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Detection of protein complexes by analyzing and understanding PPI networks is an important task and
critical to all aspects of cell biology. We present a technique called PROtein COmplex DEtection based on
common neighborhood (PROCODE) that considers the inherent organization of protein complexes as well
as the regions with heavy interactions in PPI networks to detect protein complexes. Initially, the core of
the protein complexes is detected based on the neighborhood of PPI network. Then a merging strategy
based on density is used to attach proteins and protein complexes to the core-protein complexes to form
biologically meaningful structures. The predicted protein complexes of PROCODE was evaluated and ana-
lyzed using four PPI network datasets out of which three were from budding yeast and one from human.
Our proposed technique is compared with some of the existing techniques using standard benchmark
complexes and PROCODE was found to match very well with actual protein complexes in the benchmark
data. The detected complexes were at par with existing biological evidence and knowledge.
� 2017 Production and hosting by Elsevier B.V. on behalf of Academy of Scientific Research & Technology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
1. Introduction

Proteins work with other proteins forming protein complexes to
regulate and support each other to perform various essential bio-
logical functions, for example, DNA transcription and duplication,
DNA damage repair, the translation of mRNA, signal transduction,
cell cycle, cell metabolism etc. [1,2].

According to Pizzuti et al. [3], ‘‘protein complexes are molecular
aggregations of proteins assembled by multiple protein-protein inter-
actions”. There are different ways to detect protein complexes
experimentally. Recently, high-throughput methods for detecting
pairwise protein-protein interactions (PPIs) have made it possible
to construct PPI networks on a large genomic scale (for example,
yeast-two hybrid [4,5]). Such data can be naturally represented
as a large network of protein protein interaction. The whole set
of molecular interactions in a particular organism can be con-
structed from such experiments as a graph network with individ-
ual proteins as the nodes, and the physical interaction between a
pair of proteins as edges. This network structure provides an
insight and helps understand the complicated biological systems.
It is quite likely that a dense sub-graph in a PPI network corre-
sponds to a protein complex, since a protein complex comprises
a set of proteins interacting at the same time and place forming
a single multiprotein molecular machinery [6].

A protein complex consists of groups of proteins binding among
themselves at the same place and time, whereas a functional mod-
ule consists of groups of proteins involved in a common biological
process and binding among themselves at different time and place.
Most of the biomolecule relationship data about proteins available
in the form of protein-protein interaction network in public data-
bases, usually do not explicitly specify any such spatiotemporal
information about PPIs. In this paper, we will use the term ‘protein
complex’ to indicate a group of interacting proteins that are con-
nected by a large number of pairwise interactions. Detection of
protein complexes based on PPI network can help in unfolding var-
ious aspects of cell biology and identifying biological functions of
uncharacterized proteins. Clustering techniques have been widely
used to detect protein complexes using PPI networks. Cluster anal-
ysis groups data objects into classes of similar objects called clus-
ters, where, intra-cluster objects are more similar to each other
than the inter-cluster objects [3].

Two proteins interacting among themselves in a PPI network
may belong to a common protein complex. Based on this intuition
we split the whole network into groups, having more intra-group
links and fewer inter-group links. The PPI network is now divided
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into sub-graphs or clusters that reveal the intrinsic structure and
global organization in terms of the sub-graphs. These sub-graphs
or clusters are the detected protein complexes. Each of the clusters
consists of groups of proteins performing the same tasks and
unknown proteins in a cluster may be assigned to the biological
function recognized for that complex.

Therefore, a protein complex is a group of proteins having phys-
ical association with each other and working in a coherent fashion
to perform a particular biological function. We represent the PPI
network as a graph where the vertices are proteins and an edge
between two vertices indicating the interaction between those
two proteins. Protein complexes can be termed as subgraphs of
that large graph having high functional and structural cohesion
[7]. This concept is the basis on which researchers try to discover
new protein complexes by finding densely connected regions in
the PPI networks. However, due to the huge number of pairwise
protein-protein interactions, efficient graph clustering methods
are required to handle the computational challenge.

2. Motivation

In proteomics, detection of protein complexes is a crucial and sig-
nificant task.With the availability of numerous datasets on protein-
protein interactions (PPI), it is now possible to identify protein com-
plexes from PPI networks using various computational approaches.
However, most of the recent studies have focused on the detection
of protein complexes considering the dense regions in PPI networks
only. Very few studies have considered both the dense regions as
well as the inherent organization within protein complexes. Tech-
niques capable of considering both the dense regions as well as
the organization of proteins in the complexes while detecting pro-
tein complexes, provide a more biologically meaningful structure.

In this paper, we propose an effective technique, PROtein COm-
plex DEtection based on common neighborhood (PROCODE) which
considers both the inherent organization of protein complexes as
well as the highly interacting regions in PPI networks. It detects
protein complexes in two major steps: Step 1 detects the core of
the protein complexes based on the neighborhood of PPI network
and Step 2 uses a merging strategy based on density to attach pro-
teins and protein complexes to the core-protein complexes to form
biologically meaningful structures.

The predicted protein complexes of PROCODE was evaluated
and analyzed using four different PPI network datasets and the
experimental results show that PROCODE performs much better
than other comparable techniques. Comparison between our pro-
posed technique and some of the existing techniques was done
using standard benchmark complexes and PROCODE was found
to match very well with actual protein complexes in the bench-
mark data. The detected complexes also shows significance in
terms of existing biological evidence and knowledge.

