into the lower normal range [9, 48, 50, 52]. However, the
inspiratory capacity (IC) and the IC/TLC ratio increase with
increasing the BMI reflecting the relative preservation of TLC
in the presence of decreased EELV [9, 53].

Spirometric forced expiratory volume in 1 second
(FEV,), which is strongly influenced by VC, is variably
affected by obesity but is usually in the lower range of
normal [52, 54-56]. The FEV,/FVC ratio is generally normal
or slightly elevated [20, 40, 41, 54, 55]. Even though
plethysmographically-determined airway resistance, when
corrected for alveolar volume, is similar in obese and lean
individuals, there is evidence of increased peripheral airway
resistance in the obese. Thus, expiratory flow rates in
the mid-volume VC range may be diminished in obesity
reflecting volume-dependent small airway dysfunction [41,
57] (Figure 1). Expiratory flow limitation, as measured by
the negative expiratory pressure technique, is present in some
patients with moderate and morbid obesity during resting
breathing [11, 41, 58]. Positive end-expiratory pressures have
been documented in some patients with moderate obesity in
the supine posture [56].

5.2. Pulmonary Gas Exchange. The effect of obesity on
the diffusing capacity of the lung for carbon monoxide,
a measure of the alveolar-capillary surface area for gas
exchange, is somewhat variable but the majority of studies
report normal values [33, 50, 57, 59, 60]. An increased value
may reflect the increased intrathoracic blood volume in
obesity [9, 50, 61, 62].

Pulmonary gas exchange at rest is within normal limits in
most cases. Ventilation/perfusion (V/Q) inequalities may be
presented (i.e., lung units with low V/Q ratios), particularly
at the lung bases, and aggravated by gravity-dependent
effects in the supine posture [45]. Widening of the alveolar-
to-arterial O, tension gradient at rest becomes clinically
significant, only in those with morbid obesity [63].

5.3. Respiratory Muscle Function. Static strength of the inspi-
ratory and expiratory muscles has generally been reported
to be within the normal range in mild-to-moderate obesity
[64, 65]. The work of breathing is increased by 3-4 fold
in moderate obesity [39] and this, in turn, may serve as
an intrinsic stimulus to train the respiratory muscles. Thus,
static inspiratory muscle strength may be preserved or even
increased, despite the restrictive mechanics of obesity. Less
information is available on the mechanical efficiency and
endurance of the respiratory muscles in moderate obesity.
The finding of an increased O, cost of breathing, relative
to the mechanical work of breathing, in obesity suggests
significant mechanical inefficiency as a result of excessive
adipose tissue on the chest wall and abdomen [15, 66].
Respiratory muscle function may be compromised in morbid
obesity and, in some studies, improves after bariatric surgery
[67]. However, little is known about the effect of weight loss
on the respiratory muscle function in the moderately obese.

6. Ventilatory Demand
and Dynamic Mechanical Responses
during Exercise in Obesity

Ventilatory requirements are increased during exercise
reflecting the higher metabolic cost (increased VO, and
VCO;) of external work [11, 22, 28, 68-73] (Figure 3).
Despite the higher ventilatory demand, there are preliminary
data to suggest that there is adequate ventilatory reserve
at peak exercise in obese participants [74]. The upward
parallel shift in the VO,/work rate slope in obesity is
explained by the increased metabolic requirements of lifting
heavy limbs during cycling [22, 69]. It is likely that VCO,
for a given power output and therefore, the ventilatory
demand is higher during weight-bearing (i.e., walking) than
weight-supported cycle exercise [22]. No detailed studies of
pulmonary gas exchange using arterial sampling are available
in individuals with mild-to-moderate obesity. Noninvasive
assessments using end-tidal CO, (etCO,) measurements in
such individuals suggest that, in contrast to those with
morbid obesity [75], the compensatory hyperventilation
response at the end exercise is similar to that of normal
weight individuals [11]. There is a little evidence to suggest
that other factors known to stimulate Vg are more prominent
in obesity compared with normal weight individuals, for
example, high physiological dead space, critical arterial
O, desaturation, alterations in the set point for CO»,
earlier metabolic acidosis (secondary to deconditioning),
or increased metaboreceptor stimulation from the active
peripheral muscles during exercise.

