
 Current Genomics, 2012, 13, 225-244 225 

 

From Genotype × Environment Interaction to Gene × Environment 
Interaction  

Jose Crossa* 

Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 
06600 Mexico, D.F., Mexico 

Abstract: Historically in plant breeding a large number of statistical models has been developed and used for studying 
genotype × environment interaction. These models have helped plant breeders to assess the stability of economically 
important traits and to predict the performance of newly developed genotypes evaluated under varying environmental 
conditions. In the last decade, the use of relatively low numbers of markers has facilitated the mapping of chromosome 
regions associated with phenotypic variability (e.g., QTL mapping) and, to a lesser extent, revealed the differetial response 
of these chromosome regions across environments (i.e., QTL × environment interaction). QTL technology has been useful 
for marker-assisted selection of simple traits; however, it has not been efficient for predicting complex traits affected by a 
large number of loci. Recently the appearance of cheap, abundant markers has made it possible to saturate the genome 
with high density markers and use marker information to predict genomic breeding values, thus increasing the precision of 
genetic value prediction over that achieved with the traditional use of pedigree information. Genomic data also allow 
assessing chromosome regions through marker effects and studying the pattern of covariablity of marker effects across 
differential environmental conditions. In this review, we outline the most important models for assessing genotype × 
environment interaction, QTL × environment interaction, and marker effect (gene) × environment interaction. Since 
analyzing genetic and genomic data is one of the most challenging statistical problems researchers currently face, different 
models from different areas of statistical research must be attempted in order to make significant progress in 
understanding genetic effects and their interaction with environment. 
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INTRODUCTION 

 The presence of genotype × environment interaction 
(GE) in plant breeding multi-environment trials (MET) is 
expressed either as inconsistent responses of some genotypes 
relative to others due to genotypic rank change or as changes 
in the absolute differences between genotypes without rank 
change (i.e., heterogeneity of within-site variance). Several 
models are commonly used for describing the mean response 
of genotypes across environments and for studying and 
interpreting GE in agricultural experiments: linear models, 
bilinear models, and linear-bilinear models. Fixed-effect 
linear-bilinear models, such as the Sites Regression (SREG) 
[1, 2] and the Additive Main effect and Multiplicative 
Interaction (AMMI) models [3, 4] are used for studying 
genotypic response patterns across environments. In these 
models, the response patterns of genotypes and environments 
can be visualized graphically using biplots [5, 6] that allow 
the breeder to observe the high performing genotype(s) in a 
region(s) and/or sub-region(s). Recently, several review 
articles pointed out the merits and demerits of the fixed-
effect linear-bilinear models [7-11]. One class of fixed-effect 
linear models, namely factorial regression (FR) models, and  
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one class of bilinear models, namely partial least squares 
(PLS) regression, allow incorporating external environ-
mental and genotypic covariables directly into the model and 
are useful for finding the climatic causes of GE or the 
genetic factors (molecular markers) influencing GE.  
 Linear mixed models have become widely accepted and 
used for analyzing MET in plant breeding [12-19]. The 
models naturally lead to a factor analytic (FA) [20, 21] form 
of the genetic variance-covariance for environments that is 
more parsimonious and flexible than other variance-
covariance structures. Since these are linear-bilinear mixed 
models, they also have the usual advantages, i.e., that error 
variance modeling can be accommodated (in particular, 
heterogeneity of block and error variance between 
environments and within-environment spatial correlation) 
and that incomplete data are handled with ease. Furthermore, 
when genotypes are considered as random effects, 
coefficients of parentage can be incorporated into the FA 
model for GE, thereby obtaining more precise estimates of 
the breeding values of genotypes [16, 22, 18]. Furthermore, 
Burgueño et al. [19] showed how to use the FA model and its 
biplot for clustering sites and genotypes with statistically 
negligible crossover interaction (COI). The method proposed 
by Burgueño et al. [19] has two main advantages: (1) the 
descriptive biplot is the starting point for testing successive 
hypotheses about the suitability of combining sites and 
genotypes into subsets that decrease the amount of 
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significant COI, and (2) the process of delineating mega-
environments and (3) answering the question “who wins 
where?” can be done within the framework of linear mixed 
models.  
 As for comparing the predictive ability of linear-bilinear 
fixed-effect models, the study of Cornelius and Crossa [23] 
used a cross-validation scheme that splits the data of a MET 
into a training set and a validation set, and computes the root 
mean squared predictive error between the predictive value 
and the observed value of the model. Those authors 
evaluated the within-trial predictive assessment of several 
fixed-effect linear-bilinear models, and developed efficient 
shrinkage estimates of fixed linear-bilinear models that 
showed the same or better predictive ability than the 
traditional Best Linear Unbiased Prediction (BLUP) of the 
cell mean. However, Cornelius and Crossa [23] only studied 
the predictive ability of models within specific environments 
(within-trial prediction) but did not assess the prediction of 
performance of unobserved genotypes in other environments 
(between-trial prediction). Also, Piepho [21] performed 
cross-validation on linear-bilinear models but in a slightly 
different form. Fixed linear-bilinear models have been used 
for describing GE or the combination of genotype plus GE 
interaction (GGE) based on a biplot graph. Recently, 
Burgueño et al. [24] compared the predictive ability of 
various linear-bilinear models and mixed effects models 
using the factor analytic model; results show that for data 
sets with complex GE or GGE, modeling GE and GGE using 
the FA model improved the predictability of the model up to 
5-7%. When GE and GGE were not complex, most models 
gave high predictability (FA versus no FA) and FA did not 
seem to lose much predictability (only 2%). Therefore, it was 
concluded that modeling GE and GGE is a good thing. 
 Selection in plant breeding is usually based on estimates 
of breeding values obtained with pedigree-based mixed 
models. In their multivariate formulation, these models can 
also accommodate genotype × environment (GE) interaction. 
These models have been used successfully for predicting 
breeding values in plants and animals. However, pedigree-
based models cannot account for Mendelian segregation, a 
term that, under an infinitesimal additive model (e.g., Fisher 
[25]) and in the absence of inbreeding, explains one half of 
the genetic variability. Molecular markers allow tracing 
Mendelian segregation at several positions of the genome, 
which gives them enormous potential in terms of increasing 
the accuracy of estimates of genetic values and the genetic 
progress attainable when these predictions are used for 
selection purposes.  
 The models mentioned above assess GE from an overall 
perspective, that is, they do not attempt to decompose or 
partition the total GE into chromosome regions or even 
further into specific genes so that the physical genetic causes 
of GE can be identified in the chromosome. Although 
Quantitative Trait Loci (QTL) mapping has been routinely 
used in plant breeding, approaches that fully exploit data 
from MET to assess and study QTL × environment 
interaction (QEI) are very limited. The modeling of genetic 
(co)variances between environments, in combination with 
modeling of heterogeneous residuals, is an important 
condition for reaching reliable conclusions about the main 

effects of QTLs as well as the QEI that is caused by the 
different expressions of QTLs in different environments; 
linear mixed models are the natural framework for analyzing 
such complex data. Multi-environment QTL mapping 
approaches have been presented in the literature [26]. In 
these examples, single-trait QTL mapping is studied so that 
the problem is reduced to either a multi-trait or a multi-
environment dimension, but not both. The QTL linear mixed 
model can be extended to cover both multi-trait and multi-
environment cases by first identifying the genetic correlation 
between traits and/or environments and by imposing some 
structure on the (co)variance matrix, and then incorporating 
molecular marker information to extend the phenotypic 
model into the QTL model [27]. Marker-assisted selection 
(MAS) and the identification of molecular markers closely 
linked to QTLs [28] have been widely used in plant breeding 
to improve a few traits controlled by major genes. However, 
adoption of the technology has been limited because the bi-
parental populations used for mapping QTLs are not easily 
used in breeding applications. Also, since MAS uses only 
partial information (few markers), it presents limitations for 
improving traits controlled by many loci with small effects 
because the few markers linked to significant QTLs explain 
only a small percentage of the total genetic variability (the 
problem of missing heritability).  

 On the other hand, genomic selection (GS) (or genome-
wide selection) is an approach for improving quantitative 
traits [29] that uses all available molecular markers (MMs) 
across the genome to estimate genetic values. Reports on the 
use of GS in plants are few and refer mainly to computer 
simulation studies such as the research of Bernardo and Yu 
[30], who concluded that GS is superior to marker-assisted 
selection in maize. In recent articles, de los Campos et al. 
[31], Crossa et al. [32, 33], and Perez et al. [34] used 
Bayesian estimates from genomic parametric and semi-
parametric regression and showed that models using MMs 
produced more accurate predictions of grain yield and other 
traits in maize and wheat than those based only on pedigree. 
Genomic selection has been validated in animal breeding for 
predicting breeding values [35, 36, 31]. 

 In a usual genetic model, the phenotypic response of the 
ith individual ( iy ) is described as the sum of a genetic value, 

ig , and a model residual, iε , such that the linear model for 

the genotypes (i=1,2,..,n) is represented as 
i
εigμ

i
y ++=  

(where µ is the general mean). One method for incorporating 
markers in models for GS is to define ig  as a parametric 

regression on marker covariates ijx  (which can take values 
of 1, 0, and -1 for a biallelic marker of a segregating 
population or values of 1 and -1 for inbred lines) of the form 

jβ
p

1j ijxig ∑
=

= , such that iεjβ
p

1j ijxiy +∑
=

=  (j=1,2,…,p), 

where jβ  is the regression of iy  on the jth marker covariate. 

In matrix notation, the model is expressed as εXβy += . 
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Usually, the number of markers exceeds the number of 
individuals, and estimation of marker effects via ordinary 
least squares (OLS) is not feasible. In OLS, estimates are 
obtained to maximize model goodness-of-fit to the training 
set, and model complexity is not considered. When the 
number of MMs is large, this typically yields high mean-
squared error of estimates of marker effects and poor 
predictive ability. 
 In the rest of the chapter I will show the basic fixed and 
mixed linear-bilinear models underlying GE, the models 
employed to develop QTL mapping and QTL×E interaction 
assessment, and the basic models for genomic-enable 
prediction that allow assessing gene × environment 
interaction.. 