3. Related work

With the recent technological advent in proteomics such as two
hybrid, protein micro array, mass spectrometry and phage display,
we are capable of discovering the whole network of protein-
protein interactions for a given organism. The experimental and
computational approaches have generated significant amount of
interaction data. Methods have been developed to store, visualize
and analyze the information in order to decipher the encoded pro-
tein networks that dictate cellular function.

Many researchers, in a bid to identify the protein complexes,
have pursued different approaches. In 2003, Gary Bader and In
[16], C. Hogue proposed a graph based algorithm, called MCODE,
that finds protein complexes by identifying heavily connected
regions in large PPI network. MCODE works in three steps. Step 1
does node weighting based on core clustering coefficient. In step
2, the algorithm traverses the weighted graph in a greedy fashion
to identify densely connected regions. Step 3 involves post process-
ing that filters or adds proteins based on connectivity criteria.

Based on the simulation of stochastic flow in graphs, Stijn Van
Dongen, proposed the algorithm Markov Clustering (MCL) [17].
The algorithm is designed to simulate random walks within a
graph by using two operators expansion and inflation iteratively.
All the nodes are assigned pairwise with new probabilities by using
the expansion operator. The inflation operator is used to boost the
probabilities of intra cluster walks and to lower the probabilities of
inter cluster walks. Eventually, the graph is divided into different
clusters after several iterations.

In 2006, Amin et al. proposed an algorithm (DPClus) [11] to
detect protein complexeswhich basicallyworks by tracking periph-
ery of a detected cluster. DPClus initially assigns weights to every
edge by quantifying the number of common neighbors of the two
proteins connected by that edge. Then it assigns weights to the
nodes based on the weight of their degree. DPClus identifies a node
as seed node with highest weight and starts to form a protein com-
plex by considering this seed node as the initial cluster. The initial
cluster gets expanded by each iteration that includes nodes to the
cluster which are closely related based on their weights.

A novel core-attachment based method (COACH) [12] was pro-
posed by Min Wu et al., in 2009. COACH tries to find protein com-
plexes from PPI network in two steps. The basic idea of COACH is to
identify core of protein complexes, termed as ‘‘hearts” of the pro-
tein complexes and then it augments other proteins to these cores
to form a protein complex. In the core detection step, COACH iden-
tifies core nodes from neighborhood graphs and finds these cores
as the protein complex hearts. Assuming that nodes with lower
degree have low reliability in terms of forming a protein complex,
a threshold value is maintained to keep or discard a node from the
graph. Nodes with degree P 2 are kept and the nodes with degree
1 are discarded from the graph.

Nepusz et al. [27] introduced a novel algorithm called Cluster-
ing with Overlapping Neighborhood Expansion (ClusterONE) for
detection of protein complexes. ClusterONE uses a greedy
approach, initially starting from a single seed vertex, that tries to
find groups of proteins with high cohesiveness by adding or
removing proteins to the seed vertex. This process is repeated for
different seeds to form multiple and possibly overlapping protein
complexes. ClusterONE merges those groups of proteins whose
overlap score [16] is above a specified threshold value. Finally,
some complexes are discarded whose density is below a given
threshold value or those containing less than three proteins.

Liu et al. [8] described a method named Clustering based on
Maximal Clique (CMC) which tries to find protein complexes from
a weighted PPI network. CMC uses an iterative scoring method to
assign weight to protein pairs. Another graph theoretic approach
is Protein Complex Prediction (PCP) proposed by Chua et al. [9].
PCP is a novel approach where the PPI network is modified before
the prediction actually happens. They uses a Functional Similarity
Weight called FS�Weight which is based on the fact that proteins
share functions as a result of direct functional association through
interactions and indirect functional association through interac-
tions with common proteins. Finally, the algorithm searches for cli-
ques in the modified network, and iteratively merges them by
‘‘partial clique merging” to form larger protein clusters. Li et al.
[10] proposed a graph mining algorithm LCMA that uses local
clique merging method to detect protein complexes. The algorithm
first identifies local cliques for each protein and then merge the
detected local cliques according to their affinity to form maximal
dense regions.
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The protein complex detection techniques mentioned above
have used protein protein interaction data provided by high
throughput experiments such as Y2H (Yeast two-hybrid system).
There are some other techniques that are used to obtain the inter-
action data of proteins. TAP experiment is one of such techniques.
Some researchers attempted to devise methods that uses the inter-
action data obtained from TAP experiments to detect protein com-
plexes. There are methods like GFA by Feng et al. [13] and DMSP by
Maraziotis et al. [14] which incorporates gene expression data to
detect protein complexes. Functional information can also be
incorporated to accurately detect protein complexes. Methods like
RNSC by King et al. [15] uses functional information to detect pro-
tein complexes. In our proposed algorithm PROCODE, which is
graph based, we tried to detect protein complexes based on com-
mon neighborhood. In our proposed algorithm a protein complex
is formed in two stages solely based on topological metrics. Com-
parative performance analysis of different algorithms, including
our proposed algorithm PROCODE, is discussed next.

4. Method

4.1. PROCODE - the proposed algorithm

PROtein COmplex DEtection based on common neighborhood
(PROCODE) is an effective graph theoretic clustering algorithm
which works in two steps. In the first step initial protein complexes
are identified based on the concept of common neighbors. Step 2
improves on the result of step 1 by using a merging strategy based
on the density. Some of the concepts integral to our technique is
given in the following definitions.