Operating lung volumes and breathing pattern during
cycle exercise are different in obese and normal weight
individuals partly reflecting the restrictive mechanical effects
of truncal and abdominal obesity [11, 28, 76]. Because EELV
(and ERV) is lower at rest and throughout exercise in the
obese, there is a propensity for expiratory flow limitation
and increased gas trapping during the increased ventilation
of exercise [11] (Figure 4). This dynamic increase in EELV
may actually convey a mechanical advantage: tidal volume



Pulmonary Medicine

4
8
100 1
6 -
Q
= 80 - IC 47
3
ks 1C 2
= —
L »
& 60 1 )
g : 0
b ]
é ERV B = 5
g
g -4
=
S —FRC
2 6
b3
-8

Volume (L)

--- Normal weight
— Obese

(a)

(®)

FIGURE 1: (a) Static lung volumes measured by body plethysmography are shown at rest: expiratory reserve volume (ERV) and functional
residual capacity (FRC) are decreased, and inspiratory capacity (IC) is increased in the obese (OB) group compared with the normal weight
(NW) group of healthy adults. (b) Maximal and tidal flow-volume loops are shown at rest in normal weight (dashed lines) and obese (solid
lines) subjects. In obesity, tidal flow-volume loops are shifted rightwards and maximal midexpiratory flow rates may be reduced resulting in
greater expiratory flow limitation during resting breathing. RV: residual volume.

becomes positioned on a more compliant portion of the
respiratory system’s pressure-volume relation, thus avoiding
the lower alinear extreme [11]. Moreover, expiratory flow
limitation may be attenuated as dynamic EELV approaches
the predicted relaxation volume of the respiratory system,
that is, “pseudonormalization.” The dynamic increase in
operating volumes, together with the naturally increased
intra-abdominal pressures in obesity [47], may favorably
alter the operating characteristics of the diaphragm to
enhance its force-generating capacity.

Breathing pattern responses to incremental cycle exercise
are usually slightly more shallow and rapid in obese com-
pared with normal weight individuals [11, 28, 71, 77]. The
larger resting IC and inspiratory reserve volume (IRV) means
that obese subjects can accommodate increases in EELV
without end-inspiratory lung volume prematurely encroach-
ing on the TLC; thus, Vr expansion is not more mechanically
constrained during exercise compared with normal weight
individuals (Figure 4). Adoption of a more rapid, shallow
breathing pattern during exercise may simply be a behavioral
compensatory adaptation to minimize the elastic work of
breathing and attendant unpleasant respiratory sensation
[78].

7. Exertional Symptoms in Obesity

Exertional symptoms may, in some cases, limit exercise
performance before physiological maxima are reached and
must therefore be considered in any assessment of exercise
performance [31]. Intensity ratings of perceived respiratory
discomfort and leg discomfort have been shown to be

higher for a given external power output during cycle
exercise in obese compared with normal weight subjects
[11]. This suggests that mass loading of both the respira-
tory and peripheral skeletal muscles in the obese requires
increased motor output (and contractile muscle effort) to
drive these two muscle groups in tandem. The increased
intensity of breathing discomfort likely reflects the increased
chemostimulation and central neural respiratory drive to
the respiratory muscles (and increased central corollary
discharge to the somatosensory cortex) [79, 80] secondary
to the relatively increased VCO, for a given power output
in obesity (Figure 3) [11, 81]. Babb et al. [71] have shown
that increased dyspnea intensity ratings during exercise in
a subgroup (37%) of women with moderate obesity was
related to increased oxygen cost of breathing, measured
during eucapnic voluntary hyperpnea at rest. Pulmonary
function, fat distribution, peak VO,, and indices of respi-
ratory mechanics, including work of breathing, were not
different in the dyspneic and nondyspneic subgroups. The
precise mechanistic linkage between increased dyspnea and
increased O, cost of breathing in this subset of obese women
was not determined.