STATISTICAL MODELS FOR ASSESSING 
GENOTYPE × ENVIRONMENT INTERACTION 

The Basic Model 

 The basic two-way fixed effects linear model for GE 
analyses considers that the empirical mean response, 

ij
y , of 

the ith genotype (i=1,2,…,g) in the jth environment 
(j=1,2,…,s) with r replications in each of the g×s cells is 
expressed as 

ij
ε 

ij
δ) (τ

j
δ

i
τμ

ij
y ++++=

           (1) 

where μ  is the grand mean over all genotypes and 

environments, 
i
τ  is the main effect of the ith genotype, 

j
δ  is 

the main effect of the jth environment, 
ij

δ) (τ  is the effect of 

the interaction (GE) of the ith genotype in the jth 
environment, and 

ij
ε  is the average error, assumed to be 

NID (  /r)2
ε

σ 0, (where 
2
ε

σ is the within-environment error 

variance, assumed to be constant, and r is the number of 
observations per cell). For a complete random model, it is 
assumed that iτ ,

j
δ , and (

ij
) δ  τ  are normally and 

independently distributed, with variances 2
τσ , 2

δσ , and 

2
τδσ , respectively. Adding the design effects to (1) with 

randomized complete blocks, or any type of incomplete 
block design, does not pose a problema. Furthermore, 
modeling the residulas by means of spatial analyses does not 
present further difficulty and is a practice that must be 
routinely used in any field experiment. 

 Yates and Cochran [37] introduced a model in which the 
GE term is linearly related to the environmental main 
effect

.j
y

iij
δ) (τ ϑ= , such that the stability parameter 

i
ϑ

 
is 

the regression of genotype performance on the environment 

mean 
.j

y . This was later more formally presented by Finlay 

and Wilkinson [38] and extended by Eberhart and Russell 
[39] to include the deviation from regression as another 
statility parameter (although this is in fact a lack or fit of the 
model). 

Fixed Effect Linear-Bilinear Models 

 Williams [40] considered the model 
  

ij
ε

j
γ

i
λα

i
τμ

ij
y +++= , where λ  is the largest singular 

value of ZZ′ and Z′Z (for Z=
i.

y-
ij

y ) and 
i

α  and 
j

γ  are 

the corresponding eigenvectors. Gollob [41] and Mandel 
[42] extended Williams’ [40] work by considering the 

bilinear GE term as 
jk

γt
1k ik

α
k

λ
ij

δ) (τ ∑ == . Thus, the 

general formulation of the linear-bilinear model is 

ij
ε

t

1k jkγijαkλj
δ

i
τμ

ij
y +∑

=
+++=           (2)  

where the constant 
k

λ  is the singular value of the kth bilinear 

(multiplicative) component that is ordered tλ...
2

λ
1
λ ≥≥≥ ; 

the 
ik

α  are elements of the kth left singular vector of the true 

interaction and represent genotypic sensitivity to 
hypothetical environmental factors represented by the kth 
right singular vector with elements 

jk
γ . The 

ik
α  and 

jk
γ  

satisfy the constraints 
  i = 1

g
∑ 0

s

1j kjγjkγkiαikα =∑
= ′=′  for 

k≠k′ and =∑i
2
ik

α   1.j
2
jk

γ =∑ Gabriel [43] described the 

least squares fit of Eq. 2 and explained how the the GE term, 
Z=

..
y

.j
y

i.
y

ij
y +−− , is subjected to singular value 

decomposition (SVD) after adjusting for the additive (linear) 
terms. Gauch [3] called Eq. 2 the Additive Main effects and 
Multiplicative Interaction (AMMI) model. 

 Other classes of linear-bilinear models described by 
Cornelius et al. [1] are the Genotypes Regression Model 
(GREG) 

 
  ,t

1k ij
ε

jk
γ

ik 
α

k 
λ 

i
μ

ij
y ∑ = ++=

 
the Sites (environments) Regression Model (SREG)  

  ,t
1k ij

ε
jk

γ
ik 

α
k 

λ 
j

μ
ij

y ∑ = ++=
 

the Completely Multiplicative Model 

  ,t
1k ij

ε
jk

γ
ik 

α
k 

λ μ
ij

y ∑ = ++=
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(COMM), and the Shifted Multiplicative Model (SHMM) 

 
  ,t

1k ij
ε

jk
γ

ik 
α

k 
λ β

ij
y ∑ = ++=

.  

 In matrix notation, these linear-bilinear models can be 
expressed as Y=∑ =

m
1k kβ Xk + AΛG′+E [44], where 

Y=[ ijy ], Xk=[ kijx ], E=[
ij
ε ], Λ=diag(

k
λ , k=1,2,…,t), 

t
λ...

2
λ

1
λ ≥≥≥ , A=(

t
 ,...,

1
αα ), G=(

t
,...,

1
γγ ), and 

A′A=G′G=It. The kijx  are known constants and kβ , 
k

λ , 

ik
α , and 

jk
γ  are parameters to be estimated. It is possible 

to study GE by finding low dimensional approximations by 
means of the singular value decomposition of the structure 
present in the two-way table. 

 The GREG linear-bilinear model defined above is a 
reparameterization of the stability analysis model of Finlay 
and Wilkinson [38] and the Eberhart and Russell [39] models 
that perform the linear regressions of genotype on 
environment means. In the GREG model the first 
multiplicative term,   j1γ i1α1λ is perceived as the genotype 

regressions, with coefficients 
 i1

α
 
on environmental indices 

j1
γ

 
(the scale parameter 

 1
λ can be absorbed into 

i1
α or 

j1
γ

 
or partially into each), and the deviation modeled as 

multiplicative components, provided that t>1. 

 There are several statistical as well as biological reasons 
to prefer SREG over AMMI for assessing COI and non-COI 
under the common situation of complex GE: (1) for the same 
number of bilinear terms, SREG is a more parsimonious 
model than AMMI; (2) SREG incorporates the main effect of 
genotypes directly into the statistical analysis of GE, that is, 
both effects genotypes and GE (GGE) are combined and 
estimated jointly; this is important for reaching breeders’ 
objectives, which requires including the main performance 
of genotypes in the model; (3) sometimes the mixed SREG 
model can be fitted much more easily than the mixed AMMI 
model; and (4) the mixed SREG model, as proved by 
Burgueño et al. [19], is useful for delineating mega-
environments using a formal statistical approach based on 
the factor analytic model.  

Mixed Effect Linear-Bilinear Models 

What if Genotypes or Environments, or both, are Random 
Effects?  

 The basic linear mixed model used for fitting data from g 
genotypes, s sites, and r replicates when searching for 
subsets of environments and/or genotypes with non-COI is 

egZrZXbY +++=
gr

   

where X is the incidence matrix of 0s and 1s for the fixed 
effects of environments, and rZ  and gZ

 
are the incidence 

matrices of 0s and 1s for the random effects of replicates 
within environments and genotypes within environments, 
respectively. The random effect of genotypes within 
environments combines the main effects of genotypes and 
GE (GGE). Vector b denotes the fixed effects of 
environments and/or the effect of the design (i.e., replicates, 
incomplete blocks, etc.); vectors r , g , and e  contain 
random effects of replicates within environments, genotypes 
within environments, and residuals within environments, 
respectively, and are assumed to be random and normally 
distributed with zero mean vectors and variance-covariance 
matrices R, G, and E, respectively. The variance-covariance 
matrices R and E are assumed to have the simple variance 

component structure, i.e., R= s)1,2,...,j,2
jrdiag(σ = ⊗Ir  

and 

rgs
2
eσ IE ⊗= , where 

rgs
  and 

r
II  are identity matrices of 

order r and r×g×s, respectively, 2

j
r

σ , 2
e

σ are the replicates 

within the jth environment and residual variances, 
respectively, and⊗ is the Kronecker (or direct) product of the 
two matrices. The structure of E assumes that the residuals 
of the field plots at each environment (i.e., elements of 
vector e) are not spatially correlated; however, when field 
information is available, the spatial model approach using 
models such as the two-dimensional auto-regressive 
procedure in the direction of rows and columns in the field 
can be incorporated into the analyses. The solution ( b̂ ) for 
the vector of fixed environment means and the vectors of 
random effects ( r̂  and ĝ ) are obtained from the mixed 
model equations. 
 The variance-covariance matrix G is indexed by two 
factors, environments and genotypes, and can therefore be 
written as the Kronecker product of two matrices indexing 
those factors, G = ∑g ⊗Ig , where the jth diagonal element 

of the s×s matrix 
g

Σ  is the genetic variance 2
jgσ  within 

the jth environment, and the jj’th off-diagonal element is the 
genetic covariance 

j'gσjgσjjρ  between environments j and 

j’; thus jj'ρ  is the correlation of genetic effects between 

environments j and j’. As for the genotype factor, the identity 
matrix 

g
I  (of order g) is used when it is assumed that the 

genotypes are not related, and the breeding value of each 
genotype will be predicted only by the value of the empirical 
responses of the genotype itself. The environmental 
component of G, 

g
Σ , can be modeled by the FA, whereas 

the genotypic component of G is modeled by the identity 
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matrix 
g

I , which assumes no relationship among genotypes. 

However, a relationship matrix A using the coefficient of 
parentage among genotypes can be used instead.  