Definition 1. Density: We define density of a graph G as follows

densityðGÞ ¼ 2 � jEj
jV j � ðjV j � 1Þ

where E is the set of edges and V is the set of vertices.
Definition 2. Neighbor: Two proteins say pi; pj are said to be
neighbors of each other if there is an edge between pi; pj.
Definition 3. Common Neighbor: A protein pk is said to be a com-
mon neighbor (CN) of two proteins pi and pj, if pk is a neighbor of
both pi and pj.

CNðpi; pjÞ ¼ fp1; p2; . . . ; pkg where both pi and pj have edge
between each of p1; p2; � � � ; pk.

In this work, we will consider jCNðpi; pjÞj P 1.

Definition 4. Common Neighbor score (CNscore) is the total
number of common neighbors between two proteins pi; pj.

CNscorei;j ¼ jCNðpi;pjÞj
Definition 5. Initial protein complex: A set of interacting proteins
Pc ¼ fpi; pj; p1; p2; . . . ; pkg is defined as an initial protein complex,
where Pc contains all the common neighbors of pi and pj along with
pi and pj. Mathematically,

Pc ¼ CNðpi; pjÞ [ fpi; pjg
The PPI network is represented as a graph G ¼ ðV ; EÞ where V is

the set of nodes (proteins) and E is the set of edges (protein inter-
actions). At the very beginning, all self-interactions are removed as
part of pre-processing. The common neighbors (CN) for every pair
of proteins are found and stored in a list named CNlist. Thus CNlist
contains every pair of proteins ðpi; pjÞ and thus it will contain nC2

entries where nC2 ¼ n!
2�ðn�2Þ!. The entries having jCNðpi; pjÞj > 0 are

retained and the rest are discarded.

Algorithm 1 states the steps to detect the initial protein
complexes.

Algorithm 1.

1: procedure FindInitialComplexes GraphGðV ; EÞ
2: k ¼ 0
3: for i from 1 to jV j � 1 do
4: for j from iþ 1 to jV j do
5: CNi;j

score ¼ Calculate CN scoreði; jÞ
6: end for
7: end for
8: Repeat steps 9 to 22 till all the proteins in CNlist are

classified

9: Pk
c ¼ f/g

10: max pair ¼ get max CNscoreðÞ
11: max pair:getð1Þ:classified = TRUE
12: max pair:getð2Þ:classified = TRUE

13: Pk
c ¼ Pk

c [max pair
14: Q ¼ get common neighborsðmax pairÞ
15: for i from 1 to Q :getsizeðÞ do
16: r ¼ Q :getðiÞ
17: if r:classified ¼¼ FALSE then
18: r:classified ¼ TRUE

19: Pk
c ¼ Pk

c [ r
20: end if
21: end for
22: k ¼ kþ 1
23: end procedure

The function Calculate CN scoreði; jÞ returns the total number of

common neighbors of proteins i; j. An initial protein complex Pk
c is

initialized to the NULL set. The function get max CNscoreðÞ returns
the pair of proteins which has the maximum CNscore and stores the
protein pair in a 2-element list max pair. The function

max pair:getðiÞ returns the ith element in the list max pair. The pro-

tein pair is classified and inserted in Pk
c in steps 11, 12 and 13. The

function get common neighborsðmax pairÞ returns all the common
neighbors of the protein pair contained in max pair as list and
stored in Q. Steps 15 to 21 inserts all the neighbors ofmax pair into

Pk
c and classifies them. The process is then repeated to get the next

Pkþ1
c and so on. This algorithm generates k number of initial protein

complexes.
Algorithm 2.

1: procedure Merge
2: D Th ¼ 0:4
3: Create an empty list, ML ¼ f/g
4: Z ¼ getIndependentSetsðÞ
5: NZ ¼ getDenseClustersðÞ
6: Create a temporary cluster Tp, and set u ¼ 0
7: for i from 0 to jNZj � 1 do
8: for j from iþ 1 to jNZj do
9: Tp ¼ combineðNZ:getðiÞ;NZ:getðjÞÞ

(continued on next page)
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10: if Tp:density > D Th then
11: Mu

L ¼ NZ:getðiÞ [ NZ:getðjÞ
12: Increment u
13: end if
14: end for
15: end for
16: Create an empty set S ¼ f/g
17: for i from 0 to jZj do
18: S ¼ S [ getProteinsðZ:getðiÞÞ
19: end for
20: for p from 0 to jMLj do
21: for q from 0 to jSj do
22: if S:getðqÞ:CLASSIFIED ¼¼ FALSE then
23: ML:getðpÞ ¼ ML:getðpÞ [ S:getðqÞ
24: d ¼ densityðML:getðpÞÞ
25: if d > D Th then
26: S:getðqÞ:CLASSIFIED ¼ TRUE
27: else
28: ML:getðpÞ ¼ ML:getðpÞ � S:getðqÞ
29: end if
30: end if
31: end for
32: end for
33: end procedure

After the execution of Algorithm 1 we obtain protein complexes
that are more in number and show the connectedness of proteins.
These set of initial protein complexes represents comparatively
denser regions in the PPI network. However, these complexes do
not have overlapping. But, it is a well known fact that protein com-
plexes have any overlapping sets. Therefore, to obtain the final set
of predicted complexes, Algorithm 2 is used. Here, we select all the
initial protein complexes as well as proteins that failed (unclassi-
fied proteins) to make it to the initial protein complexes formed
based on common neighbors and density. These protein complexes
are then merged together based on a threshold, D Th to form new
complexes. The unclassified proteins from Step 1 are merged with
a protein complex based on D Th. Density threshold (D Th) is
defined as follows

D Th ¼ 2 � jIj
jPj � ðjPj � 1Þ ð1Þ

where jIj is the total number of interactions and jPj is the total num-
ber of proteins.