In the study of Ofir et al. [11], the dyspnea inten-
sity/ventilation (V) relation during exercise was not affected
by obesity, suggesting that mechanical factors are less
important in contributing to dyspnea. Thus, if increased
mechanical loading of the respiratory muscles in obesity was
an important contributor to dyspnea, one would anticipate
that dyspnea intensity would be increased for a given Vg [78].
The authors have postulated that the physiological effects of
obesity such as adoption of a more rapid, shallow breathing
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Figure 2: FRC and ERV decreased exponentially with increasing BMI in adult patients with normal airway function (for both regressions,
r? = 0.49 and P < 0.0001). The horizontal lines for FRC are the average upper limit of normal (ULN) and lower limit of normal (LLN) for

men and women, from Jones and Nzekwu [9].

pattern (an appropriate compensation for increased elastic
loading), resting IC recruitment, and “pseudonormalization”
of EELVmay collectively serve to mitigate the expected rise
in dyspnea intensity for a given Vg during exercise (Figures
3 and 4). The main conclusion of that study was that the
increased dyspnea intensity for a given power output in obese
individuals was primarily related to the increased ventilatory
requirements and the corresponding increased central neural
drive. Obesity-related abnormalities of dynamic respiratory
mechanics were thought to be less important.

8. Respiratory Consequences of
Obesity in COPD

COPD, a chronic smoking-related disease of the airways,
lung parenchyma, and pulmonary vasculature, is also
increasing in prevalence worldwide [82]. Obesity and COPD
often coexist in an increasing number of patients and
this may have major implications for health care utiliza-
tion [83]. Reported prevalence of obesity in COPD varies
from 18% in the Netherlands [84], 25% and 27% in
South America [85] and Canada [86], respectively, to as
much as 54% in California [87], and may exceed obesity
prevalence in the general population [84, 87, 88]. In the
general population, obesity is an established risk factor for
reduced life expectancy, independent of smoking status [89].
Paradoxically, epidemiological studies have shown that the
patients with advanced COPD who are overweight or mildly-
to-moderately obese have a survival advantage compared
with underweight patients [90-92]. This “obesity paradox”
has also been described in other chronic diseases (chronic

heart failure, rheumatoid arthritis, and chronic renal disease)
but the protective mechanisms are unknown [93]. It is
noteworthy that this reduced risk of mortality was not
observed in obese patients with milder COPD [91] and that
subgroups of COPD patients with more severe obesity are
at a greater risk of death due to respiratory failure than
normal weight COPD [94]. At first glance, the imposition
of the restrictive mechanical constraints of obesity on
patients with preexisting expiratory flow limitation and lung
hyperinflation should have detrimental effects on exercise
performance, but recent studies suggest that this is not always
the case (see below).

9. Effects of Increasing BMI on Resting
Pulmonary Function in COPD

In COPD, as in health, there is an exponential relation
between increasing BMI and decreases in EELV and ERV
[12]. This volume reduction effect occurs across all severity
stages of airway obstruction and is seen even as BMI increases
from normal weight to the overweight range (Figure 5).
TLC and RV are relatively less affected by the increasing
weight in COPD [12, 13, 95]. Importantly, as in health, the
resting IC (and the IC/TLC ratio) increases in response to
increasing BMI across all severity stages, reflecting the greater
reduction in EELV relative to TLC. As already mentioned
in relation to health [11], recruitment of IC and reduction
in operating lung volumes (in absolute terms) are also
potentially advantageous from a mechanical standpoint in
the obese COPD patient [95]. Moreover, since a higher
IC/TLC ratio (>25%) is an established favorable prognostic
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and dyspnea intensity are shown to be relative to cycle work rate in normal weight (NW) and obese (OB) women. Relationships between
dyspnea intensity and ventilation during exercise were similar in OB and N'W, thus, increased dyspnea ratings at a given work rate in OB
reflected the higher ventilator requirements at that work rate. Values are means = SEM. *P < 0.05 OB versus NW at a given work rate. Data

from Ofir et al. [11].

indicator in COPD, it is interesting to speculate that higher
BMI may also be advantageous in this respect [96].