The Factor Analytic model 

 The environmental component 
g

Σ
 
of the variance of 

random effects, G, can be modeled by the FA model, which 
expresses the random effect of the ith genotype in the jth 
environment as a linear function of latent variables 

ik
x with 

coefficients jkδ for k = (1, 2, … t), plus a residual 
ij

η
 
that is 

∑ = += t
1k ijηjkδikx

ij
g

 

where jkδ is the factor loading of the jth environment in the 

kth latent factor, ikx  is the score of the ith genotype in the kth 

latent factor, and 
ij

η  is the residual term. In matrix form the 

previous equation is expressed as 

ηxIδxIδxIδ +⊗++⊗+⊗=
k

)
gk

(...
2

)
g2

(
1

)
g1

(
ij

g

where vector 
k

)
gk

( xIδ ⊗  is of order gs × 1, and vector δ  

is of order gs × 1; then it can be written as  

ηxIΛg +⊗= )
g

( , 

where 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

skδ..s2δs1δ
.....
.....

δk..22δ21δ
1kδ..12δ11δ

Λ is a matrix of order s×k 

with the kth column containing the environment loadings for 
the kth latent factor. Since it is assumed that the genotypes 
are unrelated, random effects x  and δ  are independent and 
have a joint normal distribution with a mean vector of zero 
and variances V(x)=

kggk
III =⊗  and V( η )=

g
IΨ ⊗ (of 

order sg×sg), respectively, where Ψ  is a diagonal matrix 

)2

sη
σ,...,2

1η
σ,2

1η
(σ of order s×s. Therefore, the variance of 

the random effects g, which separates the environmental and 
genotypic components, is given by 

  
G = (Λ⊗ Ig)V(x)(Λ' ⊗ Ig)+ V(δ)  

 
)

g
()

g
')(

gk
)(

g
( IΨIΛIIIΛ ⊗+⊗⊗⊗=

 

 g
IIΨΛΛ ⊗=⊗+= FA(k)

g
)'(

 

where the elements of the matrix 'ΛΛ  

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=′

skδ..2kδ1kδ
.....
.....
s2δ..22δ12δ
s1δ..21δ11δ

skδ..s2δs1δ
.....
.....
2kδ..22δ21δ
1kδ..12δ11δ

ΛΛ  

are estimates of the genetic variance within the jth 

environment (i.e., diagonal elements of 
g

Σ , 2
jgσ ) and 

estimates of the genetic covariances between the jth and the 
j’th environments (i.e., off-diagonal elements of 

g
Σ ,

j'gσjgσjjρ ).  

 Thus, FA can be interpreted as the linear regression of 
genotype and GE on latent environmental covariates 
(environmental loadings, 

jk
δ ), with each genotype having a 

separate slope (genotypic scores, 
ik

x ) but a common 

intercept (if main effects of genotypes are not distinguished 
from GE). The slopes of genotypes measure the sensitivity of 
the genotypes to hypothetical environmental factors 
represented by the loadings of each environment.  
 A mixed-model analogue of AMMI or SREG has been 
developed using the factor analytic (FA) model for 
approximating the variance-covariance GE structure [12, 17, 
14, 15]. Research conducted by Crossa et al. [16] and 
Burgueño et al. [19] described how to model variance-
covariance GE and GGE using the FA model and how to 
incorporate the additive (relationship A) matrix and the 
additive × additive covariance matrix into the FA model 
based on pedigree information. Burgueño et al. [19] also 
described the equivalence between SREG2 and FA(2) for 
finding subsets of genotypes and environments without COI. 

The Relationship Between the Factor Analytic and Sites 
Regression Models for Assessing Crossover genotype × 
Environment Interaction 

 In the FA model, the random effect of the ith genotype in 
the jth environment ( ijg ) is expressed as a linear function of 

latent variables ikx  with coefficients jkδ  for k=(1,2,…t), 

plus a residual, 
ij
η , i.e., ∑ = ++= t

1k ijηjkδikx
j

μ
ij

g  so 

that the ijth cell mean can be written as 
ij
ε

ij
g

ij
y += . With 

only the first two latent factors being retained, ijg  is 

approximated by 
ij

η
j2

δ
i2

x
j1

δ
i1

x
j

μ
ij

g +++≈ . 

Therefore, there is a clear connection between the SREG2 
and FA(2) models. A similar connection between the AMMI2 
and FA(2) models was established by Smith et al. [14]. 
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 Under principal component rotation, the directions and 
projections of the vectors of FA(2) and SREG2 in the biplot 
are the same. Therefore, the property of the SREG by which 
the first principal component of SREG2 accounts for non-
crossover interaction (non-COI) and the second principal 
component of SREG2 is due to COI variability should hold 
for FA(2) as well. It should be pointed out that the absolute 
values of genotypic and environmental scores under the 
FA(2) and SREG2 models may not necessarily be the same; 
the estimates of the random effects in the FA(2) model are 
BLUPs (Best Linear Unbiased Predictions), whereas the 
estimates in the fixed effects SREG2 model are least squares 
estimates, that is, Best Linear Unbiased Estimates (BLUEs). 
Furthermore, the standard errors of the estimable functions 
of fixed effects under SREG differ from those of predictable 
functions of a mixture of fixed and random effects under FA, 
and FA models are more flexible in handling unbalanced data 
(the SREG model does not handle missing data).  

Prediction of Unobserved Individuals Based on Phenotypic 
Data While Modeling GE 

 Burgueño et al. [24] compared the predictive ability of 
linear mixed models when the GE is modeled by the FA 
model with that of simple linear mixed models when the GE 
is not modeled. A cross-validation scheme is used that 
randomly deletes some genotypes from environments for a 
10-fold partition; the values for these genotypes are then 
predicted by the different models and correlated with their 

observed values in order to assess model accuracy. A total of 
six multi-environment trials (one potato trial, three maize 
trials, and two wheat trials) with GE of varying complexity 
were used in the evaluation. Although Burgueño et al. [24] 
analyzed six MET, here we present results from only three 
maize METs (M1-MET, M2-MET, and M3-MET). The 
models used for prediction are linear mixed models 1 and 2, 
which are two simple mixed models that had the random GE 
term not modeled, and two linear models, 3FA and 4FA, 
which had the GE modeled by the FA model (Table 1). 
 For M1-MET, the best predictive model was model 3FA, 
which had a correlation of 0.878 that represents a 6% 
increase in accuracy with respect to simple linear mixed 
model 1, whereas model 4FA, with a correlation of 0.867, 
had a 4.7% increase in accuracy with respect to the simple 
linear mixed model 1 (Table 2). Prediction of the overall 
genotypic effects of the simple linear mixed models in a 
complex GE setting was poor as compared with that of 
models that considered covariances between environments. 
The correlations between the observed and predicted values 
of the four models fitted to M2-MET and M3-MET were 
higher in the M2-MET than in the M3-MET because the GE 
in M2-MET was simpler than the GE in M3-MET. For M2-
MET, the two FA models (3FA and FA) did show slightly 
better predictability (0.938) than their non-FA counterparts 
(models 1 and 2) (0.916) (Table 2), and there was a 2.4% 
increase in the predictive ability of these models with respect 
to simple linear model 1. For M3-MET, the best predictive 

Table 1. Linear Mixed Models Used for Comparing the Prediction of the Missing Genotypes in the Three Maize Trials (M1-MET, 
M2-MET, and M3-MET). The Overall Mean is µ (Adapted from Burgueño et al. [24]) 

Model Fixed effects Random effects 

1 µ Site rep(site)  site×genotype error 

2 µ  rep(site) Site site×genotype error 

3FA µ Site rep(site)  site(FA)×genotype error 

4FA µ  rep(site) Site site(FA)×genotype error 

Table 2. Correlations Between the Predicted and Observed Values of the Missing Genotypes for Three Maize Trials (M1-MET, 
M2-MET, and M3-MET), Across Fold for Four Models (1, 2, 3FA, 4FA). Numbers in Parentheses for Models 2, 3FA, and 
4FA Denote the % Change in Correlations with Respect to Model 1 (Adapted from Burgueño et al. [24]) 

Model 

 1 2 3FA 4FA 

 -------------------M1-MET (overall mean=4.90 Mg ha-1)------------------- 

Across fold 0.828 0.827 (-0.2) 0.878 (6.0) 0.867 (4.7) 

 ------------------M2-MET (overall mean=5.04 Mg ha-1)------------------- 

Across fold 0.916 0.916 (0) 0.938 (2.4) 0.938 (2.4) 

 --------------------M3-MET (overall mean= 5.66 Mg ha-1)----------------- 

Across fold 0.824 0.824 (0) 0.848 (2.9) 0.852 (3.4) 
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models were 3FA and 4FA, with correlations of 0.848 and 
0.852, respectively. However, the percentage increases in 
correlations of these models over model 1 were 2.9% and 
3.4% for models 3FA and 4FA, respectively, indicating that 
for more complex GE (M3-MET), the FA models increase 
the predictability more than the simple linear mixed model 
for less complex GE (M2-MET) (Table 2). 