Algorithm 2 shows the steps involved in merging the clusters
resulting from Algorithm 1. Initially a set of protein complex ML

is set to NULL. The function getIndependentSetsðÞ returns the group
of proteins having no interaction among them and hence having
density ¼ 0. The function getDenseClustersðÞ returns the clusters
having density greater than 0. In step 9, the function combineðÞ is
used to merge two clusters and store the resulting cluster in a tem-

porary cluster TP . The function NZ:getðiÞ returns the ith cluster from

the set NZ. Similarly, Z:getðiÞ returns the ith cluster from the set Z. In
steps 16 and 19 all the proteins of set Z are stored in set S using the
function getProteinsðZ:getðiÞÞ, which assigns the proteins from all
the complexes in set Z to set S. In steps 20–32, each protein from
set S is first added to a cluster from the set ML, then checked the
resulting density to be greater than D Th, if so the protein is
retained, otherwise it is removed from the cluster.

Finally the set ML is left with all the merged protein complexes.
Time complexity of the two steps involved in PROCODE are found
to be Oðn3Þ and Oðn2Þ, giving an overall time complexity of Oðn3Þ for
our proposed algorithm PROCODE, where n represents the number
of proteins i.e number of vertices. As mentioned earlier, as part of
the pre-processing, the Common Neighbors for every pair of pro-
tein are found and stored in a list called CNList which is later being
used in Algorithm 1. To prepare the list by accessing ðn� 2Þ nodes,
the overall complexity of PROCODE will be Oðn3Þ.

Finally, merging of complexes which are largely overlapped is
done as a post-processing step. After examining and working on
the overlapping complexes, it is found that merely 2–3% of the
total predicted complexes are merged based on the extent to which
they are overlapped. Hence, the quality of the predicted complexes
is not affected crucially after merging the overlapped complexes.

Algorithm 3 states the steps to merge protein complexes which
are overlapped based on specified thresholds av and ae. As sug-
gested, after considering the provision for merging the overlapping
complexes, our method requires an additional subroutine, which is
referred here as mergeOverlapped(G, G0). From our experimental
study, it has been observed that for all the three datasets, approx-
imately 2–3% predicted complexes need merging for a given (i)
vertex overlapping threshold av and (ii) edge overlapping thresh-
old ae, which is not significantly a high number. Hence, it does
not affect the quality of complex prediction crucially.

In this algorithm we merged two complexes based on their
amount of overlapping in terms of vertices i.e., proteins and in terms
of edges i.e interactions between the proteins. The threshold av is
used for vertex similarity and ae is used for edge similarity. If
two complexes have vertex similarity equal to or more than av
and edge similarity equal to or more than ae, then we considered
that those two complexes are overlapped enough to be combined
or merged. We considered the vertices or the proteins to check
the amount of overlapping using the following measure.

Vertex Similarity ¼ jV j \ jV 0j
jV j [ jV 0j ð2Þ

And to compute the amount of overlapping in terms of interac-
tion, we used the following measure,

Edge Similarity ¼ jEj \ jE0j
jEj [ jE0j ð3Þ

Algorithm 3.

1: ProceduremergeOverlappedGðV ; EÞ;G0ðV 0; E0Þ
2: Set av ¼ 0:90
3: Set ae ¼ 0:98
4: Initialize Iv ¼ Uv ¼ Ie ¼ Ue ¼ 0
5: for i from 1 to jV j do
6: for j from 1 to jV 0j do
7: if Vi ¼¼ V 0

j then
8: IncrementIv
9: break
10: end if
11: end for
12: end for
13: for i from 1 to jEj do
14: for j from 1 to jE0j do
15: if Ei ¼¼ E0j then
16: IncrementIe
17: break
18: end if
19: end for
20: end for
21: Uv ¼ jV j þ jV 0j � ð2 � Iv Þ þ Iv
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22: Ue ¼ jEj þ jE0j � ð2 � IeÞ þ Ie
23: if ð IvUv

Þ P av ^ ð IeUe
Þ P ae then

24: Merge G and G0

25: end if
26: end procedure

The complexes identified by PROCODE are dense in terms of
number of interactions. This is due to the fact that in the first major
step, PROCODE identifies the initial complexes for which
CNðpi; pjÞ P 1 i.e, if pi; pj are the member proteins of an initial com-
plex, they must have common neighbors P 1. In the second major
step, PROCODE expands the initial complexes by merging process
based on the fulfillment of density condition. So, both the steps
ensure that the complexes identified by PROCODE are dense.

A comparative study of the proposed technique, PROCODE, is
performed in the following section based on a few commonly used
evaluation metrics. Results are shown in comparison with other
state-of-the-art techniques.