10. Impact of Obesity on Exercise
Performance in COPD

As in health, metabolic and ventilatory requirements are
elevated for a given power output during cycle exercise in
obese compared with normal weight COPD patients [13,
95] (Figure 6). A recent study which compared exercise
endurance time during high intensity constant work rate
cycle exercise showed no differences between normal weight,
overweight, and obese groups of patients with moderate-to-
severe COPD [97]. In that study, patients in the overweight
and obese groups had a higher peak VO, in L/min than
normal weight patients. Studies comparing obese with
normal weight COPD groups matched for FEV, found that
peak VO, (%predicted based on ideal body weight) during
incremental cycle exercise was similar or greater in the
obese [13, 95]. Additionally, there was no evidence of CO,
retention, based on ETCO, measurements, at the sympom-
limited peak of exercise. Thus, contrary to expectations,
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FIGURE 4: Operating lung volumes from rest-to-peak exercise are
shown in normal weight (NW) and obese (OB) women. End-
expiratory lung volume (EELV) increased by 0.38 L during exercise
in OB but did not change in the NW subjects. Inspiratory reserve
volume (IRV) was greater at rest and throughout exercise in OB
women but was not statistically different at the peak of exercise.
TLC: total lung capacity, IC: inspiratory capacity, Vr: tidal volume
(shaded area), from Ofir et al. [11].
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the presence of obesity could not be shown to be a
disadvantage, in terms of cycle exercise capacity in COPD
[13,95].

In COPD, the resting IC and IC/TLC ratio are important
predictors of peak ventilation during symptom-limited exer-
cise [98-100]. In patients with expiratory flow limitation, the
IC represents the operating limits for Vr expansion during
physical activity. The greater the resting lung hyperinflation,
the lower the IC and, therefore, the lower the ventilation
at which Vr reaches its plateau (or maximal value) having
encroached on the minimal dynamic IRV [101]. The V¢/Vg
plateau, or inflection point, occurs at an IRV of 0.5-1.0L
below TLC and is an important mechanical event during
exercise in COPD. This event marks the beginning of an
ever widening disparity between central neural drive and
the mechanical/muscular response of the respiratory system,
that is, neuromechanical uncoupling [102]. At this point,
dyspnea intensity escalates sharply towards intolerable levels
and the distressing sensation of “unsatisfied inspiration”
displaces “increased breathing effort” as the dominant
qualitative descriptor [103]. The increased resting IC and
IRV in obese COPD patients may mean that they can exercise
to a higher Vg before the Vr inflection or plateau occurs
(Figure 7) the escalation of dyspnea to intolerable levels is,
therefore, delayed.

In obese COPD, dyspnea intensity ratings were not
increased at any given VO, or Vg, compared with FEV,-
matched normal weight COPD patients (Figure 8) [13,
95]. How is it possible for obese patients with COPD to
accommodate the relatively higher ventilatory requirements
of physical work without experiencing greater respiratory
discomfort and earlier exercise limitation than normal