Incorporating Pedigree Information into Linear-Bilinear 
Mixed Models While Modeling GE  

 As has been shown, the linear mixed version of SREG 
and AMMI naturally leads to a FA form for the genetic 
variance-covariance for environments that is more 
parsimonious and flexible than other variance-covariance 
structures. Since the above mentioned models are linear 
mixed models, they also have the usual advantages when 
compared with ordinary fixed effects linear-bilinear AMMI 
and SREG models. That is, error variance modeling can be 
accommodated, in particular, heterogeneity of block and 
error variance between environments and within-
environment spatial correlation, and incomplete data are 
handled with ease. Furthermore, when genotypes are 
considered as random effects, the coefficients of parentage 
can be incorporated into the FA for modeling GE or GGE of 
the mixed versions of AMMI and SREG, respectively, hence 
obtaining more precise estimates of the breeding values of 
genotypes. The genetic covariance between any pair of 
related individuals (i and i’), due to their additive genetic 
effects, is equal to two times the coefficient of parentage 
(COP=fii’), also known as the coefficient of coancestry, times 

the additive genetic variance, i.e., 2fii’
2
aσ =A 2

aσ , where A is 
the additive relationship matrix. In self-pollinated species, 

A 2
aσ  is the variance-covariance matrix of the breeding 

values (additive genetic effects). Closely related individuals 
contribute more to the prediction of breeding values of their 
relatives than do less closely related genotypes. Moreover, 
when one genotype is missing (either partially or totally), its 
breeding value can still be predicted from its relatives, albeit 
less efficiently than if the data were complete. 
 A linear mixed model used for fitting the data from g 
genotypes, s sites and r replicates, assuming the relationship 
of the genotypes is measured by the matrix COP=fii’ (of 
order g), is  
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where 
j

y  is the vector of the response variable in the jth site 

(j=1,2,…,s), 1 is a vector of ones, 
j

μ  is the population mean 

of the jth site, and 
j

R
Z  and 

j
G

Z  are the design matrices 

of the random effects of replicates and genotypes within the 
jth site, respectively. The variance-covariance matrices R and 
E are assumed to have the simple variance component 
structure

rr
IΣR ⊗=  and 

rge
IΣE ⊗= , where 

r
I

 
and 

rg
I

 
are the identity matrices of orders r and r×g, 

respectively; the 
r

Σ = s)1,2,...,j,2
jr(σ  diag =  and 

e
Σ = s)1,2,...,j,2

je(σ  diag =  are the s×s replicate and error 

variance-covariance matrices among pairs of s sites, 

respectively; 2

j
r

σ , 2

j
e

σ are the replicate and residual 

variances within the jth site, respectively; and ⊗  is the 
Kronecker (or direct) product of the two matrices. In 
covariance pattern models, it is assumed that residuals have a 
multivariate normal distribution with zero means and 
covariance matrix E. In this study, the structure of E assumes 
that the residuals of the field plots at each site (i.e., elements 
of vector e) are not spatially correlated, that is, 

rge
IΣE ⊗= . However, when the field location of the 

plots is recorded, the matrix E could be modeled as a 
structure that is less restrictive than

rge
IΣ ⊗ . Commonly, 

these spatial correlations among field plots are modeled 
using the two-dimensional auto-regressive procedure in the 
direction of the rows and columns in the field. The design 
effects given by the replicates and the incomplete blocks 
within replicates in environments can be easily incorporated 
into the above linear mixed model as random or fixed 
effects.  

 Vectors r , g , and e  contain random effects of 
replicates within sites, genotypes within sites, and residuals 
within sites, respectively, and are assumed to be random and 
normally distributed with zero mean vectors and variance-
covariance matrices R, G, E, respectively, such that 
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 The variance-covariance matrix G, which combines the 
main effect of genotypes (breeding values) and GE, can be 
represented as AΣG ⊗=

g
, where the jth diagonal element 

of the s×s matrix 
g

Σ  is the additive genetic variance 2
jaσ  

within the jth site, and the jj’th element is the additive genetic 
covariance 

j'aσjaσjj'ρ  between sites j and j’; thus jj'ρ  is 

the correlation of additive genetic effects between sites j and 
j’. The variance-covariance matrix G can be modeled using 
the FA structure. The matrix A=2fii’ is of order g×g and 
measures the relationship or covariance between relatives 
due to additive genetic effects. When genotypes are not 
related, A is replaced by 

g
I  (identity matrix of order g) [14, 

45] and the breeding value of each genotype will be 
predicted only by the value of the empirical response of the 
genotype itself. 

 An example of how to incorporate pedigree information 
while modeling GE using the FA is described by Crossa et 
al. [16] using data from a CIMMYT bread wheat (Triticum 
aestivum L.) international trial. Twenty-nine lines (1-29) 
were tested in 16 international sites, namely Mexico (MEX), 
USA (two sites, USA1 and USA2), Turkey (TKY), Israel 
(ISR), Bangladesh (BGD), India (IND), Pakistan (PKT), 

Syria (SYR), Spain, (SPN) (two sites, SPN1 and SPN2), 
Nepal (NPL), Kenya (KNY), Zimbabwe (ZBW), New 
Zealand (NZL), and Chile (CHL), in randomized complete 
block designs with three replications at each site. The 
response variable analyzed was grain yield (Mg ha-1). There 
were five sets of sister lines (5, 6), (4, 19, 20), (14, 15), (21, 
23, 24), and (28, 29). 

 Standard errors (SE) of BLUPs of breeding values of the 
lines for grain yield were smaller for models using 
information on relatives and when the main effect of 
genotypes and GE were modeled using FA structure of the G 
variance-covariance matrix (Fig. 1). The standard fixed 
linear-bilinear model 1 where all the effects are considered 
as fixed effects had the largest SEs, followed by a simple 
mixed linear-bilinear model 2 (with the GE considered as 
random effect) without A (without modeling GE) and a 
simple mixed linear-bilinear model 3 with A (without 
modeling GE). In contrast, the mixed linear-bilinear model 4 
that models the GE using the FA and includes information on 
relatives (A) had the smallest SE for most of the line-
environment combinations. The lines in Fig. (1) (from top to 
bottom) graph the SEs of BLUPs of breeding values of the 
29 genotypes computed from models 1, 2, 3, and 4 in each of 
the 16 sites included in the trial (NZL, USA1, TKY, ZBW, 
CHL, SPA2, MEX, SYR, ISR, SPA1, NPL, KNY, IND, PKT, 
BGD, and USA2). New Zealand (NZL) had the largest SE of 
the BLUPs of the breeding values and USA2 had the 
smallest. Only the SE of the BLUP of genotype 26 in NZL 
from model 4 was larger than those from models 2 and 3 
(Fig. 1). The benefits, in terms of precision, of including 
information on related lines are evident when comparing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (1). Standard errors of BLUPs of 29 wheat genotypes (1-29) within 16 sites for grain yield for four linear-bilinear models (models 1, 2, 
3, and 4). Sister lines are in bold (5,6), (4,19,20), (14,15), (21,23,24), (28,29). For model 15, each graph line represents one of the 16 sites. 
Model 1 is the standard fixed linear-bilinear model (SREG), model 2 is a simple mixed linear-bilinear model without A (not modeling GE), 
model 3 is a simple mixed linear-bilinear model using A (not modeling GE), and model 4 is a mixed linear-bilinear model that models the GE 
using the FA and includes information on relatives (A) (adapted from Crossa et al. [16]). 
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models 2 and 3; model 3 is similar to model 2, but includes 
information on relatives. It is clear that the SEs of sister lines 
were always smaller than the SEs of genotypes that had no 
relatives in the trial in all cases except for models 1 and 2, 
which do not incorporate this information. When modeling 
the main effects of genotype and GE in conjunction with the 
information on relatives, the improvement in the precision of 
the BLUP of the sisters, as well as of the other lines, is 
evident. It should be pointed out that no model is selected 
based on the SE of the means because SEs are model-
dependent and one might be dealing with an inappropriate 
model despite its small SE. Fig. (1) only shows the natural 
impact of performing a more realistic statistical analysis 
instead of ignoring the relationship between genotypes and 
environments. 

 The standard biplots of a fixed effect linear-bilinear 
model (model 1 that excludes matrix A) and model 4 (FA 
including matrix A) are depicted in Figs. (2 and 3), 
respectively. The biplot of model 1 (Fig. 2) is the usual biplot 
of a fixed SREG model that shows genotypes 19 and 20 as 
having a positive response in terms of genotype main effect 
and GE for most of the sites because they are in the same 
direction. Genotypes 16, 18, and 25, located on the opposite 
side of the biplot, have a negative response in all sites. Sites 
located farther away from the center, such as NZL, USA1, 
ZBW, ISRL, and SPN2, are the ones that discriminate the 
genotypes the most. Pairs of sister lines 19 and 20, and 14 
and 15 are distinct from the others. Sister lines are scattered 
throughout the two dimensions of the biplot.  

 
Fig. (2). Biplot of the standard fixed effect linear-bilinear model 1 
for grain yield. Lines are 1-29. Sister lines are in bold (5,6), 
(4,19,20), (14,15), (21,23,24), (28,29). The 16 sites are MEX, 
USA1, USA2, TKY, ISR, BGD, IND, PKT, SYR, SPN1, SPN2, 
NPL, KNY, ZBW, NZL, and CHL (adapted from Crossa et al. [16]). 

 When the main effect of genotypes and GE are modeled 
together using the factor analytic variance-covariance model 
4 (FA that includes information between relatives (Fig. 3)), 
sister lines with a strong genetic association are held 
together, but others, such as genotype 4, tended to be farther 
away from their sister lines (19 and 20), because their COP 
was 0.792; a similar situation occurred with sister lines 28 
and 29, with a COP of 0.774. Although the general patterns 

of response in terms of directions and projections of 
genotypes and sites in the biplot were not altered by using 
different models, the inclusion of information between 
relatives in conjunction with modeling the main effects of 
genotypes and GE by means of a factor analytic structure 
offers the best option for predicting breeding values of 
genotypes across different environments and studying the 
main effects of genotypes and GE. Models with FA for GE 
and pedigree information gave a more realistic view of the 
relationship between the genotypes themselves, between 
sites, and between their interactions.  

 
Fig. (3). Biplot of the mixed linear-bilinear model 4 with FA for GE 
and pedigree information (A) for grain yield. Lines are 1-29. Sister 
lines are in bold (5,6), (4,19,20), (14,15), (21,23,24), (28,29). The 
16 sites are MEX, USA1, USA2, TKY, ISR, BGD, IND, PKT, 
SYR, SPN1, SPN2, NPL, KNY, ZBW, NZL, and CHL (adapted 
from Crossa et al. [16]. 