5. Results and discussions

In this section, the performance of our algorithm PROCODE is
compared with other seven competing algorithms, MCODE [16],
MCL [17], DPClus [11], RNSC [15], COACH [12], CORE [18] and CFin-
der [19], using four PPI networkdatasets: three fromSaccharomyces
cerevisiae and one from Homo sapiens. The first three have been
taken from DIP [20], MIPS [21] and Krogans [22] network data. For
the Homo sapiens data we used time course data on the ‘‘Asbestos
effect on epithelial andmesothelial lung cell lines” [23] downloaded
from http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=
GDS2604. We also compared the performance of PROCODE with
the algorithm proposed byWu et al. (2013) [24]. For extensive com-
parisons, we used several evaluation measures namely, co-
localization, p-value, precision, recall and F-measure.

The benchmark set we used for Saccharomyces cerevisiae con-
sists of 428 gold standard protein complexes, which is built by
merging three datasets, MIPS [21], Aloy et al. [35] and SGD data-
base [36]. The merging strategy used by Xiaoli Li et al. for building
the benchmark set is same as the one they used to build the bench-
mark for human protein complexes as described in Min et al. [37].

The benchmark complex set for Homo sapiens consists of 1843
human complexes and is obtained from CORUM [25].

During the experimental analysis the default settings and
parameters are used in ClusterONE and MCODE and all other meth-
ods. Detailed settings and parameters are supplied as supplemen-
tary document. The density threshold D Th in PROCODE, as
mentioned in Section 4.1, is set to 0.4 during the analysis. It has
been seen that PROCODE performs well with the D Th value in
the range [0.3–0.5].

5.1. Validation metrics

To evaluate the effectiveness of PROCODE and to validate our
results, we have used several validation methods as described next.

5.1.1. Co-localization score of a predicted complex set
A predicted complex may not match any of the reference com-

plexes from the gold standard set. Such unmatched protein com-
plexes may belong to a valid but still uncharacterized complex
because of the fact that the gold standard sets are not complete
[26]. Co-localization score gives a way to quantify the quality of
such unmatched complexes. The principle of co-localization score
is based on the fact that constituent proteins of a protein complex
are ought to be found in the same cellular compartment [27]28 and
also it’s more likely that proteins that are involved in similar func-
tion form a protein complex.

L ¼
P

jmaxilijP
jjCjj ð4Þ

Here, li;j is the number of proteins of complex Cj assigned to the
localization group i and jCjj is the number of proteins in the com-
plex Cj with localization assignments.

5.1.2. Statistical significance of predicted protein complexes (p-value)
The p-values for each predicted complexes are determined to

corroborate their biological significance. In statistical significance
testing, the p-value is the probability of obtaining a test statistic
result at least as extreme as the one that was actually observed,
assuming that the null hypothesis is true[29]30 In proteomics,p-
values are used to calculate the statistical and biological signifi-
cance of a protein complex.

p� value ¼ 1�
Xk�1

i¼0

M

i

� �
N �M

n� i

� �

N
i

� � ð5Þ

To get the p-values for the complexes predicted by our algo-
rithm PROCODE we used an online tool called FuncAssociate 2.0
(http://llama.mshri.on.ca/funcassociate/) [38]. FuncAssociate takes
a query list of genes Q as its primary input. If we assume that the
list consists of q genes, then, FuncAssociate first determines, for
each GO attribute A, how many genes among q are annotated with
GO attribute A. FuncAssociate uses Fisher’s Exact Test to compute
the probability pþðAÞ of finding at least m genes annotated with
attribute A in the supplied query list assuming the null hypothesis
(H0) to be true. In this context, the null hypothsis H0 is that the
genes in the supplied query list are independent of having GO attri-
bute A. If pþðAÞ is sufficiently small, then it suggests that the null
hypothesis must be rejected, i.e the number of genes among q hav-
ing attribute A is statistically significant [39].

In Eq. (5), N represents the total number of genes in the back-
ground distribution. The number of genes which are directly or
indirectly annotated within that distribution to the node of interest
is represented by M. n is the size of the list of genes under consid-
eration and k is the number of genes within that list which are
annotated to the node.

Cluster score: To quantify the overall clusters we use a measure
called Cluster Score [31] function which is as defined below.

ClusterScore ¼ 1�
PnS

i¼1minðpiÞ þ ðnI � cutoff Þ
ðnS þ nIÞ � cutoff ð6Þ

where nS represents the number of significant clusters and nI repre-
sents the number of insignificant clusters, respectively. minðpiÞ is

the smallest p-value of the ith significant cluster. The cutoff is con-
sidered to be 0:05.

5.1.3. Precision, recall and F-measure
Precision, recall and F-measure are three commonly-used

assessment metrics based on an understanding and measure of rel-
evance. To quantify the quality of our prediction, we require to
specify how well a predicted protein complex matches with an
actual complex. Precision measures the fraction of the predicted
complexes that match the positive complexes among all predicted
complexes and recall measures the fraction of known complexes
detected by predicted complexes, divided by the total number of
positive examples in the test set. In simple terms, high precision
means that an algorithm returned substantially more relevant

http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS2604
http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS2604
http://llama.mshri.on.ca/funcassociate/
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results than irrelevant, while high recall means that an algorithm
returned most of the relevant results.

To determine whether the complexes predicted by PROCODE
match with the actual complexes in the benchmark set, we use a
neighborhood affinity score NAðp; bÞ, which is often used in many
research works. The score NAðp; bÞ is defined [12] in Eq. (7), where
Vp is the set of proteins in the predicted complex pðp ¼ ðVp; EpÞÞ
and Vb is the set of proteins in the actual complex bðb ¼ ðVp; EpÞÞ.