weight COPD patients? Based on small mechanical studies,
we have postulated that a number of factors may mitigate the
increase in dyspnea intensity for a given Vg in these patients
with combined restrictive-obstructive problems [13, 95].
These factors which occur in highly variable combinations
include: (1) increased static elastic lung recoil pressure in
obese COPD, compared with normal weight COPD, may
result in larger increases in the driving pressure for tidal
expiratory flows during rest and exercise; (2) increased
resting IC and the lower operating lung volumes may
convey mechanical advantages for the respiratory muscles,
particularly the diaphragm, during exercise; (3) increased
intra-abdominal pressures in obesity may also improve
diaphragmatic function by forcing a more cephaloid position
of this muscle at the onset of inspiration; (4) regional recruit-
ment of lung volume (and hitherto closed airways) secondary
to acute increases in EELV during exercise may attenuate
the increased resistance as respired flow rates increase;
(5) increased dynamic EELV may improve pulmonary gas
exchange (as indicated by lower VE/VCO, ratios) to a greater
extent than in normal weight COPD patients.

The question arises whether the presumed mechanical
advantages of obesity in COPD, which preserve cycle exercise
tolerance, are also applicable to weight-bearing exercise.
Bautista et al. [104] showed that obese (BMI = 37 kg/m?)
patients with COPD had reduced six minute walk distance
compared with an FEV;-matched normal weight COPD.
The mechanisms for the poorer walking performance in
the obese group were not ascertained: peak VO,, Vg, and
cardiopulmonary responses during the tests were similar in
both groups.

Comparisons of treadmill and cycle exercise in normal
weight COPD have shown greater arterial O, desaturation
and a higher VO, for a given work rate during treadmill
compared with cycle exercise [105, 106]. On the other hand,
selective stress on the quadriceps muscle during cycling
forces an earlier metabolic acidosis with accompanying
ventilatory stimulation, which improves pulmonary gas
exchange relative to treadmill exercise [105]. These differ-
ences in pulmonary gas exchange and in metabolic loading
across exercise modalities may be further exaggerated in
obese COPD and may influence perceptual responses during
exercise, but this remains conjectural. Future treadmill-
cycle comparison studies, where the increase in work rate
is standardized, are needed to determine if the putative
mechanical advantages of obesity in COPD during cycling
are also evident during weight-bearing exercise.

11. Summary

The influence of obesity on physiological and perceptual
responses to exercise is an important topic, given the
ever-increasing, worldwide prevalence of this condition.
Contrary to expectation, there is increasing evidence that
cardiorespiratory fitness, as assessed by peak symptom-
limited VO, (expressed as %predicted using ideal body
weight), is generally preserved in otherwise healthy indi-
viduals with mild-to-moderate obesity. This preservation
of exercise capacity occurs despite the presence of such
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obesity-related factors as mild-mechanical restriction and
increased expiratory flow limitation/gas trapping, together
with increased metabolic/ventilatory demands during phys-
ical exertion. We have argued that an increased IC and
compensatory-breathing pattern adaptations may minimize
the increased elastic work of the respiratory muscles in
obesity. In turn, these factors may mitigate the expected
increase in dyspnea intensity for a given ventilation during
exercise in the obese. Exertional dyspnea in the obese appears
to be closely related to the increased ventilatory demand and
higher CO, output during physical work.

Similarly, the presence of mild-to-moderate obesity in
patients with COPD appears to have little deleterious effect
on peak VO,. Again, we have proposed that the larger IC and
lower operating lung volumes throughout rest and exercise
in obese COPD patients (compared with normal weight
FEV|-matched patients) convey a mechanical advantage for
the respiratory muscles. This allows obese COPD patients
to accommodate the increased ventilatory requirements of
a standardized physical task without experiencing greater
respiratory discomfort. Collectively, these recent small phys-
iological studies challenge the commonly held belief that
critical respiratory mechanical constraints due to obesity
importantly contribute to increased dyspnea and exercise
intolerance in both health and disease. Future studies are
needed to better elucidate the complex and multifactorial
nature of daily activity restriction in obesity, particularly the
interaction between pulmonary and nonpulmonary factors
(e.g., metabolic and musculoskeletal abnormalities) which
may be more important than previously realized.
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