STATISTICAL MODELS FOR MAPPING QTLS AND 
STUDYING QTL × ENVIRONMENT INTERACTION 
(QEI)  

 This section is related to the issue of understanding the 
nature and causes of interaction. The factorial regression 
(FR) model (e.g., Vargas et al. [46] and van Eeuwijk et al. 
[47]) is useful for studying the effects of both genetic and 
environmental covariables and for developing functional 
relationships and predictability with explanatory covariables. 
In plant breeding, much research is directed at locating 
regions of the chromosomes that are involved in the 
physiological processes underlying phenotypical traits. 
These regions are called quantitative trait loci (QTLs). When 
the relative contributions of these regions to the explanation 
of the phenotype differ between genotypes, then QTL × 
environment interaction (QEI) occurs. The statistical 
problem can be interpreted as a multivariate multiple 
regression of phenotypic traits as observed over a set of 
environments on a set of genetic predictors. FR provides a 
suitable framework for QEI analysis. Crossa et al. [48] give 
examples of how FR can be used for assessing the 
chromosomal location of QTLs and QEI and the importance 
of their effects. 

 There are approaches in which the GE is modelled 
directly using regression on environmental (and/or 
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genotypic) variables, rather than regression on the 
environmental mean, as originally proposed by Yates and 
Cochran [37]. A useful linear model for incorporating 
external environmental (or genotypic) variables is the FR 
model [49, 50]. The FR models are ordinary linear models 
that approximate the GE effects of Eq. 1 by the products of 
one or more of the following: (1) genotypic covariables 
(observed) × environmental potentialities (estimated); (2) 
genotypic sensitivities (estimated) × environmental 
covariables (observed); (3) scale factor (estimated) × 
genotypic covariables (observed) × environmental 
covariables (observed). The aim of FR is to replace, in the 
GE subspace, genotypic and environmental factors with a 
small number of genotypic and environmental covariables. 
Vargas et al. [51] further developed the statistical approaches 
described by Crossa et al. [48] and van Eeuwijk et al. [52] 
for modeling QTLs and QEI. The main objectives of their 
research were to demonstrate the use of: (1) FR for 
estimating effects and locations of QTL and QEI, and (2) FR 
for modeling and interpreting QEI in terms of products of 
genetic predictors and environmental variables. 

 In FR, genotypic covariables xa (a =1…A), with values 
xia for the ith genotype can be introduced for the genotypic 
main effect, residual

a
ρ

ia
x

i
G += where 

a
ρ  is the 

regression coefficient for the regression of Gi on the 
genotypic covariables, xia. For more than one genotypic 

covariable, this becomes residual
A

1a aρiax
i

G +∑
=

= . In 

the context of molecular markers and when attempting to 
map QTLs, the genotypic covariables, xa, are replaced by the 
genetic predictors xq, and the FR framework can also be used 
to do a genome scan for QTL effects. Analogous to the 
genotypic main effect, in FR, the environmental main effect, 
Ej, can also be regressed on environmental covariables zb 
with values zjb for the jth environment. The corresponding 
partitioning is residual

b
β

jb
z

j
E +=  for one 

environmental covariable, or residual
B

1b bβjbz
j

E +∑
=

=  

for multiple environmental covariables. The parameter bβ  
is 

the regression coefficient for the regression of the 
environmental main effect on the environmental covariables, 
zjb for the jth environment. 

 Within a QTL analysis by FR, a multiple QEI model 
follows easily from models for GE: 

residual
Q

1q jqρiqx
ji

(GE) +∑
=

=  where ρjq represents a 

QEI effect, i.e., a differential QTL expression in relation to 
the main effect QTL expression, for the qth QTL in jth 
environment. QEI for a QTL q’ can be further modeled by 
regressing it on an environmental covariable, 
zb: residualjbρiqxbqνij

(GE) +′= . For multiple  

QTLs, this generalizes to 

residual
Q

1q

B

1b jbρiqxqbν
ij

(GE) +
= =

= ∑ ∑ . One or more 

QTL main effects can be tested by comparing the model 

residual
j

E
Q

1q qρiqxμ
ij

y ++
=

+= ∑  with the model 

j
Eμ

ij
y += . When main effect QTL expression and QEI are 

considered together, this is equivalent to fitting different 
effects for the same QTL in different environments. A 
specific test for QE compares 

residual
Q

1q jqρiqx
j

E
Q

1q qρiqxμ
ij

y +
=

++
=

+= ∑∑  to 

residual
j

E
Q

1q qρiqxμ
ij

y ++
=

+= ∑ . F-tests can be 

constructed from ratios of regression mean squares to 
independent error term. 

 An example including 211 F2-derived F3 maize families 
from a biparental cross evaluated across eight environments 
differing in the level of drought stress and soil nitrogen 
content is employed to illustrate the use of the fixed effect 
FR linear model for mapping QTLs and for studying the 
influence of external covariables on QEI [51]. Table 3 shows 
parts of the analysis of variance table at position 63 cM on 
chromosome 10 [51]. The first part shows the usual analysis 
of variance for a two-way table of grain yield measured in 
211 genotypes with partitioning of the joint effect of G+GE 
into G and GE effects. The middle part of Table 3 shows the 
variability due to QTL+QE effects in parts of the genome 
other than chromosome 10 (i.e., due to QTLs on 
chromosomes 1-9), the variability due to G+GE after 
correction for QTLs on the other chromosomes, and the 
corresponding partitioning into G and GE components. The 
last part shows the partitioning of G+GE adjusted for the 
QTLs on chromosomes 1-9 into variation due to QTL+QE at 
position 63 cM on chromosome 10 and deviations from the 
QTL model. When the QEI effects were regressed on the set 
of environmental covariables, maximum temperature at 
flowering showed the closest relationship with the QEI 
effects and explained 23.8% of the QEI. The effect of this 
environmental covariable was highly significant by an F-test 
for the regression mean square over the deviations from the 
regression.  

 For grain yield, Fig. (4) depicts the profile of R2
QTL, 

R2
QEI, and R2

QTL+QEI and the corresponding critical values for 
α=0.01 based on 1000 randomizations. There is good reason 
to believe that there are environment-specific QTLs around 
63 cM of chromosome 10 (QTL+QEI and QEI effects were 
both significant). In contrast, only main effect QTLs were 
observed in other chromosomes.  
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Table 3. Partitioning of Yield Variation at Position 63 cM on Chromosome 10. For Comparison, an Error Estimated from the 
Median Intra-Block Error was 0.75 (Adapted from Vargas et al. [51]) 

Source of variation Degrees of freedom Sum of squares Mean squares 

Environment (E)  7 12777.169 1825.310 

G+GE 1680  3212.868  1.914 

 F2 family (G)  210  1382.102  6.581 

 GE  1470  1829.700  1.245 

Total 1687 15988.970  

---------------------------------------------------------------------------------------------------------------------------------------------------------------- 

G+GE 1680  3212.868  1.914 

 QTL+QEI Chrom. 1-9 ---*  1008.879 --- 

 G+GE Chrom. 10 adj.  1680*  2203.988  --- 

 F2 family (G) adj.  210  666.755 3.175 

 GE adj.  1470  1537.234 1.046 

---------------------------------------------------------------------------------------------------------------------------------------------------------------- 

G+GE Chrom. 10 adj. 1680*  2203.988  --- 

 QTL+QEI Chrom. 10 63 cM  8  93.868  11.733 

 QTL main effect  1  56.148  56.148 

 QEI  7  37.720  5.388 

 Max.Temp. Flow.  1  8.986  8.986 

 Residual QEI  6  28.72  4.787 

Deviations 1672 2110.121 1.262 
*For correction of the grain yield data due to genetic effects on chromosomes 1 through 9, degrees of freedom might be discounted. 
 

 
Fig. (4). Profile of R2 for the additive effects of QTL (solid line), QEI (dotted line), and QTL+QEI (broken line) on grain yield for 
chromosome 10 (additive). The horizontal lines show the appropriate threshold for the effects QTL+QEI, QTL, and QEI (adapted from 
Vargas et al. [51]). 
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Linear Mixed Models for Multi-Trait Multi-Environment 
QTL Analysis 

 Plant breeders are interested in evaluating genotypes for 
multiple traits. A general formulation of a linear mixed 
model for the multi-trait multi-environment (MTME) model 
is presented by Malosetti et al. [53]. The initial model is 

eZuXβy ++=  where the response variable y is modelled 
by fixed and random effects factors ß and u, respectively; X 
and Z are design matrices assigning fixed and random effects 
to the observations, respectively. Random genetic effects are 
assumed to be normally distributed, u~N(0,G), with G the 
genetic (co)variance matrix. Finally, e is a vector of non-
genetic residuals associated with each observation and 
normally distributed, e~N(0, R). The phenotypic 
(co)variance is given by V(y) = ZGZ’ + R. From a breeder’s 
point of view, G is of special interest, as it reflects the 
magnitude and pattern of relationships between genetic 
effects of traits. Exploiting the genetic correlations between 
traits is useful because it may be a primary trait with low 
heritability or a difficult-to-measure primary trait that is 
correlated with an easy-to-measure secondary trait with high 
heritability. 

 A QTL model arises by including the effect of a putative 

QTL as follows: e*ZuαQTLXXβy +++= . The extra 
term in the model is composed of a design matrix XQTL, 
which is derived from molecular marker information and a 
vector of fixed QTL effects (α). In an MTME model, vector 
α has dimensions JK×1 and contains the additive genetic 
QTL effects for all the traits in each of the environments. 
The random genetic effects, now collected in a vector u*, 
result from the effects of QTLs outside the test region, that 
is, the genetic background. Genetic background effects are 
assumed to be normally distributed: u ~ N(0, G*). Note that 
G* represents the part of the genetic (co)variance that is not 
explained by the QTL. The extension from a single-QTL 
model to a multi-QTL model is straightforward and given by 

e*Zu
Q

1q

qαQTL
qXXβy ++∑

=
+= .  

 An example of the application of the MTME is presented 
in a wheat trial (S. Singh and M. Vargas, personal 
communication), where four diseases (Karnal bunt, tan spot, 
yellow rust, and leaf rust) were simultaneously measured in a 
biparental progeny. A multi-trait QTL scan was performed 
and the various significant QTLs detected are depicted in 
Figs. (5 and 6). Fig. 5 shows the joint profile and the two 
significant peaks for the same trait, Karnal bunt, one between 
20 and 20 cM and the other one at about 95 cM chromosome 
3A. On the other hand, Fig. 6 shows two significant peaks 
for two different traits, one for yellow rust at the beginning 
of chromosome 5B and another peak for Karnal bunt at 
about 20 cM. These findings suggest that some diseases are 
determined in similar regions of the chromosomes; they 
should be studied jointly rather than by single-trait QTL 
mapping. 