NAðp; bÞ ¼ jVp \ Vbj2
jVpj � jVbj ð7Þ

If NAðp; bÞ P x; p and b are considered to be matching. Gener-
ally, x is set to 0:2 or 0:25. Let P be the set of protein complexes
predicted by some computational method and B be the set of
benchmark protein complexes. If the number of complexes in the
set of predicted complexes P, which match with at least one actual
protein complex from set B, is denoted by Ncp and the number of
actual complexes in the benchmark set B that match with at least
one predicted complex from set P is denoted by Ncb, then, Precision
and Recall can be defined as follows.

Ncp ¼ jfpjp 2 P;9b 2 B;NAðp; bÞ P xg

Ncb ¼ jfbjb 2 B;9p 2 P;NAðp; bÞ P xg
Precision = Ncp

jPj and Recall = Ncb
jBj .

F-measure combines the precision and recall scores. It is defined
as follows

F �measure ¼ 2 � precision � recall
ðprecisionþ recallÞ ð8Þ
5.1.4. Sensitivity (Sn), Positive Predictive Value (PPV) and Accuracy
(Acc)

Sensitivity, PPV and Accuracy are three evaluation metrics we
used to evaluate the accuracy of the prediction methods [40,41].
Sn and PPV are defined as follows,

Sn ¼
Pn

i¼1maxfTijgPn
i¼1Ni

ð9Þ

and

PPV ¼
Pm

j¼1maxfTijgPm
j¼1Tj

ð10Þ

In Eq. (9), n denotes benchmark complexes and Tij denote the

number of proteins in common between ith benchmark complex

and jth predicted complex. Here Ni is the number of proteins in

the ith benchmark complex whereas in Eq. (10), m denotes the
number of predicted complexes and Tij denote the number of pro-

teins in common between ith benchmark complex and jth predicted

complex. Tj is the number of proteins in the jth predicted complex.
High Sn values implies that the predicted complexes have good

coverage of the proteins in the real complexes, while high PPV val-
ues indicate that the predicted complexes are likely to be true pos-
itives. The accuracy of a prediction, Acc, can then be defined as the
geometric average of sensitivity (Sn) and positive predictive value
(PPV).

Acc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn� PPV

p
ð11Þ
5.2. Results on Saccharomyces cerevisiae data

The predicted protein complexes of PROCODE was evaluated
and analyzed using three PPI network datasets of budding yeast
(Saccharomyces cerevisiae): (i) DIP [20], (ii) MIPS [21] and (iii) Kro-
gans dataset [22]. Experimental results show that PROCODE exhi-
bits much better performance than other comparable techniques.

PROCODE predicted 153 complexes from the DIP PPI network
dataset, out of which 147 complexes are found to be significant,
with adjusted p-value cutoff 0.05. The proportion of significant
complexes over the total number of predicted complexes can be
used as a measure to compare the overall performance of various
methods. The significance of the results produced by some meth-
ods are compared based on this measure as shown in Table 1.
We can see from Table 1 that 96.0% of the predicted complexes
are found to be significant, which is much better than the other
three algorithms.

While COACH and MCODE has predicted comparatively large
proportion of the complexes as significant, ClusterONE has shown
poor results because many protein complexes predicted by Clus-
terONE are of extremely small size with large p-values [34] which
is undesirable. Protein complexes of large size are likely to have
smaller p-values. Our algorithm predicted 153 protein complexes
covering 699 proteins from DIP data. The p-values of the top ten
protein complexes obtained by PROCODE over the three datasets
mentioned earlier are reported in a table in the supplementary
material.

5.2.1. Qualitative comparison with MCODE and MCL
To compare the effectiveness of PROCODE and MCODE in terms

of finding protein complexes, we examined the best ranked protein
complex found by MCODE and the corresponding protein complex
given by PROCODE using the Cellular Component ontology. The
best scoring protein complex in MCODE is consist of 26 proteins
out of which 15 belong to Proteasome regulatory particle
(GO:0005838) [31]. This complex is having a small p-value of
8.5e�34. Whereas, PROCODE gives two overlapping complexes that
includes all the proteins from the best scoring MCODE protein
complex belonging to Proteasome regulatory particle having smaller
p-value 3.393e�65 and 4.486e�65. The two complexes from PRO-
CODE contains 28 and 31 proteins and among them 18 and 19 pro-
teins belong to Proteasome regulatory particle respectively. The two
complexes are shown in Figs. 1 and 2. To emphasize the signifi-
cance of this result, it is worth to mention here that out of 6472
annotated proteins for yeast in GO database, there exists only 23
proteins annotated with this complex.

We also compared the clusters found by MCL algorithm with
the protein complexes found by PROCODE. MCL partitioned the
PPI network of DIP data into 1246 clusters. Among these, only
277 clusters are identified as having significant Biological Process
annotations, 216 having Molecular Function annotation and 226
are having Cellular Component annotations. This implies that,
almost 900 to 1000 of the clusters were not significant. Whereas,
out of 153 protein complexes detected by PROCODE there exist
147 protein complexes having significant gene ontology annota-
tions. In spite of the fact that MCL is capable of producing more
clusters, the number of significant clusters and the biological sig-
nificance within the clusters are low.

5.2.2. Size distribution analysis and evaluation of predicted complexes
In this section, we report the distribution of the sizes of pre-

dicted complexes for different methods. In Figs. 5–7, comparative
graphs are plotted considering the predicted complexes of PRO-
CODE, MCODE, COACH and ClusterONE. On close observation on
the results, we found that for DIP data, largest complex is predicted
by MCODE with size 107 while number of predicted complexes is
minimum in MCODE (71). For DIP data, COACH has predicted the
maximum number of complexes (730) and the largest complex
among them is of size 85. ClusterONE predicted 342 complexes
and the largest among them is of size 23, whereas, PROCODE



Table 1
Comparison of various methods in terms of significance of the predicted complexes
for DIP data.

Algorithms MCODE ClusterONE COACH PROCODE

# Significant complexes 60 237 680 147
# Predicted complexes 71 342 730 153
Proportion (%) 84.5 69.29 93.15 96.0

Fig. 1. PROCODE Cluster with 28 proteins.

Fig. 2. PROCODE Cluster with 31 proteins.

Table 2
Performance evaluation over DIP data.

Algorithms MCODE MCL RNSC COACH

#Complexes 71 1246 2435 730
#Covered proteins 732 4930 4930 1891
Ncp 32 212 234 255
Ncb 261 256 289 375

Table 3
Performance evaluation over Krogan et al.’s data.

Algorithms MCODE MCL RNSC COACH

#Complexes 75 834 1890 345
#Covered proteins 550 3581 3581 1070
Ncp 45 147 245 186
Ncb 202 197 283 276
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predicted 153 complexes and the size of the largest complex is 31.
Similarly, for Krogan data, maximum number of complexes is pre-
dicted by COACH, but largest complex is predicted by PROCODE.
Again, for MIPS data, largest complex is given by COACH, but max-
imum number of predicted complexes is given by ClusterONE.

In Tables 2 and 3, we have shown a detailed comparison among
various competing protein complex detection algorithms over DIP
data and Krogan data, respectively. For each method, #complexes
denotes the total number of predicted complexes, #covered pro-
teins denotes the number of proteins included in the predicted
complexes, Ncp is the number of predicted complexes which match
with at least one actual complex from the benchmark set and Ncb is
the number of actual complexes that match with at least one pre-
dicted complex. For example, in Table 2, MCODE predicted 71 com-
plexes, out of which 32 complexes matched with at least one actual
complex and 261 actual complexes from the benchmark set
matched with at least one predicted complex. There are 4934 pro-
teins in the DIP PPI network, out of which 732 proteins are
included in the 71 predicted complexes. Whereas, PROCODE pre-
dicted 153 complexes covering 699 proteins out of 4934 proteins
in DIP.

A comparative analysis of PROCODE with MCODE, COACH and
ClusterONE in terms of Precision, Recall and F-measure is given in
Table 4.

In Fig. 4 we can see that PROCODE has outperformed most of
the competing algorithms taken under consideration by showing
greater precision and F-measure values. We can also notice that
PROCODE algorithm has performed well compared to most of the
competing algorithms using Krogan et al.’s data as shown in Fig. 3.

In order to substantiate the findings we have included the Sen-
sitivity, PPV and Accuracy measures. These are commonly used
metrics to assess the performance of protein complex detection
algorithms. Ji et al. [32], Li et al. [33] are among those who have
used these metrics for performance evaluation. The results are
shown in Figs. 8–10 for the datasets DIP, MIPS and Krogan respec-
tively. Nevertheless, we should realize that all these metrics used
to evaluate the performance of the mining algorithms are certainly
not the absolute measures, they all have their pros and cons.

We have also calculated the overall Cluster Score for DIP data
and MIPS datasets and found 0.967 and 0.99 respectively. We have
calculated the co-localization score for complexes using DIP data.
We found 5 complexes with co-localization value 1.0 and the aver-
age co-localization value is found to be 0.5499 whereas for the
same dataset COACH gives a co-localization score of value 0.75.
Co-localization score of ClusterONE for DIP dataset is 0.62 and
co-localization score of MCODE for the same dataset is 0.48.
CORE CFinder DPClus ClusterONE PROCODE

1722 245 1143 342 153
3777 2008 2987 1366 699
221 84 193 99 96
256 111 274 303 257

CORE CFinder DPClus ClusterONE PROCODE

1232 122 689 239 130
2665 1578 1996 1062 659
201 45 167 102 85
229 63 241 270 230



Table 4
Performance evaluation over MIPS data.

Algorithms MCODE COACH ClusterONE PROCODE

#Complexes 162 472 691 98
#Covered proteins 852 1270 2396 431
Ncp 32 170 125 59
Ncb 295 321 376 192
Precision 0.1975 0.3601 0.1808 0.6020
Recall 0.6892 0.75 0.8785 0.4485
F-measure 0.3070 0.4865 0.2998 0.5140
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5.3. Results on human data

Various works on protein complex detection methods usually
use data from the yeast S. Cerevisiae for their experimental evalu-
ation due to the fact that yeast has been studied thoroughly during
the past decades and yeast data is stored and made available in
various public databases to be used by researchers worldwide.
Nowadays, researchers are also trying to use Homo sapien data
to evaluate their methods. However, working with Homo sapien
Fig. 3. Performance comparison in terms of Precisio