 

 
Fig. (5). Profile of LOD of chromosome 3A from the multi-trait 
analysis. The LOD profile of the joint analysis of all four traits (red) 
and the LOD profile of the marginal analyses for Karnal bunt 
(green), leaf rust (blue), tan spot (light blue), and yellow rust 
(black). The LOD threshold for the joint profile is the red horizontal 
line and the LOD threshold for the traits is the blue horizontal line. 

 
Fig. (6). Profile of LOD of chromosome 5B from the multi-trait 
analysis. The LOD profile of the joint analysis of all four traits (red) 
and the LOD of the marginal analyses for Karnal bunt (green), leaf 
rust (blue), tan spot (light blue) and yellow rust (black). The LOD 
threshold for the joint profile is the red horizontal line and the LOD 
threshold for the traits is the blue horizontal line. 

STATISTICAL MODELS FOR GENOMIC SELEC-
TION AND PREDICTION  

 Selection in plant breeding is based on estimates of 
breeding values obtained with pedigree-based mixed models 
[16-20]. These models have been used successfully for 
predicting breeding values in plants and animals. However, 
pedigree-based models cannot account for Mendelian 
segregation, a term that under an infinitesimal additive 
model [23] and in the absence of inbreeding, explains one 
half of the genetic variability. Molecular markers (MM) 
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allow tracing Mendelian segregation at several positions of 
the genome; potentially, this may increase the accuracy of 
estimates of genetic values and of the genetic progress 
attainable when these predictions are used for selection 
purposes. 

 Genomic selection (GS) (or genome-wide selection) is an 
approach for improving quantitative traits [29, 35] that uses 
all available MM across the genome to estimate genetic 
values. Genomic selection has been validated in several 
species and populations in animal breeding [35, 36]. 
However, reports on the use of GS in plants are few and refer 
mainly to computer simulation studies such as the research 
of Bernardo and Yu [30], who concluded that GS was 
superior to marker assisted selection in maize. In recent 
articles, de los Campos et al. [31], Pérez et al. [34], and 
Crossa et al. [32, 33] validated GS in plant breeding using 
genomic regression and showed that models using MM were 
more accurate in predicting grain yield in wheat and maize 
than those based on pedigree only.  

 One method for incorporating markers into models for 
GS is to define genetic values ( ig  , i=1,...,g) as a parametric 

regression on marker covariates ijx  (which can take values 

of 1, 0 or -1 for a biallelic marker of a segregating 
population, or values of 1 and 0 for inbred lines) of the form 

jβ
p

1j ijxig ∑
=

= . Phenotypes ( iy ) can then be represented as 

iεjβ
p

1j ijxiy +∑
=

=  (j=1,2,…,p), where jβ  is the regression 

of iy  on the jth marker covariate, and iε  is a model residual. 
This approach was first proposed by Meuwissen et al. [29] 
and is the most commonly used in GS. With high-density 
markers, the number of markers exceeds the number of 
individuals, and estimation of marker effects via ordinary 
least squares (OLS) is not feasible. Instead, penalized or 
Bayesian estimation methods are commonly used. Several 
penalized and Bayesian shrinkage estimation methods are 
available. Examples of the first group are Ridge Regression 
(RR) and the Least Absolute Shrinkage and Selection 
Operator (LASSO) of Tibshirani [54] and Elastic Net (EN). 
The list of Bayesian models is extensive and includes 
Bayesian counterparts of RR (BRR) and LASSO [55] (BL) 
and the Elasctic Net (BEN).  

 We considered models for GS that differ in the 
information used (pedigree, molecular markers or both) and 
in the way molecular markers are incorporated into the 
model (parametric regression or semi-parametric regression). 
In all cases, the response variable is the average standardized 
performance of each line within each environment, that is 

)inSD/(
in

1k ikyiy ×∑
=

= , where in is the number of 

replicates available for the ith line and SD is the (sample) 
standard deviation of the response variable { }iy . The 

conditional distribution of this phenotype given 2
εσ,μ, g  is 

Gaussian, 

 ( ) ( )∏
=

+=
n

1i in/2
εσ,igμiyN2

εσ,μ,p gy  

where µ is an intercept, }{y
i

y=  and { }ig=g  are vectors 

of average phenotypes and genetic values, respectively, and 
2
εσ  is a residual variance.  

 A standard additive infinitesimal model (e.g., Fisher [25] 
and Henderson [57]) postulates that genetic values are 
multivariate normal, centered at zero, and with a co-variance 
matrix proportional to the numerator relationship matrix (A) 
computed from the pedigree, that is, iaig = , 

where ( )2
aσ,N~)

n
a,...,

1
(a A0aa = , and 2

aσ  is the additive 

variance. The collection of unknowns in this model 
is{ }2

ε
2
a σ,σ,μ,a  and in a Bayesian setting, a prior density is 

assigned to these unknowns. Following standard 
assumptions, independent scaled inverse Chi-square 
distributions for the residual and the additive variance are 
chosen. The joint prior of this pedigree-based model 
becomes: 

 
( ) ( )
( ) ( )aS,adf2

aσ
2χεS,εdf2

εσ
2χ

2
aσNaS,adf,εS,εdf2

aσ,
2
εσ,μ,

−−

∝ A0,aap
  

where ( ).,..2χ−  is a scaled-inverse Chi-square density, and 
df and S are prior degree-of-freedom and scale parameters, 
respectively. The joint posterior distribution for this model is 
obtained combining the likelihood and prior, such that: 

( ) ( )
( ) ( ) ( )aS,adf2

aσ
2χ εS,εdf2

εσ
2χ  2

aσN

n

1i i/n2
εσ,iaμiyNaS,adf,εS,εdf,2

aσ,
2
εσ,μ,p

−−

∏
=

+∝

A0,a

ya
  

 Inferences are based on samples obtained using a Gibbs 
sampler.  

 An alternative is to replace A with kinship matrix (U) 
estimated using marker genotypes. A kinship-based 
infinitesimal model (K) is obtained using iuig = , where 

( ) ( )2
uσ,N~nu,...,1u U0uu ′

=  and 2
uσ  is the associated 

variance parameter. 

Penalized Parametric Regression on Marker Effects 
 In ridge regression, estimates are obtained by minimizing 

the residual sum of squares, ( ) ,2
iiymin

⎭
⎬
⎫

⎩
⎨
⎧∑ ′− βx

β
 subject to 

the following constraint: t 
j

2
jβ ≤∑  or, equivalently, 
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 ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

∑+∑ ′−=
= j

2
jβtλ2

iyminarg
RR

ˆ n

1i
βix

β
β .  

The solution to this optimization problem can be shown to be 

yX-I)XX(β ′+′= 1λ(t)ˆ , where ( ) 0tλ >  is a regularization 
parameter that induces shrinkage of estimates of effects 
towards zero and controls the trade-off between goodness of 
fit amd model complexity. Even though these estimates are 
biased, the sampling variance is reduced, yielding smaller 
mean-squared error and better predictive ability. 

 An alternative to ridge regression is to use LASSO [54]. 
Estimates in LASSO are obtained by minimizing the residual 

sum of squares, ( ) ,2
iiymin

⎭
⎬
⎫

⎩
⎨
⎧∑ ′− βx

β
 subject to the 

following constraint:  t
j jβ ≤∑  or, equivalently,  

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

∑+∑
=

′−=
j jβtλ

n

1i
2

iyminarg
LASSO

ˆ βix
β

β .  

 Unlike the quadratic penalty of ridge regression (L2 

norm, ∑
j

2
jβ ) the absolute-value penalty of LASSO (L1 

norm, ∑
j jβ ) induces selection and shrinkage 

simultaneously as some predictor effects may take the value 
of zero. When predictors are highly co-linear empirical 
evidences show that RR has better prediction accuracy than 
LASSO; this situation is common in GS with dense 
molecular markers. 

 One variant of the traditional LASSO is the elastic net 
LASSO, which differs from LASSO in that it uses two 
penalties the L2 and the L1 norms such that  

( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

∑+∑+∑
=

′−=
j

2
jβt

2
λ

j
|

j
|βt

1
λ

n

1i
2

iyminarg
EN

ˆ βix
β

β   

 The advantage of the EN is that, by adding another 
penalty, it stabilizes the LASSO solution when some 
predictors are highly correlated; such is the case of MMs 
used in GS. Two other variants of LASSO are the group 
LASSO and the fused LASSO. Group LASSO selects 
variables at a group level such that some groups of predictors 
are selected together; this may be useful when the researcher, 
instead of examining the effect of individual molecular 
markers wishes to examine the effects of haplotypes (genes) 
comprising several molecular markers in high linkage 
disequilibrium. Group LASSO could also be useful when 
there are more than two alleles for each molecular marker 
and the breeder wishes to keep all the alleles of the same 
MM active in the model. The fused LASSO focuses on 
adjacent predictors such that the value effects tend to be the 
same for adjacent predictors. This can be useful when there 
is a natural ordering of predictors, for example, when 
markers have been ordered on a common map.  