Fig. 4. Performance comparison in terms of Pre
data is very challenging due to the fact that human PPI data is
noisy, huge size of the PPI data, more number of smaller com-
plexes, some of the complex sizes are also huge, proteins existing
in multiple complexes and having overlapping functions as well
as nomenclature problem such as different UNIPROT human IDs
mapping to the same protein [42]. In this paper, we take it as a
challenge to evaluate PROCODE based on human data. We used
the preprocessed Human PPI network data from [43] having a total
of 37,437 number of PPI interactions. The benchmark complex set
of CORUM [25] was used as the gold standard containing 1843
human complexes. In the Human PPI network, PROCODE achieved
a precision, recall and f-measure of 0.242, 0.158 and 0.191, when
matched with the benchmark complexes of the CORUM data as
shown in Fig. 11. The other counterpart methods MCODE, COACH,
ClusterONE and WEC [43] achieved f-measure values of 0.077,
0.197, 0.163 and 0.19. We observe from the Fig. 11 that PROCODE
has achieved the second best performance after COACH in terms of
f-measure with a value of 0.191. We can say that PROCODE’s per-
formance is almost at par with COACH. Therefore, we can conclude
that PROCODE predicts complexes quite well.
n, Recall and F-measure for Krogan et al.’s data.

cision, Recall and F-measure for DIP data.



Fig. 5. Distribution of the Sizes of the Predicted Complexes for DIP data.

Fig. 6. Distribution of the Sizes of the Predicted Complexes for Krogan data.
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We also computed the sensitivity, PPV and accuracy scores of
PROCODE and its counterparts and the results are shown in
Fig. 12. PROCODE obtained a sensitivity score of 0.51, PPV score
of 0.041 and accuracy score of 0.144. PROCODE had the highest
sensitivity score indicating a good prediction coverage of the pre-
dicted proteins in the real complexes. ClusterONE had the highest
PPV and accuracy values with scores of 0.154 and 0.27 respectively.

5.4. Conclusion and discussion

Our proposed technique, PROCODE is designed to detect the
protein complexes from the PPI network by identifying the dense
and possibly overlapping regions. After performing various com-
parative analysis on PROCODE along with other competing algo-
rithms, we conclude that although PROCODE could not
outperform all the algorithms, it stands at par with most of the
compared algorithms in terms of p-value, Precision, Recall, F-
measure, Sensitivity, PPV and Accuracy. It has also shown satisfac-
tory results while considering Gene Ontology Annotation with
MCL, MCODE and PCA-rdr. Although Sensitivity, PPV and Accuracy
metrics have their own limitations, we can still have some idea
about the algorithm’s performance by applying these metrics. In
case of PROCODE, it has performed best for the MIPS dataset and
for Krogan and DIP dataset it’s performance was average. The p-
values obtained for the predicted complexes of PROCODE are quite
low which generally indicates that the predicted complexes has
high statistical significance (Refer to supplementary material).
The proportion of significant complexes over the total number of
predicted complexes of PROCODE is 11.5%, 26.71% and 2.85%
higher than MCODE, ClusterONE and COACH respectively (Table 1).



Fig. 7. Distribution of the Sizes of the Predicted Complexes for MIPS data.

Fig. 8. Comparison of PROCODE and its counterparts over DIP data.
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This may indicate that the collective occurrence of proteins in all
the predicted complexes of PROCODE retains better biological sig-
nificance than the compared ones. Nevertheless, COACH has cov-
ered much larger number of proteins than PROCODE, MCODE and
ClusterONE (for DIP data) and managed to predict a comparatively
larger proportion of the complexes as significant. In the human PPI
network also our method performs relatively well in term of pre-
dictive capacity having an f-measure score of 0.191 lesser than
Coach by a small margin and better than WEC. In terms of biolog-
ical relevance, the p-values obtained are very good with the lowest
p-value of 2.12E-113 for the GO term GO:0007169 (refer to Sup-
plemetary material).

Many algorithms have been proposed and used to detect pro-
tein complexes. But it is still difficult to accurately and efficiently
predict all biologically relevant protein complexes across different
datasets. It should also be mentioned that to make it more mean-
ingful and useful, the protein complex detection from PPI network
should also give much emphasis on graph mining techniques. The
success of these approaches also largely depends on the advance-
ment of the experimental techniques adopted by the biologists to
provide reliable and rich biological datasets for computation.
Hence, when computer scientists and biologists will work in col-
laboration with each other, it would be much easier for the com-
puter scientists, with added knowledge provided by the
biologists, to exploit the protein interaction data and to provide
efficient and robust ways for mining new knowledge from PPI data.

An executable of PROCODE is now available at (http://agnigarh.
tezu.ernet.in/�dkb/procode/index.html). We aim to make avail-
able both the source codes/executable in public code repository
in future.

http://agnigarh.tezu.ernet.in/<ucode type=
http://agnigarh.tezu.ernet.in/<ucode type=
http://agnigarh.tezu.ernet.in/<ucode type=


Fig. 10. Comparison of PROCODE and its counterparts over Korogan’s data.

Fig. 11. The f-measure value obtained by MCODE, COACH, ClusterONE, WEC and PROCODE on the human network data.

Fig. 9. Comparison of PROCODE and its counterparts over MIPS data.
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Fig. 12. TheSensitivity, PPV and Accuracyscores obtained by MCODE, COACH, ClusterONE, PROCODE and WEC on the human network data.
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Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.jgeb.2017.10.010.
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