Bayesian Shrinkage Regression Methods 

 Estimates of regression coefficients derived from 
penalized optimization problems such RR, LASSO or EN 
are equivalent to posterior modes in certain class of Bayesian 
Models. In the Bayesian approach, inferences are based on 
the posterior distribution of the unknowns (hyper-
parameters, H) given the data (y), p(H|y). Following Bayes’ 
rule, this density is proportional to the product of the 
conditional distribution of the data given the unknowns, 
p(y|H), or the Bayesian likelihood times the prior density 
assigned to model unknowns p(H). In the models we are 
interest, the conditional distribution of the data given the 
parameters p(y|H) can be represented as the the product of 
independent normal densities centered at the regression 

function, jβ
p

1j ijx),
i

|
i

E(y ∑
=

=βx and with common 

residual variance 2
εσ , that is 

∏ ∑= ⎟
⎠
⎞

⎜
⎝
⎛

i
2
εσ,j jβijx iyN)2

εσ, ,|p( βxy  

 Marker effects are assigned identical and independent 
normal prior densities, ( )∏=

j jβN)p( ωω|β  

whereω represents hyper-parameters indexing the prior 
density of marker effects. Following Bayes’ rule, the 
posterior distribution is: 

( )
( )∏∏ ∑=

∝

⎟
⎠
⎞

⎜
⎝
⎛

j jβN
i

2
εσ,j jβijx iyN

))p(2
εσ,|p(y,2

εσ,p

ω

ω|ββX,ωyβ

  

 The choice of prior density, )p( ω|β , determines whether 
this posterior mode is equivalent to estimates obtained with 
the BRR, BL, BEN. In BRR the prior density of marker 
effects is Gaussian, centered at zero and with common 

variance, that is, ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= 2

j
βσ0,jβN)2

j
βσjβp(  where 2

j
βσ is a 

prior-variance of marker effects. In BL the prior assigned to 
marker effects is Double-Exponential (DE) centered at zero 

and with inverse-scale parameter, 2
ελ/σ , that is, 

( )2
ελ/σ0,jβDE)2

εσλ,jβp( = .The prior density of the 

Bayesian LASSO represents a compromise between the 
normal and DE densities. Relative to the Gaussian density, 
the DE places higher mass at zero and have thicker tails, 
inducing a different type of shrinkage. In particular, relative 
to BRR, the prior used in the BL induces stronger shrinkage 
towards zero of estimates of effects of predictors having 
weak association with the response, and not as much 
shrinkage of estimates of effects of predictors having strong 
association with the response.  
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Penalized Semi-Parametric Regression on Marker 
Effects 

 An alternative to parametric regressions is to use semi-
parametric methods such as reproducing kernel Hilbert 
spaces (RKHS) regression [56]. A Bayesian RKHS 
regression for molecular markers regards genetic values as 
random variables coming from a Gaussian process with a 
(co)variance structure that is proportional to a kernel matrix 
K, that is, ( ) ( )j,iKjg,igCov xx∝ , where ix , jx  are 

vectors of marker genotypes for the ith and jth individuals, 
respectively, and ( ).,.K  is a positive definite function 
evaluated in marker genotypes. One of the advantages of 
RKHS regression is that it can be used with almost any 
information set (e.g., covariates, strings, images, graphs). An 
advantage of RKHS is that the model is represented in terms 
of n unknowns, which gives RKHS a great computational 
advantage relative to parametric methods, when p>>n. A 
disadvantage of the RKHS is that no individual marker effect 
can be estimated.  

 The geostatistical models of Piepho [58] that uses the 
ridge regression BLUP has also the advantage of having only 
n instead of p unknowns when p >> n. The RKHS applied to 
marker data is related to the spatial models because the ridge 
regression BLUP corresponds to a spatial model with a 
quadratic covariance model, while RKHS just replaces this 
quadratic model with a Gaussian model. 

Examples of the Identification of Marker Effects in 
Environments for Genomic Selection 

Do Some (or all) Markers (Genes) have Different (or the 
same) Response Patterns in Environments?  

 Genomic selection is designed to improve complex traits; 
it focuses mainly on prediction and, as the number of 
markers increases, prediction of the genomic estimated 
breeding values (GEBV) is expected to become more 
accurate, whereas the marker effect is expected to decrease 
in absolute magnitude. However, parametric regression 
models also provide the opportunity to examine marker 
effects and study the possible differential response of 
markers in environments, that is, the gene × environment 
interaction effect. In general, the previously examined 
Bayesian shrinkage methods do not have an associated test 
for detecting chromosome regions; however, they can be 
routinely used for examining marker effects in certain 
chromosome regions. 

Multivariate Analysis of Estimated Marker Effects in 
Environments 

 Parametric models such as those described in the 
previous section yield estimates of marker effects that are 
environment-specific. In the previous sections, we described 
how biplots [5, 43, 6] from singular-value decomposition can 
be used to assess GE. We used these techniques to study GE 
at the level of estimated marker effects. 

 Consider a matrix of estimated molecular marker effects, 
[ ] { }jkβ̂qˆ,..,1
ˆqpˆ ==× ββB , whose columns, kβ̂ , 

q1,...,k = , are estimates of the effects of p  
markers in q different environments. The singular value 
decomposition of this matrix is VUDB ′=ˆ , 
 where [ ] { }jkαq,...,1qp ==× αU α  and 

[ ] { }klγqγ,...,1γqq ==×V  are ortho-normal matrices that 

span the row (marker) and column (environment) spaces of 
B̂ , respectively, and qq×D  is a diagonal matrix whose non-

null entries are the singular values of B̂ , that is, 
{ }kλDiag=D .  

 The biplot is constructed using the first and second 
components, that is, 1α , 2α , 1γ , and 2γ . Points in the 
biplot are the marker effects projected in the first two 
components, and are displayed using the coordinates 
provided by 1α  and 2α . The “environmental effects” are 

displayed as vectors whose coordinates are given by 1γ  and 

2γ . The length of the vectors approximates the variance 
accounted for by the specific molecular marker and 
“environmental effect.” Molecular markers represented in 
the same direction as the environments had positive effects 
on those environments, whereas molecular markers located 
in the opposite direction of the environmental vectors had 
negative effects on those environments. The cosine of the 
angle between two environments (or molecular marker 
effect) approximates the correlation of the two environments 
(or molecular marker), with an angle of zero indicating a 
correlation of +1, an angle of 90° (or -90°) a correlation of 0, 
and an angle of 180° a correlation of -1.  

 Biplots of marker effects for several maize datasets 
comparing maize lines genotyped with several hundred 
markers and phenotyped in different environments for male 
and female flowering and some diseases are shown in Crossa 
et al. [32, 33] using the Bayesian shrinkage M-BL model. 
The maize dataset is from the Drought Tolerant Maize for 
Africa project of CIMMYT’s Global Maize Program and 
was obtained by genotyping 300 tropical inbred lines with 
1148 SNPs. No pedigree was available for these 
data.Patterns of Co-Variability of Estimated Marker Effects 
Across Environments for Maize Flowering Genomic Data. 

 Traits included here were female flowering (FFL) (or 
days to silking), male flowering (MFL) (or days to anthesis), 
as well as the anthesis-silking interval (ASI) evaluated in 
300 lines under severe drought stress (SS) and in well-
watered (WW) environments [32]. The display of the first 
two component axes on estimated effects of the SNP markers 
in the six trait-environment combinations (MFL-SS, MFL-
WW, FFL-SS, FFL-WW, ASI-SS, and ASI-WW) obtained 
from the M-BL model is depicted in Fig. (7). The correlation 
between trait-environment combinations using marker 
effects and phenotypic data, and the effects of the 
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Fig. (7). Biplot of the first and second principal component axes (Comp. 1 and Comp. 2) of maize female flowering (FFL) and male flowering 
(MFL) effects of the 1148 SNPs estimated from the full data model M-BL of the maize dataset in each of two environments, severe water 
stress (SS) and well watered (WW). A total of six trait-environment combinations (FFL-SS, FFL-WW, MFL-SS, MFL-WW, SS-ASI, and 
WW-ASI) was formed. Only the effects of the 19 SNPs that are located far from the center of the biplot were identified with their 
corresponding SNP’s name (filled-in circles) (from Crossa et al. [32]). 

 

Table 4. Correlations Between Phenotypic Data (Upper Triangular) and Between Estimates of Marker Effects (Lower Triangular) 
from the Analysis of Six Trait-Environment Combinations (ASI-SS, ASI-WW, FFL-SS, FFL-WW, MFL-SS, and MFL-
WW) of the Maize Flowering Time Trial Data (from Crossa et al. [32]) 

Trait-environment ASI-SS FFL-SS MFL-SS ASI-WW FFL-WW MFL-WW 

ASI-SS --- .446 .109 .728 .315 .109 

FFL-SS .472 --- .926 .221 .700 .633 

MFL-SS .095 .923 --- -.040 .678 .686 

ASI-WW .773 .266 -.037 --- .155 -.123 

FFL-WW .134 .497 .502 .066 --- .948 

MFL-WW -.051 .427 .505 -.173 .971 --- 

 

SNP markers most distant from the center of the biplot are in 
Tables 4 and 5, respectively. Table 4 shows the correlations 
between phenotypic data (upper triangular) and between 
estimates of marker effects (lower triangular) from the 
analysis of six trait-environment combinations (ASI-SS, 
ASI-WW, FFL-SS, FFL-WW, MFL-SS, and MFL-WW) of 
the maize flowering trial data. Some trait-environment 
combinations are highly correlated (both phenotypically and 
genetically). The pattern of correlations between estimated 
SNP effects reflects the patterns of observed phenotypic 
correlations [32]. 

 Clearly the two groups of trait-environment combinations 
are dominated more by the trait (ASI vs FFL and MFL) and 
less by the environment (SS and WW). Phenotypic outcomes 
and estimates of marker effects for ASI showed relatively 
small correlations with those of FFL and MFL; this is 

because ASI is defined as the difference between FFL and 
MFL, and these two traits are positively correlated. 

 Markers with relatively large (in absolute value) 
estimated effects are identified by name in Fig. (7), and their 
effects are shown in Table 5. The marker effect on these 
traits should be interpreted differently than their effect on 
grain yield, since the favorable marker allele decreases both 
female and male flowering times, whereas for ASI, the 
optimal marker should give an ASI of 0. The alleles coded as 
1 of SNPs whose estimated effects are located in the left and 
upper left corner of the biplot (i.e., PZA03551.1, 
PZA03578.1, PZA03222.1, PZA03385.1, PZB01201.1, and 
PZB00118.2) increase FFL, MFL, and ASI (they all have 
positive effects on all trait-environments combinations), 
whereas those SNPs located on the opposite side of the 
biplot (lower right corner) (i.e., PZA02587.16, PZA00236.7, 
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Table 5. Biplot of the Principal Component Analysis on the Marker Effects in Each of the Six Trait-Environment Combinations. 
Estimated Effect of the 19 SNP Molecular Markers Located Farthest from the Center of the Biplot in Fig. (7) from the 
Maize Flowering Time Trial Data (from Crossa et al. [32]) 

SNP ASI-SS FFL-SS MFL-SS ASI-WW FFL-WW MFL-WW 

PZB02155.1 -.01567 -.02808 -.01713 -.01832 -.00957 -.00629 

PZA03551.1 .00907 .03973 .02889 .00491 .01938 .01724 

PZA03720.2 -.00062 -.02286 -.02511 .00301 -.01575 -.01822 

PZA03578.1 .02019 .06300 .04031 .01414 .01310 .01141 

PZA03592.3 .02969 -.00158 -.01165 .01705 -.00441 -.00700 

PZA03645.1 .02668 .00951 -.00011 .04379 .00257 -.00135 

PZA02587.16 -.01695 -.00925 -.00183 -.03975 -.00428 .00134 

PZB01385.3 .03359 .00021 -.00960 .02742 -.00337 -.00757 

PZA00236.7 -.03476 -.01352 -.00121 -.02162 -.00433 -.00327 

PZA00676.2 -.02956 -.05885 -.03312 -.00786 -.01213 -.01068 

PZB01077.3 .02016 -.01423 -.02687 .00962 -.00887 -.01099 

PHM13183.12 -.00252 .03107 .03278 -.01239 .00734 .01058 

PZA03385.1 .02674 .01727 .00896 .02199 .00725 .00306 

PZB00592.1 -.01450 .01787 .02865 -.01194 .00966 .01302 

PZB01201.1 .02927 .01670 .00614 .02306 .00431 .00128 

PZB00118.2 .02900 .01084 .00216 .02443 .00285 -.00150 

PZB01964.5 -.02849 .00531 .01561 -.02490 -.00003 .00222 

PZA03222.1 .02976 .04733 .02447 .01574 .00902 .00545 

PZB02076.1 .02229 -.00645 -.01467 .03059 -.00063 -.00484 

 

PZB0255.1, and PZA00676.2) decrease the value of FFL, 
MFL, and ASI. Those SNPs whose presence is expected to 
increase or decrease traits across environments can be 
viewed as contributing to positive genetic correlations in 
FFL, MFL, and ASI between environments. 

 Despite the high heritability (between 0.74 and 0.87) 
found for flowering time and ASI in this maize trial, results 
show substantial interaction between molecular marker 
effects and environment. The biplot in Fig. (7) shows SNPs 
that had very contrasting effects across environments. For 
example, the minor alleles of SNPs whose estimated effects 
are located in the upper right corner of the biplot 
(PZA03592.3, PZB01077.3, and PZB02076.1) increase the 
anthesis-silking interval under drought and well-watered 
conditions (Table 5), but decrease days to male and female 
flowering. In contrast, the minor alleles of SNPs whose 
estimated effects are located in the opposite quadrant of the 
biplot (lower left corner) (PZB00592.1, PHM13183.12, and 
PZB01964.5) showed a complete rank reversal with respect 
to the effects of SNPs PZA03592.3, PZB01077.3, and 
PZB01077.3 on those trait-environment combinations, i.e., a 
decrease in ASI under SS and WW, and an increase in male 
and female flowering times. These results are suggestive of 
important molecular marker effect × environment 
interaction, which in turn causes genotype × environment 
interaction.  

Patterns of Co-Variability of Estimated Marker Effects 
Across Environments for Exserohilum Turcicum (NCLB) 
in Maize Genomic Data 

 This section shows marker effects from northern corn 
leaf blight (NCLB) disease caused by the fungus 
Exserohilum turcicum and evaluated in three international 
environments: El Batán (Mexico), Harare (Zimbabwe), and 
Mpongwe (Zambia) [31]. The patterns of marker effects in 
three environments for Exserohilum turcicum (NCLB) in the 
maize data are depicted in Fig. (8). The first two principal 
components explained 83.58% of the total variability in 
estimated SNP effects. The correlation among the three 
environments (based on phenotypic data or on estimates of 
marker effects) was 0.50 between Mpongwe and Harare and 
0.26 between El Batán and Mpongwe and between El Batán 
and Harare. This pattern of correlations (depicted in Fig. 8) 
may indicate the presence of different races of NCLB in 
these environments, i.e., a pathogen population in El Batán 
(Mexico) that may be different from populations in Harare 
and Mpongwe (Southern Africa). 

 The 16 SNPs with the largest effects (positive or 
negative) for NCLB are located farthest on the biplot in Fig. 
(8). The presence of the allele coded with 1 of the SNPs in 
group 1 should confer some degree of resistance to NCLB 
across environments. The opposite is true for SNPs in groups 
2 and 3 (Fig. 8); here the presence of the allele coded with 1 
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is expected to favor the disease in El Batán (group 2) and 
Harare and Mpongwe (group 3). Selection should therefore 
aim at decreasing this allele. It should be noted that caution 
must be exercised when interpreting the above results 
because they are based on one-year data. The prevalence of 
NCLB races can change from year to year, depending on 
changes in environmental conditions (e.g., temperature, 
rainfall, and relative humidity). The variance explained by 
these 16 SNPs with the largest positive or negative effects 
ranged between 0.3-1% of the total variance explained by all 
SNPs.  

CONCLUDING REMARKS ON THE PLANT 
GENOMIC STUDIES  

 The results of the studies by de los Campos et al. [31] 
and Crossa et al. [32, 33] are encouraging; they indicate that 
models for GS can attain high predictive ability for genetic 
values of traits of economic interest under contrasting 
environmental conditions. The results indicate that genomic 
selection can be used effectively for selecting individuals 
whose phenotypes for various traits and in various 
environments have yet to be observed. As the number of 
available markers increases (as is expected in the near 
future), larger gains in predictive ability may be attained. 
 An advantage of models that include a parametric 
regression on marker covariates, such as M-BL, is that, in 
addition to estimating genetic values, they also provide 
information on (estimates of) “marker effects.” This 
information can be used to attain a better understanding of 
the genetic architecture of the traits under study and examine 

the patterns of response of marker effects across 
environments. In these studies, separate models were fitted 
to each trait-environment combination. An alternative to 
these single-environment models for genomic selection is to 
use multi-environment (or, equivalently, multi-trait) models 
where genetic values and marker effects on several 
traits/environments are jointly estimated. Multi-environment 
models allow borrowing information between correlated 
environments; thus it can be speculated that multi-
environment genomic models can yield similar or even better 
predictions for individual environments. The literature on 
genomic selection has focused on single-trait models only; 
therefore the development of multi-environment and multi-
trait models for genomic selection appears to be a natural 
next step. 
 Interestlingly, the results of these studies can also be used 
to generate a better design for field evaluations. For example, 
they show that prediction of unobserved lines in any of the 
correlated environments should be relatively accurate, and 
the scheme for testing these lines in any of those 
environments should be planned accordingly. It can be 
speculated that only one of the sets of correlated 
environments should be included in the trial, because any 
information lacking for the other environments can be 
borrowed from the one in use. However, unobserved lines in 
low correlated environments are expected to be poorly 
predicted. For example, concerning the analysis of NCLB in 
the maize data, results showed that estimated marker effects 
in the two African sites (Mpongwe and Harare) were 
positively correlated; however, they were negatively 
correlated with estimates of marker effects obtained for the 

 
Fig. (8). Biplot of the first and second principal component axes (Comp. 1 and Comp. 2) of the Exserohilum turcicum (NCLB) disease effect 
of 1152 SNPs estimated from the full data M-BL model for the maize dataset in each of three environments: El Batán (México) (BA), Harare 
(Zimbabwe) (HA), and Mpongwe (Zambia) (MP). Only the effects of 24 SNPs located far from the center of the biplot were identified with 
the names of their corresponding SNPs. Three groups of environments and molecular markers are delineated as groups 1, 2, and 3 (from 
Crossa et al. [33]). 
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same trait in Mexico (El Batán), which is suggestive of 
marker effect × environment interaction.  
 The analysis of genetic and genomic data is one of the 
most challenging and interesting mathematical and statistical 
problems researchers currently face. Therefore, different 
models from different areas of mathematical statistical 
research must be attempted in order to achieve a significant 
advance in understanding genetic effects. Models that 
consider complicated systems in biology and are able to 
study complex gene × gene interactions as well as gene × 
environment and gene × gene × environment are needed not 
only for improving prediction of the genetic values of 
individuals but also for understanding the chromosome 
regions related to important traits and the main climatic 
factors affecting these genomic regions. In a recent 
comprehensive study, Burgueño et al. [59] present multi-
environment (multi-trait) models for GS and compare the 
predictive accuracy of these models with: (a) multi-
environment analysis without pedigree and marker 
information, and (b) multi-environment pedigree or/and 
marker-based models. The authors described a statistical 
framework for incorporating pedigree and molecular marker 
information in models for multi-environment data and 
applied it to data that originated from wheat multi-
environment trials. Two prediction problems relevant to plant 
breeders are considered: predicting the performance of 
untested genotypes (“newly” developed lines), and 
predicting the performance of genotypes that have been 
evaluated in some environments, but not in others. Results 
confirmed the superiority of models using both marker and 
pedigree information over those based on pedigree 
information only. Models with pedigree and/or markers had 
better predictive accuracy than simple linear mixed models 
that do not include either of these two sources of 
information. Burgueño et al. [59] concluded that the 
evaluation of such trials can benefit greatly from using 
multi-environment GS models. 
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